Improved Trial Wave Functions for Nuclear Quantum Monte Carlo

Cody L. Petrie
Advisor: Kevin Schmidt

Arizona State University
Tempe, AZ

Collaborators: Stefano Gandolfi (LANL), Joe Carlson (LANL)

INT Program INT-18-2b Advances in Monte Carlo Techniques for Many-Body Quantum Systems
July 30 - September 7, 2018
Outline

- Quantum Monte Carlo methods
- Improved trial wave function
- Alpha formation in nearly neutron matter - preliminary
- Another Improved trial wave function - preliminary
Quantum Monte Carlo

- **VMC:**
 \[E_V = \frac{\langle \Psi_T | H | \Psi_T \rangle}{\langle \Psi_T | \Psi_T \rangle} \geq E_0 \]

- **AFDMC:**
 \[\langle R_N | \Psi_T(\tau) \rangle = \int dR_1 \ldots dR_N \left[\prod_{i=1}^{N} G(R_i, R_{i-1}, \Delta \tau) \right] \langle R_0 | \Psi_T(0) \rangle \]
 \[G(R', R, \Delta \tau) = \langle R' | e^{-(H-E_0)\Delta \tau} | R \rangle \]

- \(\Psi_T \) is calculated in practically every part of the calculation and plays an important role in guiding the propagation and diffusion of the calculation to the ground state.
Slater Determinant

- **Properties:**
 - Antisymmetric
 - Cluster Decomposable
 \[|A + B\rangle = |A\rangle |B\rangle \]

- The simplest wave function for a many-fermion system obeying these properties is a Slater determinant where \(\phi_i(r_i, s_i) \) are single particle nucleon states.

\[
\psi_T = \langle RS | \phi \rangle = A \prod_{i=1}^{A} \phi_i(r_i, s_i) = \frac{1}{A!} \det \phi_i(r_i, s_i)
\]

- Short range correlations need to be put in by hand via Jastrow-like correlations.

\[
|\psi_T\rangle = \prod_{i<j} f(r_{ij}) |\phi\rangle.
\]
Spin Dependent Correlations

- Two spin dependent wave functions that obey these two properties are the exponentially correlated and symmetrized product wave functions, where O_{ij}^p are the AV6 operators, $\sigma_i \cdot \sigma_j$, $\tau_i \cdot \tau_j$, $\sigma_i \cdot \sigma_j \tau_i \cdot \tau_j$, S_{ij} and $S_{ij} \tau_i \cdot \tau_j$, where $S_{ij} = 3\sigma_i \cdot \hat{r}_{ij}\sigma_j - \sigma_i \cdot \sigma_j$.

$$|\psi_T\rangle = \left[\prod_{i<j} f_c(r_{ij}) \right] e^{\sum_i \sum_p f_p(r_{ij}) O_{ij}^p} |\phi\rangle$$

$$|\psi_T\rangle = \left[\prod_{i<j} f_c(r_{ij}) \right] S \prod_{i<j} \left(1 + \sum_p f_p(r_{ij}) O_{ij}^p \right) |\phi\rangle$$

- These two wave functions are the same up to second order except for commutator terms.
Symmetrized Product Wave Function

- The symmetrized product is expensive to calculate and so an expansion truncated at linear order has been used in the past with good success.

\[
|\psi_T\rangle = \left[\prod_{i<j} f_c(r_{ij}) \right] \left(1 + \sum_{i<j} \sum_p f_p(r_{ij}) O_{ij}^p \right) |\phi\rangle
\]

- We have taken this expansion to second order.

\[
|\psi_T\rangle = \left[\prod_{i<j} f_c(r_{ij}) \right] \left[1 + \sum_{i<j} \sum_p f_p(r_{ij}) O_{ij}^p \right. \\
+ \left. \frac{1}{2} \sum_{i<j} \sum_p f_p(r_{ij}) O_{ij}^p \sum_{k<l} \sum_q f_q(r_{kl}) O_{kl}^q \right] |\phi\rangle
\]
Independent Pair Quadratic Correlations

- Or it can be expanded to get independent pair quadratic terms

\[
|\psi_T\rangle = \left[\prod_{i<j} f_c(r_{ij}) \right] \left[1 + \sum_{i<j} \sum_p f_p(r_{ij}) O_{ij}^p \right.

+ \sum_{i<j} \sum_p f_p(r_{ij}) O_{ij}^p \sum_{k<l,ip} \sum_q f_q(r_{kl}) O_{kl}^q \left. \right] |\phi\rangle
\]

Allowed

\[
\text{Not Allowed}
\]

Cody L. Petrie, cody.petrie@asu.edu
Table: Energy (*per nucleon) in MeV

<table>
<thead>
<tr>
<th>System</th>
<th>Linear</th>
<th>IP Quadratic</th>
<th>Quadratic</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>^4He</td>
<td>-27.14(4)</td>
<td>-27.19(3)</td>
<td>-27.11(3)</td>
<td>-28.296</td>
</tr>
<tr>
<td>^{16}O</td>
<td>-115.7(9)</td>
<td>-122.4(1.5)</td>
<td>-120.8(1.3)</td>
<td>-127.62</td>
</tr>
<tr>
<td>^{40}Ca</td>
<td>-322(3)</td>
<td>-350(10)</td>
<td>-351(6)</td>
<td>-342.1</td>
</tr>
<tr>
<td>SNM*</td>
<td>-13.97(3)</td>
<td>-14.87(4)</td>
<td>-14.81(3)</td>
<td></td>
</tr>
</tbody>
</table>

Quadratic Correlation Cost

- **System**:
 - \(^4\text{He}\)
 - \(^{16}\text{O}\)
 - \(^{28}\text{SNM}\)
 - \(^{40}\text{Ca}\)

- **Scaling Factor**:
 - IP Quadratic:
 - \(^4\text{He}\) 1.73
 - \(^{16}\text{O}\) 30.7
 - \(^{28}\text{SNM}\) 64.8
 - \(^{40}\text{Ca}\) 720.9
 - Quadratic:
 - \(^4\text{He}\) 2.00
 - \(^{16}\text{O}\) 58.8
 - \(^{28}\text{SNM}\) 133.6
 - \(^{40}\text{Ca}\) 1473.9
Neutron Stars - Preliminary

- Use new wave function to study α formation in the inner crust of neutron stars.

\[E_\alpha = E_{Nn+2p} - E_{(N-2)n} \]

\[
\begin{align*}
4 \times 10^{11} \text{ g cm}^{-3} & \approx 0.00024 \text{ fm}^{-3} \\
0.5 \times 10^{14} \text{ g cm}^{-3} & \approx 0.030 \text{ fm}^{-3} \\
1.4 \times 10^{14} \text{ g cm}^{-3} & \approx 0.084 \text{ fm}^{-3} \\
10^{15} \text{ g cm}^{-3} & \approx 0.60 \text{ fm}^{-3}
\end{align*}
\]

If alpha particles form in nearly neutron matter then we should be able to estimate their energy by

\[E_\alpha = E_{14n+2p} - E_{12n} \]

- Both energies decreased, but the combination did not always.

Table: Alpha energy in MeV

<table>
<thead>
<tr>
<th>(\rho) (fm(^{-3}))</th>
<th>lin</th>
<th>ip</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0005</td>
<td>-22.3(3)</td>
<td>-23.8(2)</td>
</tr>
<tr>
<td>0.001</td>
<td>-20.7(3)</td>
<td>-23.0(2)</td>
</tr>
<tr>
<td>0.002</td>
<td>-21.6(2)</td>
<td>-22.6(2)</td>
</tr>
<tr>
<td>0.003</td>
<td>-25.7(3)</td>
<td>-23.5(5)</td>
</tr>
<tr>
<td>0.005</td>
<td>-27.5(5)</td>
<td>-22.4(3)</td>
</tr>
<tr>
<td>0.01</td>
<td>-37.3(3)</td>
<td>-34.7(3)</td>
</tr>
</tbody>
</table>
The quadratic correlations improved the trial wave function, but with a large computational cost. Can we do better with the exponential correlations?

\[
|\psi_T\rangle = \left[\prod_{i<j} f_c(r_{ij}) \right] e^{\sum_i \sum_p f_p(r_{ij})O_{ij}^p} |\phi\rangle
\]

We don’t know how to calculate the exponential of two-body operators. But we have already tackled this exact problem with the spin sampling in AFDMC by using the Hubbard-Stratanovich transformation.

\[
e^{-\frac{1}{2} \lambda O_i^2} = \frac{1}{\sqrt{2\pi}} \int dx e^{-\frac{x^2}{2} + \sqrt{-\lambda}xO_i}
\]
Exponential Correlations - Preliminary

Following the same procedure used in AFDMC spin sampling we can write the exponential correlations as

\[
\exp\left(\sum_{i<j,p} f_p(r_{ij}) O^p_{ij}\right) = \exp\left(\frac{1}{2} \sum_{n=1}^{15A} (O_n)^2 \lambda_n^\sigma\right),
\]

where the \(3A\) \(O_n^\sigma\), \(9A\) \(O_n^{\sigma\tau}\), and \(3A\) \(O_n^\tau\) single particle operators are

\[
O_n^\sigma = \sum_{j,\beta} \sigma_j,\beta \psi_n^\sigma_{j,\beta}
\]

\[
O_n^{\sigma\tau} = \sum_{j,\beta} \tau_j,\alpha \sigma_j,\beta \psi_n^{\sigma\tau}_{j,\beta}
\]

\[
O_n^\tau = \sum_{j} \tau_j,\alpha \psi_n^\tau_{j}.
\]
Using the Hubbard-Stratanovich transformation this can then be written as

$$\exp \left(\frac{1}{2} \sum_{n=1}^{15A} (O_n)^2 \lambda_n^\sigma \right) = \prod_{n=1}^{15A} \frac{1}{\sqrt{2\pi}} \int dx_n e^{-x_n^2/2} e^{\sqrt{\lambda_n} x_n O_n},$$

and the auxiliary fields can be sampled to be

$$\Psi_T(R, S) = \langle RS \prod_{n=1}^{15A} \frac{1}{N} \sum_{\{x_n\}} \frac{1}{\sqrt{2\pi}} e^{\sqrt{\lambda_n} x_n O_n} | \Phi \rangle.$$
Problems with statistical errors related to the sampling.
Calculating the potential energy with exponential correlations and the rest with linear correlations.

Table: 4He energy with exp correlations. $E_{\text{linear}}=-26.48(9)$ MeV.

<table>
<thead>
<tr>
<th># fields</th>
<th>E (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-45.0(6)</td>
</tr>
<tr>
<td>10</td>
<td>-31.8(3)</td>
</tr>
<tr>
<td>100</td>
<td>-29.4(2)</td>
</tr>
<tr>
<td>200</td>
<td>-29.15(8)</td>
</tr>
<tr>
<td>500</td>
<td>-28.68(18)</td>
</tr>
<tr>
<td>1000</td>
<td>-28.7(2)</td>
</tr>
</tbody>
</table>

Currently looking into this problem.
We have improved the previously used two-body spin-isospin correlations.

The improved trial wave functions appear to make a significant difference in the energy of the calculations, but currently cost too much to use for large systems.

We have shown that our calculation can see what are probably alpha particles forming in mostly neutron matter around the density of neutron star crusts. These calculations appear to be even better when improved correlations are used.
Thanks

Advisor: Kevin Schmidt (ASU)
Collaborators: Stefano Gandolfi (LANL) and Joe Carlson (LANL)