

QCD Factorization: Matching hadrons to quarks and gluons with controllable approximations

Jian-Wei Qiu Jefferson Lab, Theory Center

In collaboration with: G. Sterman, G. Nayak, Z.-B. Kang, Y.-Q. Ma, K. Lee, T. Liu, W. Melnitchouk, N. Sato, K. Watanabe, Z. Yu, ...

50 Years of QCD: arXiv:2212.11107

Outline of my talk

QCD at a Fermi-Scale – Nuclear Femtography

=> Need new probes with multiple observed scales

Need new advances in QCD factorizations

- Why and how QCD factorization works?
 - => Necessary conditions and predictive powers

QCD *factorization with one or more identified hadrons – challenges*

QCD factorization of exclusive processes for extracting GPDs – 3D tomography

=> Single diffractive hard exclusive processes (SDHEP)

QCD factorization of minimum 2=>3 SDHEP & enhanced x-dependence of GPDs

- QCD factorization beyond the leading power and beyond QCD
 - => Necessary for understanding heavy quarkonium production from LHC to EIC Hybrid (collinear QED) and (TMD QCD) factorization for SIDIS
- Summary and outlook

Frontiers of QCD and Strong Interaction

Understanding where did we come from?

QCD at high temperature, high densities, phase transition, ... Facilities – Relativistic heavy ion collisions: SPS, RHIC, the LHC

Understanding what are we made of?

- How to understand the emergent properties of nucleon and nuclei (elements of the periodic table) in terms of elements of the modern periodic table?
- How does the glue bind us all?

Global Time:

Nuclear Femtography Search for answers to these questions at a Fermi scale! Facilities – CEBAF, EIC, EICC, LHeC, ... Jefferson Lab

Effective field theory (EFT) – *Approximation at the Lagrangian level*:

Soft-collinear effective theory (SCET), Non-relativistic QCD (NRQCD), Heavy quark EFT, chiral EFT(s), ...

Lattice QCD – Approximation mainly due to computer power:

Hadron spectroscopy, phase shift, nuclear structure, hadron structure (with pQCD factorization), Jefferson Lab

Data sets for Global Fits:

	Process	Subprocess	Partons	x range
Fixed Target	$\ell^{\pm} \{p, n\} \rightarrow \ell^{\pm} + X$	$\gamma^* q \rightarrow q$	q, \overline{q}, g	$x \gtrsim 0.01$
	$\ell^{\pm} n/p \rightarrow \ell^{\pm} + X$	$\gamma^* d/u \rightarrow d/u$	d/u	$x \gtrsim 0.01$
	$pp \rightarrow \mu^+\mu^- + X$	$u\bar{u}, d\bar{d} \rightarrow \gamma^*$	\overline{q}	$0.015 \lesssim x \lesssim 0.35$
	$pn/pp \rightarrow \mu^+\mu^- + X$	$(ud)/(uu) \rightarrow \gamma^*$	d/u	$0.015 \lesssim x \lesssim 0.35$
	$\nu(\bar{\nu}) N \rightarrow \mu^{-}(\mu^{+}) + X$	$W^*q \rightarrow q'$	q, \overline{q}	$0.01 \lesssim x \lesssim 0.5$
	$\nu N \rightarrow \mu^- \mu^+ + X$	$W^*s \rightarrow c$	5	$0.01 \lesssim x \lesssim 0.2$
	$\bar{\nu}N \rightarrow \mu^+\mu^- + X$	$W^* \overline{s} \rightarrow \overline{c}$	5	$0.01 \lesssim x \lesssim 0.2$
Collider DIS	$e^{\pm} p \rightarrow e^{\pm} + X$	$\gamma^* q \rightarrow q$	g, q, \overline{q}	$0.0001 \lesssim x \lesssim 0.1$
	$e^+ p \rightarrow \bar{\nu} + X$	$W^+ \{d, s\} \rightarrow \{u, c\}$	d, s	$x \gtrsim 0.01$
	$e^{\pm}p \rightarrow e^{\pm}c\overline{c} + X$	$\gamma^* c \to c, \gamma^* g \to c \overline{c}$	с, д	$10^{-4} \lesssim x \lesssim 0.01$
	$e^{\pm}p \rightarrow e^{\pm}b\overline{b} + X$	$\gamma^*b \rightarrow b, \gamma^*g \rightarrow b\bar{b}$	b, g	$10^{-4} \lesssim x \lesssim 0.01$
	$e^{\pm}p \rightarrow \text{jet} + X$	$\gamma^*g \rightarrow q\bar{q}$	8	$0.01 \lesssim x \lesssim 0.1$
Tevatron	$p\bar{p} \rightarrow \text{jet} + X$	$gg, qg, qq \rightarrow 2j$	g, q	$0.01 \lesssim x \lesssim 0.5$
	$pp \rightarrow (W^{\pm} \rightarrow \ell^{\pm}\nu) + X$	$ud \rightarrow W^+, \overline{ud} \rightarrow W^-$	u,d,ū,d	$x \gtrsim 0.05$
	$p\bar{p} \rightarrow (Z \rightarrow \ell^+ \ell^-) + X$	$uu, dd \rightarrow Z$	u,d	$x \gtrsim 0.05$
	$p\bar{p} \rightarrow t\bar{t} + X$	$qq \rightarrow t\bar{t}$	q	$x \gtrsim 0.1$
LHC	$pp \rightarrow jet + X$	$gg, qg, q\bar{q} \rightarrow 2j$	g,q	$0.001 \lesssim x \lesssim 0.5$
	$pp \rightarrow (W^{\pm} \rightarrow \ell^{\pm} \nu) + X$	$u\overline{d} \rightarrow W^+, d\overline{u} \rightarrow W^-$	u, d, ū, đ, g	$x \gtrsim 10^{-3}$
	$pp \rightarrow (Z \rightarrow \ell^+ \ell^-) + X$	$q\bar{q} \rightarrow Z$	q, \overline{q}, g	$x \gtrsim 10^{-3}$
	$pp \rightarrow (Z \rightarrow \ell^+ \ell^-) + X, p_\perp$	$gq(\bar{q}) \rightarrow Zq(\bar{q})$	g, q, \overline{q}	$x \gtrsim 0.01$
	$pp \rightarrow (\gamma^* \rightarrow \ell^+ \ell^-) + X$, Low mass	$q\bar{q} \rightarrow \gamma^*$	q, \overline{q}, g	$x \gtrsim 10^{-4}$
	$pp \rightarrow (\gamma^* \rightarrow \ell^+ \ell^-) + X$, High mass	$q\bar{q} \rightarrow \gamma^*$	\overline{q}	$x \gtrsim 0.1$
	$pp \rightarrow W^+c, W^-c$	$sg \rightarrow W^+c, \bar{s}g \rightarrow W^-\bar{c}$	<i>s</i> , <i>s</i>	$x \sim 0.01$
	$pp \rightarrow t\bar{t} + X$	$gg \rightarrow t\bar{t}$	8	$x \gtrsim 0.01$
	$pp \rightarrow D, B + X$	$gg \rightarrow c\bar{c}, b\bar{b}$	8	$x \gtrsim 10^{-6}, 10^{-5}$
	$pp \rightarrow J/\psi, \Upsilon + pp$	$\gamma^*(gg) \rightarrow c\overline{c}, b\overline{b}$	8	$x \gtrsim 10^{-6}, 10^{-5}$
	$pp \rightarrow \gamma + X$	$gq(\bar{q}) \rightarrow \gamma q(\bar{q})$	8	$x \gtrsim 0.005$

□ Kinematic Coverage:

Unprecedent Success of QCD and Standard Model

Jefferson Lab

SM: Electroweak processes + QCD perturbation theory + PDFs works!

QCD Landscape of Nucleons and Nuclei

An important fact:

QCD color interaction is so strong at a typical hadronic scale O(1/R) with a hadron radius R ~ 1 fm that any scattering cross section with identified hadron(s) cannot be calculated fully in QCD perturbation theory!

Why QCD factorization could work?

- The color interaction becomes weaker and calculable perturbatively at short distances Asymptotic Freedom
- We are able to separate consistently the strong interacting dynamics at the hadronic scale (~ fm) from those taking place at short-distance (< 0.1 fm), and</p>
- Prove that the quantum interference between the two scales are suppressed by the ratio of the two scales

An important fact:

8

QCD color interaction is so strong at a typical hadronic scale O(1/R) with a hadron radius R ~ 1 fm that any scattering cross section with identified hadron(s) cannot be calculated fully in QCD perturbation theory!

U Why QCD factorization could work?

- The color interaction becomes weaker and calculable perturbatively at short distances Asymptotic Freedom
- We are able to separate consistently the strong interacting dynamics at the hadronic scale (~ fm) from those taking place at short-distance (< 0.1 fm), and</p>
- Prove that the quantum interference between the two scales are suppressed by the ratio of the two scales

Necessary conditions for QCD factorization to work:

- All process-dependent nonperturbative contributions to "good" cross sections are suppressed by powers of O(1/QR), which could be neglected if the hard scale Q is sufficiently large
- All factorizable nonperturbative contributions are process independent, representing the characteristics
 of identified hadron(s), and
- The process dependence of factorizable contributions is perturbatively calculable from partonic scattering at the short-distance

□ Predictive power and the value of factorization:

- Our ability to calculate the process-dependent short distance partonic scatterings at the hard scale Q
- Prediction follows when cross sections with different hard scatterings but the same nonperturbative long-distance effect of identified hadron are compared
- Factorization supplies physical content to these universal long-distance effects of identified hadrons by matching them to hadronic matrix elements of active quark and/or gluon operators, which could be interpreted as parton distribution or correlation functions of the identified hadrons, and allows them to be measured experimentally or by numerical simulations and model calculations

Why and How QCD factorization works?

10

QCD factorization with one identified hadron – Inclusive DIS:

Why and How QCD factorization works?

QCD factorization with **Two** identified hadrons – Drell-Yan type:

But, this factorization can fail if the soft gluon momenta are trapped in the Glauber region: $k_i^{\pm} \ll k_i^{\perp}$

QCD factorization with **Two** identified hadrons – Drell-Yan type:

But, this factorization can fail if the soft gluon momenta are trapped in the Glauber region: $k_i^\pm \ll k_i^\perp$

Soft spectator interaction is responsible for this – the most challenge part of the factorization proof:

Nuclear Femtography

□ 3D hadron structure extracted with two-scale probes:

□ If the nucleon is broken, e.g., in SIDIS, ...

- Measured k_τ is NOT the same as k_τ of the confined motion!
- Too larger Q² could weaken our precision to probe the true hadron structure!

NO quarks and gluons can be seen in isolation!

Transverse momentum broadening:

$$\begin{array}{l} \Delta k_T^2 \propto \Lambda_{\rm QCD}^2 \\ \times \alpha_s(C_F, C_A) \\ \times \log(Q^2/\Lambda_{\rm QCD}^2) \\ \times \log(s/Q^2) \end{array} > 1 \end{array}$$

Structure information is diluted by the collision induced shower!

"See" hadron's internal structure without breaking it

Forward limit $\xi = t = 0$: $H^{q}(x, 0, 0) = q(x), \quad \tilde{H}^{q}(x, 0, 0) = \Delta q(x)$

$$\begin{aligned} \mathbf{Definition:} \\ F^{q}(x,\xi,t) &= \int \frac{\mathrm{d}z^{-}}{4\pi} e^{-ixP^{+}z^{-}} \langle p' | \bar{q}(z^{-}/2)\gamma^{+}q(-z^{-}/2) | p \rangle \\ &= \frac{1}{2P^{+}} \left[H^{q}(x,\xi,t) \, \bar{u}\left(p'\right) \gamma^{+}u(p) - E^{q}(x,\xi,t) \, \bar{u}\left(p'\right) \frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2m}u(p) \right], \\ \widetilde{F}^{q}(x,\xi,t) &= \int \frac{\mathrm{d}z^{-}}{4\pi} e^{-ixP^{+}z^{-}} \langle p' | \bar{q}(z^{-}/2)\gamma^{+}\gamma_{5}q(-z^{-}/2) | p \rangle \\ &= \frac{1}{2P^{+}} \left[\widetilde{H}^{q}(x,\xi,t) \, \bar{u}\left(p'\right) \gamma^{+}\gamma_{5}u(p) - \widetilde{E}^{q}(x,\xi,t) \, \bar{u}\left(p'\right) \frac{\gamma_{5}\Delta^{+}}{2m}u(p) \right]. \end{aligned}$$

Combine <u>*PDF*</u> and <u>*Distribution Amplitude (DA):*</u>

Similar definition for gluon GPDs

□ "Mass" – QCD energy-momentum tensor:

Ji, PRL78, 1997

$$T^{\mu\nu} = \sum_{i=q,g} T_i^{\mu\nu} \quad \text{with} \quad T_q^{\mu\nu} = \bar{\psi}_q \, i\gamma^{(\mu} \overleftrightarrow{D}^{\nu)} \, \psi_q - g^{\mu\nu} \bar{\psi}_q \left(i\gamma \cdot \overleftrightarrow{D} - m_q \right) \psi_q \quad \text{and} \quad T_g^{\mu\nu} = F^{a,\mu\eta} F^{a,\,\mu\nu} + \frac{1}{4} g^{\mu\nu} \left(F^a_{\rho\eta} \right)^2$$

Gravitational form factors:

$$\langle p' | T_i^{\mu\nu} | p \rangle = \bar{u}(p') \left[A_i(t) \frac{P^{\mu} P^{\nu}}{m} + J_i(t) \frac{i P^{(\mu} \sigma^{\nu)\Delta}}{2m} + D_i(t) \frac{\Delta^{\mu} \Delta^{\nu} - g^{\mu\nu} \Delta^2}{4m} + m \,\bar{c}_i(t) \, g^{\mu\nu} \right] u(p)$$

Connection to GPD moments:

i = q, g

$$\int_{-1}^{1} dx \, x \, F_i(x,\xi,t) \propto \langle p'|T_i^{++}|p\rangle \quad \propto \quad \bar{u}(p') \left[\underbrace{\left(A_i + \xi^2 D_i\right) \gamma^+ + \left(B_i - \xi^2 D_i\right) \frac{i\sigma^{+\Delta}}{2m} \right] u(p) - \int_{-1}^{1} dx \, x \, H_i(x,\xi,t) - \int_{-1}^{1} dx \, x \, E_i(x,\xi,t) \right] u(p)$$

□ "Spin" – Angular momentum sum rule:

$$J_i = \lim_{t \to 0} \int_{-1}^1 dx \, x \left[H_i(x,\xi,t) + E_i(x,\xi,t) \right]$$

3D tomography Relation to GFF Angular Momentum $C_i(t) \leftrightarrow D_i(t)/4$

Related to pressure & stress force inside h

Polyakov, schweitzer, Inntt. J. Mod. Phys. A33, 1830025 (2018) Burkert, Elouadrhiri , Girod Nature 557, 396 (2018)

x-dependence of GPDs!

Jefferson Lab

Need to know the x-dependence of GPDs to construct the proper moments!

Exclusive Diffractive Process for Extracting GPDs

 \Box Hit the proton hard without breaking it \Rightarrow Diffractive scattering to keep proton intact

HERA discovery:

~15% of HERA events with the Proton stayed intact

□ Known exclusive processes for extracting GPDs:

DVCS at a Future EIC (White Paper)

Effective "proton radius" in terms of quarks as a function of x_B

Jefferson Lab

Exclusive vector meson production:

It is difficult to extract the *x*-dependence of GPD – Why?

Amplitude nature: exclusive processes

 $x \sim loop momentum$

$$\mathcal{M} \sim \int_{-1}^{1} \mathrm{d}\boldsymbol{x} F(\boldsymbol{x}, \boldsymbol{\xi}, t) \cdot C(\boldsymbol{x}, \boldsymbol{\xi}; Q/\mu)$$

never pin down to some x

Constitution Sensitivity to *x* comes from $C(x, \xi; Q/\mu)$

At LO, DVCS hard coefficient factorizes

$$C(x,\xi;Q/\mu) = C_Q(Q/\mu) \cdot C_x(x,\xi) \propto \frac{1}{x-\xi+i\varepsilon} \cdots$$

$$i\mathcal{M} \propto \int_{-1}^{1} \mathrm{d}x \, \frac{F(x,\xi,t)}{x-\xi+i\varepsilon} \equiv "F_0(\xi,t)"$$

- also true for most other processes
- x-dependence is only constrained by a "moment"
- easy to fit to the data

Inclusive Process vs. Exclusive Process

<u>Cross section</u>: Cut diagrams

$$\sigma_{\rm DIS} \simeq \int_{\boldsymbol{x}_B}^1 \mathrm{d}\boldsymbol{x} f(\boldsymbol{x}) \,\hat{\sigma}(\boldsymbol{x}/x_B)$$

- $PDF \sim probability$
- At LO: $x = x_B$
- Beyond LO: $x \in [x_B, 1]$

<u>x-dependence</u>: Part of measurement

Amplitude: Uncut diagrams

$$\mathcal{M}_{\mathrm{DVCS}}(\xi, t) \simeq \int_{-1}^{1} \mathrm{d}x \, F(x, \xi, t) \, \hat{\mathcal{M}}(x, \xi)$$

- GPD \sim amplitude
- $k^+ = (x + \xi) P^+$ is loop momentum
- At any order: $x \in [-1, 1]$

x-dependence: Hard to measure

What kind of process/observable could be sensitive to the x-dependence?

Create an entanglement between the internal x and an externally measured variable?

Production of two back-to-back high pT particles (say, two photons):

 $\pi^{-}(p_{\pi}) + P(p) \to \gamma(q_1) + \gamma(q_2) + N(p')$

- Kinematical observables:
 - $t = (p p')^2$ Hard scale: • $\xi = (p^+ - p'^+)/(p^+ + p'^+)$ Soft scale:
- Factorization:

Qiu & Yu, JHEP 08 (2022) 103

Single-Diffractive Hard Exclusive Processes (SDHEP)

Two-stage diffractive $2 \rightarrow 3$ hard exclusive processes:

Single diff

 $D(q_2)$

Qiu & Yu, JHEP 08 (2022) 103,

PRD 107 (2023) 1, in preparation

Probing its structure without breaking it!

Hard probe: $2 \rightarrow 2$ high q_T exclusive process $A^*(p_1) + B(p_2) \to C(q_1) + D(q_2)$ $(p-p') \cdot n \gg \sqrt{|t|} \quad \longleftarrow \quad |q_{1_T}| = |q_{2_T}| \gg \sqrt{-t}$

 $t = (p - p')^2 \equiv p_1^2$

- The single diffractive $2 \rightarrow 3$ exclusive hard processes:

 $h(p) + B(p_2) \rightarrow h'(p') + C(q_1) + D(q_2)$

Necessary condition for QCD factorization:

 $|q_{1_T}| = |q_{2_T}| \gg \sqrt{-t}$

The state $A^*(p_1)$ lives much longer

than $2 \rightarrow 2$ hard exclusive collision!

Not necessarily sufficient!

Single-Diffractive Hard Exclusive Processes (SDHEP)

son Lab

Exchange of a virtual photon:

$$\mathcal{M}^{(1)} = \frac{ie^2}{t} \langle h'(p') | J^{\mu}(0) | h(p) \rangle \langle C(q_1) D(q_2) | J_{\mu}(0) | B(p_2) \rangle$$

$$\equiv \frac{ie^2}{t} F^{\mu}(p,p') \mathcal{H}_{\mu}(p_1,p_2,q_1,q_2) \qquad J^{\mu} = \sum_{i \in q} Q_i \bar{\psi}_i \gamma^{\mu} \bar{\psi}_i$$

 $F^{\mu}(p,p') = \langle h'(p') | J^{\mu}(0) | h(p) \rangle$ = $F_1^h(t) \, \bar{u}(p') \gamma^{\mu} u(p) + F_2^h(t) \, \bar{u}(p') \frac{i\sigma^{\mu\nu} p_{1\nu}}{2m_h} u(p)$

Has a leading component , $F^+ \propto \mathcal{O}(Q)$, as h-h' fast along "+"

Forbidden for $p \to n$ (or $n \to p$) transition GPDs Or not allowed by H

$$F^{+}\mathcal{H}^{-} = \frac{1}{p_{1}^{+}}F^{+}\left(p_{1}^{+}\mathcal{H}^{-}\right) = \frac{1}{p_{1}^{+}}F^{+}\left(p_{1}\cdot\mathcal{H} + p_{1\perp}\cdot\mathcal{H}_{\perp} - p_{1}^{-}\mathcal{H}^{+}\right) \sim \mathcal{O}(\sqrt{|t|}) \qquad \text{Leading power of} \quad F\cdot\mathcal{H}$$

$$\longrightarrow \qquad \mathcal{M}^{(1)} \sim \mathcal{O}(1/\sqrt{|t|}) \qquad \qquad \text{Higher power than n=2 contribution, but, higher power in power of } \alpha_{\text{EM}}$$

$$\mathcal{M}^{(2)} \sim \mathcal{O}(1/Q) \qquad \qquad \mathcal{M}^{(1)}/\mathcal{M}^{(2)} \sim \mathcal{O}(Q/\sqrt{|t|})$$
If we neglect contribution from $n \geq 3$, $\mathcal{M}^{(1+2)}_{\text{SDHEP}} \sim \text{ is up to corrections at } \mathcal{O}(\sqrt{|t|}/Q^{2})$

Jefferson Lab

Qiu & Yu, PRD 107 (2023) 1

Factorization for SDHEP in the Two-stage Paradigm

□ Soft gluons cancel for the meson-initialized process if *C* and *D* are mesons:

Soft gluons are no longer pinched and can be deformed into *h*-collinear region

Exclusive massive photon-pair production in meson-hadron collision

G Factorization formula: $\pi^{-}(p_{\pi}) + P(p) \rightarrow \gamma(q_1) + \gamma(q_2) + N(p')$ Qi

Qiu & Yu, JHEP 08 (2022) 103

$$\mathcal{M}^{\mu\nu} = \int \mathrm{d}z_1 \mathrm{d}z_2 \left[\widetilde{\mathcal{F}}_{NN'}^{ud}(z_1,\xi,t) D(z_2) C^{\mu\nu}(z_1,z_2) + \mathcal{F}_{NN'}^{ud}(z_1,\xi,t) D(z_2) \widetilde{C}^{\mu\nu}(z_1,z_2) \right] + \mathcal{O}(\Lambda_{\mathrm{QCD}}/q_T)$$

Similar factorized form for SDHEP with lepton, photon beam

PRD 107 (2023) 1

$$\begin{split} \mathcal{F}_{NN'}^{ud}(z_{1},\xi,t) &= \int \frac{\mathrm{d}y^{-}}{4\pi} e^{iz_{1}\Delta^{+}y^{-}} \langle N'(p') | \bar{d}(0) \gamma^{+} \Phi(0,y^{-};w_{2}) \, u(y^{-}) | N(p) \rangle \\ &= \frac{1}{2P^{+}} \bigg[H_{NN'}^{ud}(z_{1},\xi,t) \, \bar{u}(p') \gamma^{+} u(p) - E_{NN'}^{ud}(z_{1},\xi,t) \, \bar{u}(p') \frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2m_{p}} u(p) \bigg], \\ \widetilde{\mathcal{F}}_{NN'}^{ud}(z_{1},\xi,t) &= \int \frac{\mathrm{d}y^{-}}{4\pi} e^{iz_{1}\Delta^{+}y^{-}} \langle N'(p') | \bar{d}(y^{-}) \gamma^{+} \gamma_{5} \Phi(0,y^{-};w_{2}) \, u(0) | N(p) \rangle \\ &= \frac{1}{2P^{+}} \bigg[\tilde{H}_{NN'}^{ud}(z_{1},\xi,t) \, \bar{u}(p') \gamma^{+} \gamma_{5} u(p) - \tilde{E}_{NN'}^{ud}(z_{1},\xi,t) \, \bar{u}(p') \frac{i\gamma_{5}\sigma^{+\alpha}\Delta_{\alpha}}{2m_{p}} u(p) \bigg] \\ \end{split}$$

Exclusive massive mhoton-mair production in meson-hadron collision

Exclusive Massive Photon-Pair Production in Meson-Hadron Collision

Deformation out of the Glauber region:

 $k_s^+
ightarrow k_s^+ - i \mathcal{O}(Q)$ \longrightarrow $k_s \sim (1, \lambda^2, \lambda) Q$ Collinear region

Works for both ERBL and DGLAP regions!

Why *single* diffractive?

Double diffractive process

Glauber pinch for diffractive scattering

Factorizable if all pion momentum flows into hard part

Both k_s^+ and $k_s^$ are pinched in Glauber region!

Break of factorization

Compare: Drell-Yan process at high twist:

Only the 1st sub-leading twist is factorizable!

Qiu & Sterman, NPB, 1991

Numerical results

GPD models – simplified GK model:

$$H_{pn}(x,\xi,t) = \theta(x) \, x^{-0.9 \, (t/\text{GeV}^2)} \frac{x^{\rho} (1-x)^{\tau}}{B(1+\rho,1+\tau)}$$
$$\widetilde{H}_{pn}(x,\xi,t) = \theta(x) \, x^{-0.45 \, (t/\text{GeV}^2)} \frac{1.267 \, x^{\rho} (1-x)^{\tau}}{B(1+\rho,1+\tau)}$$

- Neglect E, \widetilde{E} . Neglect evolution effect.
- Tune (ρ, τ) to control *x* shape.
- Fix DA: $D(z) = N z^{0.63} (1-z)^{0.63}$

Numerical results

Exclusive Photo-Production of a $\pi \gamma$ Pair – Hall D at JLab

Process: $\gamma(p_{\gamma}) + h(p) \rightarrow \pi^{\pm}(q_1) + \gamma(q_2) + h'(p')$

First introduced by G. Duplancic et al. [JHEP 11 (2018) 179], No contribution from gluon GPDs

G Factorization:

Proved to be valid when $q_T \gg \sqrt{|t|} \gtrsim \Lambda_{
m QCD}$

D Polarization of photon and hadron:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}|t|\,\mathrm{d}\xi\,\mathrm{d}\cos\theta\,\mathrm{d}\phi} = \frac{1}{2\pi} \frac{\mathrm{d}\sigma}{\mathrm{d}|t|\,\mathrm{d}\xi\,\mathrm{d}\cos\theta} \cdot \left[1 + \lambda_N \lambda_\gamma \,A_{LL} + \zeta \,A_{UT}\cos 2(\phi - \phi_S) + \lambda_N \,\zeta A_{LT}\sin 2(\phi - \phi_S)\right]$$

Unpolarized cross section:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}|t|\,\mathrm{d}\xi\,\mathrm{d}\cos\theta} = \frac{N^2\left(1-\xi^2\right)}{32\,s\,(2\pi)^3\,(1+\xi)^2}\Sigma_{UU}$$
$$\Sigma_{UU} = |\widetilde{C}_+^{[H]}|^2 + |\widetilde{C}_-^{[H]}|^2 + |C_+^{[\widetilde{H}]}|^2 + |C_-^{[\widetilde{H}]}|^2$$

Exclusive $\pi^0 \gamma$ **Pair Production – Phenomenology**

□ Impact of shadow GPDs:

Exclusive $\pi^0 \gamma$ **Pair Production – Phenomenology**

Asymmetries:

Exclusive $\pi^0 \gamma$ **Pair Production – Phenomenology**

QCD factorization beyond the leading power

to NLO

fixed order

\Box Heavy quarkonium production at high P_T:

Lee, Qiu, Sterman, Watanabe, 2022

Jefferson Lab

NRQCD:

$$E \frac{d\sigma_{hh' \to J/\psi(P)X}}{d^{3}P} = \sum_{c\bar{c}[n]} F_{c\bar{c}[n] \to J/\psi} \otimes \sum_{a,b} \int dx_{a} f_{a/h}(x_{a}, \mu_{f}^{2}) \int dx_{b} f_{b/h'}(x_{b}, \mu_{f}^{2})$$

$$\times \left[E \frac{d\tilde{\sigma}_{ab \to c\bar{c}[n](P)X}}{d^{3}P} + E \frac{d\tilde{\sigma}_{ab \to c\bar{c}[n](P)X}}{d^{3}P} - E \frac{d\tilde{\sigma}_{ab \to c\bar{c}[n](P)X}}{d^{3}P} \right]$$

$$F_{c\bar{c}[n] \to J/\psi} = \langle O_{c\bar{c}[n]}^{J/\psi}(0) \rangle$$

$$c\bar{c}[n] = c\bar{c}[^{2S+1}L_{J}^{[1,8]}]$$

$$E \frac{d\tilde{\sigma}_{ab \to c\bar{c}[n](P)X}}{d^{3}P} \approx \sum_{f} \int \frac{dz}{z^{2}} D_{f \to c\bar{c}[n]}(z, \mu_{f}^{2}) E_{f} \frac{d\tilde{\sigma}_{ab \to f(p_{f})X}}{d^{3}p_{f}}(z, p_{f} = P/z, \mu_{f}^{2})$$

$$F_{c\bar{c}[n]}(z, p_{c}^{2}) E_{c} \frac{d\tilde{\sigma}_{ab \to (c\bar{c}[\kappa)](p_{c})X}}{d^{3}p_{c}}(z, p_{c} = P/z, \mu_{f}^{2})$$

$$F_{c\bar{c}[n]}(x, p_{c}^{2}) E_{c} \frac{d\tilde{\sigma}_{ab \to (c\bar{c}[\kappa)](p_{c})X}}{d^{3}p_{c}}(z, p_{c} = P/z, \mu_{f}^{2})$$

$$F_{c\bar{c}[n]}(x, p_{c}^{2}) E_{c} \frac{d\tilde{\sigma}_{ab \to (c\bar{c}[\kappa)](p_{c})X}}{d^{3}p_{c}}(z, p_{c} = P/z, \mu_{f}^{2})$$

$$F_{c\bar{c}[n]}(x, p_{c}^{2}) E_{c} \frac{d\tilde{\sigma}_{ab \to (c\bar{c}[\kappa)](p_{c})X}}{d^{3}p_{c}}(z, p_{c} = P/z, \mu_{f}^{2})$$

$$F_{c\bar{c}[n]}(x, p_{c}^{2}) E_{c} \frac{d\tilde{\sigma}_{ab \to (c\bar{c}[\kappa)](p_{c})X}}{d^{3}p_{c}}(z, p_{c} = P/z, \mu_{f}^{2})$$

$$F_{c\bar{c}[n]}(x, p_{c}^{2}) E_{c} \frac{d\tilde{\sigma}_{ab \to (c\bar{c}[\kappa)](p_{c})X}}{d^{3}p_{c}}(z, p_{c} = P/z, \mu_{f}^{2})$$

$$E rac{ab o c ar{c}[n](P)X}{d^3 P}$$
 Known

When
$$P_T \gg m_c$$
, $E \frac{d\tilde{\sigma}_{ab \to c\bar{c}[n](P)X}^{\text{Asym}}}{d^3P}$ cancels $E \frac{d\tilde{\sigma}_{ab \to c\bar{c}[n](P)X}^{\text{Att QOD}}}{d^3P}$
When $P_T \gtrsim m_c$, $E \frac{d\tilde{\sigma}_{ab \to c\bar{c}[n](P)X}^{\text{Asym}}}{d^3P}$ cancels $E \frac{d\tilde{\sigma}_{ab \to c\bar{c}[n](P)X}^{\text{Asym}}}{d^3P}$

Renormalization group improvement

Renormalization group:

Kang, Ma, Qiu, Sterman, PRD 90, 034006 (2014)

$$\frac{d}{d\ln \mu_f^2} \left[E \frac{d\tilde{\sigma}_{ab\to c\bar{c}[n](P)X}^{\text{Resum}}}{d^3 P} \right] = 0 \qquad \text{To be accurate up to the accurate of the second s$$

To be accurate up to the 1st power correction

D Modified evolution equations: NRQCD: $H = c\bar{c}[^{2S+1}L_J^{[1,8]}]$

$$\frac{\partial \mathcal{D}_{[Q\bar{Q}(n)] \to H}}{\partial \ln \mu_f^2} = \Gamma_{[Q\bar{Q}(n)] \to [Q\bar{Q}(\kappa)]} \otimes \mathcal{D}_{[Q\bar{Q}(\kappa)] \to H}$$

DGLAP-type: Heavy quark pair produced at the hard scale

Heavy quark pair produced at the input scale

Heavy quark pair produced between the hard scale and the input scale

Modified DGLAP – inhomogeneous evolution

Single inclusive high $P_T J/\psi$ -production in hadronic collisions

Matching to fixed-order PQCD calculation

- □ Leading power logarithmically enhanced contributions start to dominate when $P_T \gtrsim 5(2m_c) \sim 15 \text{ GeV}$
- □ Next-to-leading power is important for $5(2m_c) \gtrsim P_T \gtrsim (2m_c)$
- □ Matching to fixed-order NRQCD calculation $P_T \sim (2m_c)$ NLP term is necessary for the matching
- Further improvement by exploring the FFs Use the medium as a filter?

SEGEGEGEGEGEGEGE

^{LEEEEEEEE}

Joint factorization beyond QCD – important for observables at EIC

 $x_B = \frac{Q^2}{2P \cdot q} \rightarrow \hat{x}_B = \frac{\hat{Q}^2}{2P \cdot \hat{q}}$

Jefferson Lab

the kinematic variables, y, Q^2 , x_B , from the leptons are smeared so much to make them different from what the scattered "quark" experienced!

Ill-defined "photon-hadron" frame?!

Inclusive lepton-hadron deep inelastic scattering (DIS)

Collinear factorization with the "one-photon" approximation:

Liu, Melnitchouk, Qiu, Sato 2008.02895, 2108.13371

 $x_{p} = 0.1$

$$\frac{\partial \sigma_{\ell P \to \ell' X}}{\partial x_B \partial y} \approx \int_{\zeta_{\min}}^{1} \frac{d\zeta}{\zeta^2} \int_{\xi_{\min}}^{1} d\xi \, D_{e/e}(\zeta, \mu^2) \, f_{e/e}(\xi, \mu^2) \left[\frac{Q^2}{x_B} \, \frac{\hat{x}_B}{\hat{Q}^2} \right] \\ \times \frac{4\pi\alpha^2}{\hat{x}_B \, \hat{y} \, \hat{Q}^2} \left[\hat{x}_B \hat{y}^2 F_1(\hat{x}_B, \hat{Q}^2) + \left(1 - \hat{y} - \frac{1}{4} \hat{y}^2 \hat{\gamma}^2 \right) F_2(\hat{x}_B, \hat{Q}^2) \right]$$

QED radiation prevents a well-defined "photon-hadron" frame

- Radiation is CO sensitive as $m_e/Q
 ightarrow 0$, factorized into LDFs & LFFs
- Hadron is probed by $(x_B, Q^2) \rightarrow (\hat{x}_B, \hat{Q}^2)$

QED radiation prevents a well-defined "photon-hadron" frame
Radiation is CO sensitive as
$$m_e/Q \rightarrow 0$$
, factorized into LDFs & LFFs
Hadron is probed by $(x_B, Q^2) \rightarrow (\hat{x}_B, \hat{Q}^2)$
 $x_B \rightarrow \hat{x}_B \in [x_B, 1]$
 $\hat{Q}^2_{\min} = Q^2 \frac{(1-y)}{(1-x_B y)}$
 $\hat{Q}^2_{\max} = Q^2 \frac{1}{(1-y+x_B y)}$
 $\hat{Q}^2_{\max} = Q^2 \frac{1}{(1-y+x_B y)}$

 $10^4 \sqrt{s} = 140 \, \text{GeV}$

A simple RC factor at x_B is necessarily sensitive to hadronic information from $[x_B, 1]$!

son Lab

Quantum evolution of LDFs

$$P_{ij}(\xi,\mu^2) = \sum_{n,m=0}^{\infty} \left(\frac{\alpha_{em}(\mu^2)}{2\pi}\right)^n \left(\frac{\alpha_s(\mu^2)}{2\pi}\right)^m \hat{P}_{ij}^{(n,m)}(\xi) \equiv \sum_{n,m=0}^{\infty} P_{ij}^{(n,m)}(\xi,\mu^2)$$

Lepton distribution functions (LDFs) after evolution

QED (QCD) evolution is slow (fast) due to the weak (strong) μ -dependence of $\alpha_{em}(\alpha_s)$

Photon LDF vs. Weizsäcker-Williams distribution

Weizäcker-Williams (WW) distribution at LO with $\overline{\text{MS}}$ -scheme: Hinderer, Schlegel, Vogelsang, PRD92, no.1, 014001 (2015)

$$f_{\gamma/l}^{WW}(\xi,\mu^2) = \frac{\alpha_{\rm em}}{2\pi} P_{\gamma l}(\xi) \left[\ln\left(\frac{\mu^2}{\xi^2 m_l^2}\right) - 1 \right] + \mathcal{O}(\alpha_{\rm em}^2)$$

- Photon LDF is smaller to WW distribution, but different because of the resummation of large logs, and higher-order corrections, such as $\gamma \rightarrow e^+e^-, q^+\bar{q}, \dots$.
- Photon LDF depends on our purely QED evolution from m_e to μ_0 ; a global fitting could systematically improve the "red" dashed line.

QED factorization of collision-induced radiation – collinear:

Liu, Melnitchouk, Qiu, Sato 2008.02895, 2108.13371

$$E_{\ell'}E_{P_h}\frac{\mathrm{d}^6\sigma_{\ell(\lambda_\ell)P(S)\to\ell'P_hX}}{\mathrm{d}^3\ell'\,\mathrm{d}^3P_h}\approx \sum_{ij\lambda_k}\int_{\zeta_{\min}}^1\frac{\mathrm{d}\zeta}{\zeta^2}\,D_{e/j}(\zeta)\int_{\xi_{\min}}^1\mathrm{d}\xi\,f_{i(\lambda_k)/e(\lambda_\ell)}(\xi)\left[E_{k'}E_{P_h}\frac{\mathrm{d}^6\hat{\sigma}_{k(\lambda_k)P(S)\to k'P_hX}}{\mathrm{d}^3k'\,\mathrm{d}^3P_h}\right]_{k=\xi\ell,k'=\ell'/\zeta}+\mathcal{O}(\frac{m_e^n}{Q^n})$$

- Leading power IR sensitive contribution is universal, as $m_e/Q
 ightarrow 0$, factorized into LDFs and LFFs
- IR safe contributions are calculated order-by-order in powers of α
- Neglect m_e/Q power suppressed contributions
- Collinear QED factorization for both inclusive DIS and SIDIS, or e⁺e⁻, ... [global fits of LDFs, LFFs]

"One photon"-approximation Hybrid factorization: CO for QED and TMD for QCD!

$$\begin{array}{c} \text{(b)} \qquad \begin{array}{c} \frac{\ell'}{k} & \frac{\ell'}{\gamma^*} & P \\ \hline \psi & \varphi & \varphi & P \\ \hline \psi & \varphi & \varphi & \varphi \\ \hline \psi & \varphi & \varphi \\ \psi & \varphi & \varphi \\ \psi & \varphi & \varphi \\ \hline \psi & \varphi & \varphi \\ \psi & \varphi \\ \psi & \varphi \\ \psi & \varphi & \varphi \\ \psi & \varphi & \varphi$$

Apply a (ξ, ζ) -dependent Lorentz transformation:

Evaluated in a "virtual photon-hadron" frame

 $\{q, P, P_h\}$ In a frame to compare with exp. measurements

 $\{\hat{q}, P, \hat{P}_h\}$

Two-step approach to SIDIS:

1) In "virtual-photon" frame, defined by $\hat{q}(\xi,\zeta)-p$

- TMD factorization when $\ \widehat{P}_T^2 \ll \widehat{Q}^2$
- CO factorization when $\ \widehat{P}_T^2 \sim \widehat{Q}^2$
- Matching to get the \hat{P}_T -distribution
- 2) Lorentz transformation from the "virtual-photon" frame to any experimentally defined frame

 – lepton-hadron Lab frame, Breit frame (x_B,Q²), ...

QED contribution (not correction) can be systematically improved order-by-order in power α !

$$\begin{aligned} \sum_{dx} \frac{d\sigma}{dx \, dy \, d\psi \, dz \, d\phi_h \, dP_{h\perp}^2} &= \\ \frac{d\sigma}{dx \, dy \, d\psi \, dz \, d\phi_h \, dP_{h\perp}^2} &= \\ \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} + \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h F_{LU}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin 2\phi_h} \right] \\ &+ \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h F_{LL}^{\sin \phi_h} \\ &+ S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_h F_{UL}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin 2\phi_h} \right] \\ &+ S_{\parallel} \lambda_e \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_h F_{LL}^{\cos \phi_h} \right] \\ &+ |S_{\perp}| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \\ &+ \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \\ &+ \sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_S F_{UT}^{\sin \phi_S} + \sqrt{2\varepsilon(1+\varepsilon)} \sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \right] \\ &+ |S_{\perp}|\lambda_e \left[\sqrt{1-\varepsilon^2} \cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_S F_{LT}^{\cos \phi_S} \\ &+ \sqrt{2\varepsilon(1-\varepsilon)} \cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \end{aligned}$$

Case study F_{UU} :

Liu, Melnitchouk, Qiu, Sato 2008.02895, 2108.13371

Jefferson Lab

$$\frac{d\sigma_{\text{SIDIS}}^{h}}{dx_{B}dy\,dz\,dP_{hT}^{2}} = \int_{\zeta_{\min}}^{1} d\zeta \int_{\xi_{\min}(\zeta)}^{1} d\xi \, D_{e/e}(\zeta) \, f_{e/e}(\xi) \times \left[\frac{\hat{x}_{B}}{x_{B}\,\xi\zeta}\right] \left[\frac{(2\pi)^{2}\,\alpha}{\hat{x}_{B}\,\hat{y}\,\hat{Q}^{2}} \frac{\hat{y}^{2}}{2(1-\hat{\varepsilon})} F_{UU}^{h}(\hat{x}_{B},\hat{Q}^{2},\hat{z},\hat{P}_{hT})\right]$$

Evaluated in a "virtual photon-hadron" frame

Unpolarized structure function:

$$F_{UU}^{h} = x_{B} \sum_{q} e_{q}^{2} \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} \, \delta^{(2)} (\boldsymbol{p}_{T} - \boldsymbol{k}_{T} - \boldsymbol{q}_{T}) \times f_{q/N}(x_{B}, \boldsymbol{p}_{T}^{2}) \, D_{h/q}(z, \boldsymbol{k}_{T}^{2}) \qquad \boldsymbol{q}_{T} = \boldsymbol{P}_{hT}/z$$

 (ξ,ζ) - Dependent Lorentz transformation Effectively, a rotation in hadron-rest frame

- Solid with Lorentz transformation
- Dashed without Lorentz transformation

Case study – single transverse spin asymmetry:

 $\frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} =$ $-\frac{\alpha^2}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\left\{F_{UU,T}+\varepsilon F_{UU,L}+\sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h\,F_{UU}^{\cos\phi_h}\right\}$ $+ \varepsilon \cos(2\phi_h) F_{III}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h F_{III}^{\sin \phi_h}$ $+ S_{\parallel} \left| \sqrt{2 \varepsilon (1 + \varepsilon)} \sin \phi_h F_{UL}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin 2\phi_h} \right|$ $+ S_{\parallel} \lambda_{e} \left| \sqrt{1 - \varepsilon^{2}} F_{LL} + \sqrt{2 \varepsilon (1 - \varepsilon)} \cos \phi_{h} F_{LL}^{\cos \phi_{h}} \right|$ $+ |\mathbf{S}_{\perp}| \left| \sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \right|$ + $\varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)}$ $+\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S}F_{UT}^{\sin\phi_{S}}+\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_{h}-\phi_{S})F_{UT}^{\sin(2\phi_{h}-\phi_{S})}$ $+ |\mathbf{S}_{\perp}|\lambda_{e} \left| \sqrt{1 - \varepsilon^{2}} \cos(\phi_{h} - \phi_{S}) F_{LT}^{\cos(\phi_{h} - \phi_{S})} + \sqrt{2\varepsilon(1 - \varepsilon)} \cos\phi_{S} F_{LT}^{\cos\phi_{S}} \right|$ $+\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_h-\phi_S)F_{LT}^{\cos(2\phi_h-\phi_S)}\bigg|\bigg\}$

50

Liu, Melnitchouk, Qiu, Sato 2008.02895, 2108.13371

Summary and Outlook

Reliable factorization is necessary for probing QCD dynamics with identified hadrons(s)

- Need for exploring QCD dynamics
- Need for probing hadron's internal structure

QCD factorization beyond the leading power is important and necessary

- It is necessary for heavy quarkonium production where a heavy quark-pair is required
- It is also necessary for better understanding of QCD multiple scattering (not discussed in this talk)
- New form of evolution equations and modified scale dependence

U Joint factorization between QCD and QED is critical for the EIC and high energy lepton-hadron facilities

- QED radiation is a part of production cross sections, treated in the same way as QCD radiation from quarks and gluons
- No artificial and/or process dependent scale(s) introduced for treating QED radiation, other than the standard factorization scale, universal lepton distribution and fragmentation functions
- All perturbatively calculable hard parts are IR safe for both QCD and QED
- All lepton mass or resolution sensitivity are included into "Universal" lepton distribution and fragmentation functions (or jet functions)

Thank you!

Inclusive lepton-hadron deep inelastic scattering (DIS)

QED radiation effectively reduces the reach of the "hard" probe:

Liu, Melnitchouk, Qiu, Sato 2008.02895, 2108.13371

For example, for $Q^2 > 3$ GeV², amount of the reach to the small-x regime is significant (red curves)!

Smaller x, more phase space for radiation, both QCD and QED!

