Gravitational waves from cosmological phase transitions: Using LISA to probe particle physics

S@INT seminar - University of Washington

05/05/2022

Jorinde van de Vis

Based on:

R. Jinno, T. Konstandin, H. Rubira, JvdVF. Giese, T. Konstandin, JvdVF. Giese, T. Konstandin, K. Schmitz, JvdVF. Giese, T. Konstandin, JvdV

JCAP 12 (2021) 12, 019 JCAP 11 (2021) 002 JCAP 01 (2021) 072 JCAP 07 (2020) 07, 057 arXiv:2108.11947 arXiv:2107.06275 arXiv:2010.09744 arXiv:2004.06995

HELMHOLTZ

First black hole GW merger event: GW150914

LIGO/Virgo Collab. 2016

November 2021: 90 events

LIGO/Virgo Collab. 2016

Ongoing and upcoming experiments

Ongoing and upcoming experiments

- Size of the detector sets f_{detector}
- Typical time scale and redshift of source set

 $f_{\rm signal}$

Ongoing and upcoming experiments

Cosmological phase transition: observable with LISA?

Laser Interferometer Space Antenna (LISA)

ESA mission, planned in the 2030s

NASA

Minkowski Expand the metric:
$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \qquad |h_{\mu\nu}| \ll 1$$

Expand the metric:
$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$
, $|h_{\mu\nu}| \ll 1$

 $h_{\mu\nu}$: only transverse and traceless component

Expand the metric:
$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$
, $|h_{\mu\nu}| \ll 1$

 $h_{\mu\nu}$: only transverse and traceless component

Source*:
$$\Box \bar{h}_{\mu\nu} = -\frac{16\pi G}{c^4} T_{\mu\nu}$$

*In the gauge where
$$\partial^{\nu}\bar{h}_{\mu\nu} = 0$$
, with $\bar{h}_{\mu\nu} = h_{\mu\nu} - \frac{1}{2}\eta_{\mu\nu}h$

How can a cosmological phase transition source gravitational waves?

Cosmological phase transition

Temperature-dependent Higgs* potential

Zero temperature Higgs potential

Cosmological phase transition

Temperature-dependent Higgs* potential

First order versus second order

First order phase transition

Bubble nucleation

Motion in the primordial fluid sourcing gravitational waves Hydrodynamic simulations

FIG. 4. Slices of fluid kinetic energy density E/T_c^4 at $t = 500 T_c^{-1}$, $t = 1000 T_c^{-1}$ and $t = 1500 T_c^{-1}$ respectively, for the $\eta/T_c = 0.15$, $N_b = 988$ simulation.

Hindmarsh, Huber, Rummukainen, Weir 2015

Phase transitions in the Standard Model of Particle Physics

- Electroweak phase transition around 100 GeV
- QCD phase transition around 150 MeV

Phase transitions in the Standard Model of Particle Physics

- Electroweak phase transition around 100 GeV
- QCD phase transition around 150 MeV
- None of them is first order

Gravitational waves from first order phase transition: sign of new particles!

- New particle interacting with the Higgs can make the phase transition first order
- Phase transition in a dark sector?
- Relation to the asymmetry between matter and antimatter (electroweak baryogenesis)?

The ideal world

The ideal situation

- We know exactly what the gravitational wave spectrum looks like
- There are enough model-dependent features to distinguish between different BSM models
- The GW signal can be completely reconstructed by LISA
- We can infer the particle physics model from the signal

The ideal situation

- We know exactly what the gravitational wave spectrum looks like
- There are enough model-dependent features to distinguish between Part I different BSM models
- The GW signal can be completely reconstructed by LISA
- We can infer the particle physics model from the signal

The ideal situation

- We know exactly what the gravitational wave spectrum looks like
- There are enough model-dependent features to distinguish between different BSM models
- The GW signal can be completely reconstructed by LISA
- We can infer the particle physics model from the signal

What does the gravitational wave signal look like?

Three contributions to the gravitational wave signal

• Kinetic energy in the bubble walls

Kosowsky, Turner, Watkins 1992, Kosowsky, Turner 1993, Jinno, Takimoto 2017, Konstandin 2017, Cutting, Hindmarsh, Weir 2018*

Sound waves

Hindmarsh, Huber, Rummukainen, Weir 2013, 2015 & 2017, Giblin, Mertens 2013&2014, Cutting, Hindmarsh, Weir 2019

• Turbulence

Caprini, Durrer, 2006, Kahniashvili, Campanelli, Gogoberidze, Maravin, Ratra 2008&2009, Caprini, Durrer, Servant 2009, Kissinger, Kahniashvili 2015

* A very incomplete list of references

Three contributions to the gravitational wave signal

- Kinetic energy in the bubble walls
 Kosowsky, Turner, Watkins 1992, Kosowsky, Turner 1993, Jinno, Takimoto 2017, Konstandin 2017, Cutting, Hindmarsh, Weir 2018*
- Sound waves

Hindmarsh, Huber, Rummukainen, Weir 2013, 2015 & 2017, Giblin, Mertens 2013&2014, Cutting, Hindmarsh, Weir 2019

• Turbulence

Caprini, Durrer, 2006, Kahniashvili, Campanelli, Gogoberidze, Maravin, Ratra 2008&2009, Caprini, Durrer, Servant 2009, Kissinger, Kahniashvili 2015

* A very incomplete list of references

Gravitational waves from many bubbles

Hydrodynamic lattice simulations

FIG. 4. Slices of fluid kinetic energy density E/T_c^4 at $t = 500 T_c^{-1}$, $t = 1000 T_c^{-1}$ and $t = 1500 T_c^{-1}$ respectively, for the $\eta/T_c = 0.15$, $N_b = 988$ simulation.

Hindmarsh, Huber, Rummukainen, Weir 2015

Do I have to run a new simulation for every model that predicts a first order phase transition?

Gravitational wave power spectrum

$$\frac{d\Omega_{gw}}{d\ln(f)} = 0.687F_{gw,0}K^2H_*R_*/c_s\tilde{\Omega}_{gw}C\left(f/f_{p,0}\right)$$

LISA cosmology working group, 2019 (based on Hindmarsh, Huber, Rummukainen, Weir 2015 & 2017)

$$\frac{d\Omega_{gw}}{d\ln(f)} = 0.687 F_{gw,0} K^2 H_* R_* / c_s \tilde{\Omega}_{gw} C \left(f/f_{p,0} \right)$$

• Relevant parameters: T_*

Kinetic energy fraction (phase transition strength α , wall velocity v_w)

$$\frac{d\Omega_{gw}}{d\ln(f)} = 0.687F_{gw,0}K^2H_*R_*/c_s\tilde{\Omega}_{gw}C\left(f/f_{p,0}\right)$$

Bubble size at collision (v_w , phase transition duration β^{-1})

$$\frac{d\Omega_{gw}}{d\ln(f)} = 0.687F_{gw,0}K^2H_*R_*/c_s\tilde{\Omega}_{gw}C\left(f/f_{p,0}\right)$$

$$\frac{d\Omega_{\rm gw}}{d\ln(f)} = 0.687F_{\rm gw,0}K^2H_*R_*/c_s\Omega_{\rm gw}C\left(f/f_{p,0}\right)$$

Peak frequency (T_*, β)

$$\frac{d\Omega_{gw}}{d\ln(f)} = 0.687F_{gw,0}K^2H_*R_*/c_s\tilde{\Omega}_{gw}C\left(f/f_{p,0}\right)$$

$$\frac{d\Omega_{gw}}{d\ln(f)} = 0.687F_{gw,0}K^2H_*R_*/c_s\tilde{\Omega}_{gw}C\left(f/f_{p,0}\right)$$

Computation of the power spectrum - common procedure

• Choose a BSM model with a first order phase transition (Higgs + singlet, 2HDM, composite Higgs...)
- Choose a BSM model with a first order phase transition
- Analyze at finite temperature and determine T_*, α, β *

*
$$\alpha \sim \frac{\Delta p}{\rho_{\rm tot}}$$

DESY.

- Choose a BSM model with a first order phase transition
- Analyze at finite temperature and determine T_*, α, β
- Compute the wall velocity v_w

- Choose a BSM model with a first order phase transition
- Analyze at finite temperature and determine T_*, α, β
- Compute the wall velocity v_w
- Determine the kinetic energy fraction

Common determination of kinetic energy fraction

- Obtain from a fit provided by Espinosa et al.
- Fit is based on the bag model

Fit of 'efficiency factor' as function of v_w and α

- Choose a BSM model with a first order phase transition
- Analyze at finite temperature and determine T_*, α, β
- Compute the wall velocity v_w
- Determine the kinetic energy fraction
- Plug everything into $\frac{d\Omega_{gw}}{d\ln(f)} = 0.687F_{gw,0}K^2H_*R_*/c_s\tilde{\Omega}_{gw}C\left(f/f_{p,0}\right)$

Improved computation of *K*: (2004.06995, 2010.09744)

Thermodynamic quantities

• Pressure p = -F

• Energy density $e = T \frac{\partial p}{\partial T} - p$

$$w = T\frac{\partial p}{\partial T} = e + p$$

• Speed of sound $c_s^2 = \frac{dp/dT}{de/dT}$

7

fluid velocity

• Energy-momentum tensor of the fluid

 $T^{\mu\nu} = u^{\mu}u^{\nu}w + \eta^{\mu\nu}p$

Hydrodynamic equations

•
$$2\frac{v}{\xi} = \gamma^2(1-v\xi)\left[\frac{\mu^2}{c_s^2}-1\right]\partial_{\xi}v$$
, $\frac{\partial_v w}{w} = \left(\frac{1}{c_s^2}+1\right)\gamma^2\mu$

v: fluid velocity

 ξ : radial coordinate

$$\mu = \frac{\xi - v}{1 - \xi v}$$

Hydrodynamic equations

•
$$2\frac{v}{\xi} = \gamma^2(1-v\xi)\left[\frac{\mu^2}{c_s^2}-1\right]\partial_{\xi}v$$
, $\frac{\partial_v w}{w} = \left(\frac{1}{c_s^2}+1\right)\gamma^2\mu$

• Boundary conditions: $w(T_n) = w_n$

• Matching

$$\frac{v_{+}}{v_{-}} = \frac{e_{b}(T_{-}) + p_{s}(T_{+})}{e_{s}(T_{+}) + p_{b}(T_{-})}, \quad v_{+}v_{-} = \frac{p_{s}(T_{+}) - p_{b}(T_{-})}{e_{s}(T_{+}) - e_{b}(T_{-})} \underbrace{(v_{-}, T_{-}, p_{-}, e_{-})}_{\leftarrow v_{-}, T_{-}, p_{-}, e_{-}} \underbrace{(v_{-}, T_{-}, p_{-}, e_{-})}_{\rightarrow \leftarrow v_{-}, T_{-}, p_{-}, e_{-}} \underbrace{(v_{-}, T_{-}, p_{-}, e_{-})}_{\leftarrow v_{-}, p_{-}, e_{-}} \underbrace{(v_{-}, p_{-}, p_{-}, e_{-}, e_{-$$

Solution: velocity and enthalpy profiles

J. Espinosa, T. Konstandin, J. No, G. Servant, 2010

Three types of solutions

J. Espinosa, T. Konstandin, J. No, G. Servant, 2010

Kinetic energy fraction

• Kinetic energy in the fluid

$$\rho_{fl} = \frac{3}{v_w^3} \int d\xi \,\xi^2 \,v^2 \,\gamma^2 w$$
$$K = \frac{\rho_{fl}}{e_n}$$

• Kinetic energy fraction

Can we solve these equations "once and for all"?

Solution in the bag model

•
$$p_s = \frac{1}{3}a_+T^4 - \epsilon$$
 $e_s = a_+T^4 + \epsilon$
 $p_b = \frac{1}{3}a_-T^4$ $e_b = a_-T^4$

- Bag constant ϵ independent of temperature
- Sound speed $c_s = 1/\sqrt{3}$
- Phase transition strength $\alpha_{\epsilon} = \frac{4\epsilon}{3w_n}$

•
$$K = \frac{\alpha_{e}\kappa_{e}}{\alpha_{e}+1}$$
 completely determined by α_{e} and v_{w}

Shortcomings in the bag model

•
$$p_s = \frac{1}{3}a_+T^4 - \epsilon$$
 $e_s = a_+T^4 + \epsilon$
 $p_b = \frac{1}{3}a_-T^4$ $e_b = a_-T^4$

- Bag constant ϵ independent of temperature
- Sound speed $c_s = 1/\sqrt{3}$
- Phase transition strength $\alpha_{\epsilon} = \frac{4\epsilon}{3w_n}$

•
$$K = \frac{\alpha_e \kappa_e}{\alpha_e + 1}$$
 completely determined by α_e and ξ_w

Not a realistic model

Shortcomings in the bag model

•
$$p_s = \frac{1}{3}a_+T^4 - \epsilon$$
 $e_s = a_+T^4 + \epsilon$
 $p_b = \frac{1}{3}a_-T^4$ $e_b = a_-T^4$

- Bag constant ϵ independent of temperature
- Sound speed $c_s = 1/\sqrt{3}$

01 1

• Phase transition strength

$$\alpha_{\epsilon} = \frac{4\epsilon}{3w_n}$$

$$K = \frac{\alpha_{\epsilon} \kappa_{\epsilon}}{\alpha_{\epsilon} + 1}$$
 completely determined by α_{ϵ} and ξ_{w}

Not a realistic model

How does this get generalized?

Model-independent matching

•
$$\frac{v_+}{v_-} = \frac{e_b(T_-) + p_s(T_+)}{e_s(T_+) + p_b(T_-)}, \qquad v_+v_- = \frac{p_s(T_+) - p_b(T_-)}{e_s(T_+) - e_b(T_-)}$$

Model-independent matching

•
$$\frac{v_+}{v_-} = \frac{e_b(T_-) + p_s(T_+)}{e_s(T_+) + p_b(T_-)},$$

$$v_{+}v_{-} = \frac{p_{s}(T_{+}) - p_{b}(T_{-})}{e_{s}(T_{+}) - e_{b}(T_{-})}$$

• Assume $T_+ \sim T_-$

Model-independent matching

•
$$\frac{v_+}{v_-} = \frac{e_b(T_-) + p_s(T_+)}{e_s(T_+) + p_b(T_-)}, \qquad v_+v_- = \frac{p_s(T_+) - p_b(T_-)}{e_s(T_+) - e_b(T_-)}$$

• Assume $T_+ \sim T_-$

•
$$\frac{v_+}{v_-} \simeq \frac{(v_+ v_- / c_{s,b}^2 - 1) + 3\alpha_{\bar{\theta}}}{(v_+ v_- / c_{s,b}^2 - 1) + 3v_+ v_- \alpha_{\bar{\theta}}}$$

 $\bar{\rho} \qquad D\bar{\theta}$

•
$$\theta \equiv e - \frac{1}{c_{s,b}^2} \qquad \alpha_{\bar{\theta}} \equiv \frac{1}{3w_n}$$

Model-(in)dependent hydrodynamic equations

Model-independent hydrodynamics

• All model-dependence is captured by $v_w, \alpha_{\bar{\theta}}, c_{s,b}, c_{s,s}$ *

• Determine
$$\kappa_{\bar{\theta}} = \frac{4\rho_{fl}}{D\bar{\theta}}$$
 model-independently

• Find
$$K = \frac{D\theta}{4e_n} \kappa_{\bar{\theta}}$$

* As long as
$$T_{-} \sim T_{+}$$
 is reasonable

Template model

Model with speed of sound $c_s \neq 1\sqrt{3}$ (but constant)

Python snippet (2010.09744) computes efficiency factor

inport numpy as np 1 Compute 2 from scipy.integrate import odeint from scipy.integrate import simps $\alpha_{\bar{\theta}}$, both c_s 3 4 and choose def mu(a,b): 5 return (a-b)/(1.-a+b)6 v_w 7 def getwow(a,b): 8 9 return a/(1.-a**2)/b*(1.-b**2) 10 def getvn(al,vv,cs2b): 11 if vw**2<cs2b: 12 13 return (vv.0) 14 cc = 1.-3.*al+vw**2*(1./cs2b+3.*al) disc = -4.*vv**2/cs2b+cc**215 if (disc<0.) | (cc<0.): 16 17 return (np.sqrt(cs2b), 1) return ((cc+np.sqrt(disc))/2.*cs2b/vw, 2) 18 19 20 def dfdv(xiw, v, cs2): ... 76 Krf*= -wow*getwow(vp.vm) 77 else: 7B Krf = 079 return (Ksh + Krf)/al

 $\rightarrow \kappa_{\bar{\theta}}$

How well does this work?

Two toy models

- SM with a light Higgs
- Two-step phase transition
- Choose nucleation temperature manually

Model	$T_+/T_{\rm cr}$	$\alpha_{\bar{\theta}}$	c_s^2	
SM_1	0.9	0.0297	0.326	
SM_2	0.8	0.0498	0.331	
SM_3	0.9	0.00887	0.331	
SM_4	0.8	0.0149	0.333	

Model	$T_+/T_{\rm cr}$	$\alpha_{\bar{\theta}}$	c_s^2	
2step_1	0.9	0.0156	0.312	
2step_2	0.7	0.0704	0.297	
$2 \operatorname{step}_3$	0.9	0.0254	0.282	
2step_4	0.7	0.159	0.245	

Six different methods to determine *K*

M 1	Full numerical solution				
M2	Mapping onto template model				
M3 & M4	Mapping onto bag model via trace of energy-momentum tensor				
M5	Mapping onto bag model via pressure difference				
M 6	Mapping onto bag model via energy-density difference				

DESY.

64

What is a realistic value for the sound speed?

$$V_{\text{tree}}(h,s) = -\frac{\mu_h^2}{2}h^2 + \frac{\lambda_h}{4}h^4 - \frac{\mu_s^2}{2}s^2 + \frac{\lambda_s}{4}s^4 + \frac{\lambda_{hs}}{4}h^2s^2 + \Delta V_h$$

$$V_T(h,s) = \frac{T^4}{2\pi^2} \sum_{\alpha} N_{\alpha} \int_0^{\infty} dx x^2 \log \left[1 \pm e^{-\sqrt{x^2 + M_{\alpha}^2(h,s)/T^2}}\right] + \frac{T}{12\pi} \sum_{\text{bosons } \alpha} N_{\alpha} \left[M_{\alpha}^3(h,s) - M_{T,\alpha}^3(h,s,T)\right]$$

Heavy particles

$$V_{\delta T} = -\frac{\pi^2}{90}g'_*T^4, \qquad g'_* = \frac{345}{4}$$

$$V_{\text{eff}} = V_{\text{tree}} + V_{cw} + V_{ct} + V_T + V_{\delta T}$$

What is a realistic value for the sound speed?

• Find nucleation temperature via $\frac{S_3}{T} \approx 140$ (one bubble per Hubble)

$m_s({ m GeV})$	λ_s	λ_{hs}	$T_n(\text{GeV})$	β/H_*	$lpha_e$	$lpha_{ar{ heta}n}$	$c_{s,b}^2$	$c_{s,s}^2$
300	1.90	3.50	87.3	288	0.070	0.035	0.324	0.333
250	2.80	2.80	71.1	152	0.126	0.075	0.325	0.334
250	0.40	2.26	98.9	367	0.051	0.022	0.325	0.333
170	2.80	1.80	69.5	335	0.119	0.065	0.324	0.334

~ 1/3...

 $m_s = 170 \,\mathrm{GeV}$

 $m_s = 170 \,{
m GeV}$ Note that $\Omega_{
m tot} \propto K^2 \,{
m or} \, K^{3/2}$

69

Deviations in sound speed from $c_s^2 \sim 1/3$

Sound speed affected by presence of heavy particles

- Many relativistic particles in the SM
- Presence of massive particles suppresses the sound speed

Beyond the toy model: two-step revisited revisited

Problems with Daisy resummation!

- Daisy resummation can be very inaccurate (e.g. Croon, Gould, Schicho, Tenkanen, White 2020)
- Ongoing work with T. Tenkanen: computation of the sound speed using Dimensional Reduction

What does this mean for the gravitational wave signal?
Fit to lattice result

Effect on amplitude only

$$\frac{d\Omega_{\rm gw}}{d\ln(f)} = 0.687F_{\rm gw,0}K^2H_*R_*/c_s\tilde{\Omega}_{\rm gw}C\left(f/f_{p,0}\right)$$

Lattice computation assumed

$$c_s = 1/\sqrt{3}$$

Sound-shell model (alternative to lattice simulations)

Thickness of fluid profile affects shape of the spectrum

Effect of the sound speed on fluid profile

Effect of the sound speed on gravitational wave spectrum (sound shell model)

Wang, Huang, Li, 2021

In addition to T_* , β , α , v_w , also $c_{s,b}$ and $c_{s,s}$ affect the gravitational wave spectrum.

In addition to T_* , β , α , v_w , also $c_{s,b}$ and $c_{s,s}$ affect the gravitational wave spectrum.

But more parameters come into play... (2108.11947)

Primordial perturbations

• On CMB scales:
$$\frac{\delta T}{T} \sim 10^{-4}$$

• Maybe $\frac{\partial T}{T}$ is larger on the scale relevant to the phase transition?

• How does that affect the gravitational wave signal?

Nucleation rate with perturbations

• Temperature perturbations can enhance/reduce the nucleation rate

• Tunnelling rate
$$\Gamma(t) = \Gamma_* \exp\left[\beta(t-t_*) - \frac{\beta}{H_*}\frac{\delta T}{\overline{T}}\right]$$

• Perturbations relevant when $\left|\frac{\beta}{H_*}\frac{\delta T}{\overline{T}}\right| \equiv |\delta \widetilde{T}| \gtrsim 1$

•
$$\frac{\beta}{H_*} = \mathcal{O}(100) \rightarrow \frac{\delta T}{\overline{T}}$$
 can be moderate

Numerics

• Modified version (temperature fluctuation-dependent nucleation rate) of

A hybrid simulation of gravitational wave production in first-order phase transitions

Ryusuke Jinno, Thomas Konstandin and Henrique Rubira

Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany

Spectrum of the perturbations

- k-modes move with c_s
- Spectrum: top-hat between k_* and $k_*/2$

• Power in perturbations
$$\sigma^2 = \frac{1}{V} \int d^3x \delta \tilde{T}(x)^2 = \int \frac{d^3k}{(2\pi)^3} \mathscr{P}_{\delta \tilde{T}}(k)$$

• Expect strongest effect for $k_* \sim R_*^{-1} \sim \frac{\beta}{(8\pi)^{1/3}}$
• $\delta T = 0$

Results Nucleation sites

 $\sigma = 3$ $L = 40/\beta$

$$\Delta z = 2/\beta$$

"IR":
$$4 \times (2\pi/L)$$

"UV": $k_* = 16 \times (2\pi/L)$

Results Larger effective bubbles

$$\sigma = 3, \quad k_* = 4 \times (2\pi/L)$$

$$t = -5/\beta$$

 $t = -4/\beta$

Results Larger effective bubbles

No temperature fluctuations

formation of "effective big bubbles" around the cold spots

From R. Jinno

Results Gravitational wave signal

• Signal scales as
$$\Omega_{gw} \propto \left(\frac{\kappa\alpha}{1+\alpha}\right)^2 R_*H_*/v_w$$

Results Gravitational wave signal

Growth rate of the GW spectrum

From R. Jinno

Results Gravitational wave signal

From R. Jin

The strength and wavenumber of the temperature-perturbation affect the signal too!

The ideal situation - how close are we?

- We know exactly what the gravitational wave spectrum looks like
- There are enough model-dependent features to distinguish between different BSM models

We are making progress!

The ideal situation - how close are we?

- We know exactly what the gravitational wave spectrum looks like
- There are enough model-dependent features to distinguish between different BSM models

- Challenges ahead:
- Improved simulations
- Simulations combining different effects
- Accurate computation of phase transition parameters
- Computation of the wall velocity

Can all of this be measured?

Can LISA reconstruct a doubly broken power law? 2107.06275

DESY.

Reconstruction of the doubly broken power law

Composite Higgs/gauged lepton models

But for other extensions of the SM, reconstruction is not successful.

Reconstruction of the doubly broken power law

Composite Higgs/gauged lepton models

But for other extensions of the SM, reconstruction is not successful. Reconstruction of all relevant parameters is not likely with LISA.

The ideal situation - how close are we?

- The GW signal can be completely reconstructed by LISA
- We can infer the particle physics model from the signal

- Maybe we need a more sensitive detector...
- Need to develop a strategy to infer the model from the GW signal

Conclusion

- The sound wave gravitational wave spectrum depends on $T_*, \beta, \alpha, v_w, c_{s,b}, c_{s,s}$.
- Hydrodynamic equations can easily be solved in the template model.
- Realistic computation of sound speed is work in progress.
- Primordial perturbations can enhance and deform the signal.
- Not all of these effects have been simulated simultaneously.
- If LISA detects a gravitational wave signal, degeneracies likely remain.

The future looks (and sounds) bright!

Park 2021

DESY.