Nuclear collisions as seen through photons

Jean-François Paquet

November 14, 2023

The higher end of the electromagnetic spectrum

Image modified from Wikimedia

 $\sim 1 \text{ GeV}$

J-F PAQUET (VANDERBILT UNIVERSITY)

The higher end of the electromagnetic spectrum

RHIC and LHC

Relativistic Heavy Ion Collider (RHIC) [Brookhaven National Lab, Long Island, NY]

Large Hadron Collider (LHC) [CERN, Geneva, Switzerland/France]

$$\sqrt{s_{NN}} \sim 10^2 {
m GeV}$$

 $\sqrt{s_{NN}} \sim 10^3 \text{ GeV}$

Nuclear collisions

Kinetic energy of nuclei ~ 100-2500 times mass of nuclei

Pb-Pb at rest: $\sqrt{s_{NN}} \approx 2 \text{ GeV}$

JEAN-FRANÇOIS PAQUET (VANDERBILT)

Hadronic decay photons in nuclear collisions

Kinetic energy of nuclei ~ 100-2500 times mass of nuclei

Pb-Pb at rest: $\sqrt{s_{NN}} \approx 2 \text{ GeV}$

Hadronic decay photons in nuclear collisions

Ref: F. Bock, PhD thesis

Ref: Chun Shen, PhD thesis

 Σ^0

3.0

3.5

Figure adapted from K. Tuchin (2013) AHEP

Ref: Owens (1987) RMP

PROTON-PROTON COLLISIONS

Direct (non-decay) photons in proton-proton collisions

Direct photons in proton-proton collisions: "low" energy

- Low p_T photons:
 - Few measurements (in proton-proton collisions)
 - Difficult to compute from first principles
 - Non-perturbative effects likely significant

Direct photons in p-p collisions: high energy

Nuclear Physics B327 (1989) 105-143 North-Holland, Amsterdam

QCD CORRECTIONS TO PARTON-PARTON SCATTERING PROCESSES

F. AVERSA*, P. CHIAPPETTA, M. GRECO*, J.Ph. GUILLET**

 Can be calculated in collinear-factorization based perturbative QCD, up to next-to-leading order

 $\frac{\mathrm{d}\sigma_{\gamma}^{pp}}{\mathrm{d}p_{T}} = f_a \otimes f_b \otimes \mathrm{d}\hat{\sigma}_{ab \to \gamma/c+d} [\otimes D_{\gamma/c}]$

Frag fct: Bourhis, Fontannaz, Guillet (1998) EPJ

Direct photons in p-p collisions: high energy

Nuclear Physics B327 (1989) 105-143 North-Holland, Amsterdam

QCD CORRECTIONS TO PARTON-PARTON SCATTERING PROCESSES

F. AVERSA*, P. CHIAPPETTA, M. GRECO*, J.Ph. GUILLET**

 Can be calculated in collinear-factorization based perturbative QCD, up to next-to-leading order

 $\frac{\mathrm{d}\sigma_{\gamma}^{pp}}{\mathrm{d}p_{T}} = f_a \otimes f_b \otimes \mathrm{d}\hat{\sigma}_{ab \to \gamma/c+d} [\otimes D_{\gamma/c}]$

Frag fct: Bourhis, Fontannaz, Guillet (1998) EPJ

Direct photons in proton-proton collisions: channels

- Hard partonic collisions
 - "Isolated"

(Can be calculated at NNLO)

 $\mathrm{d}\sigma_{\gamma}^{pp}/\mathrm{d}p_T = f_a \otimes f_b \otimes \mathrm{d}\hat{\sigma}_{ab \to \gamma/c+d}$

Fragmentation

(Fragmentation function unmeasured at NNLO and poorly constrained at NLO) p+p \sqrt{s} =0.2 TeV

Direct photons in proton-proton collisions: channels

- Hard partonic collisions
 - "Isolated"

(Can be calculated at NNLO)

$$\mathrm{d}\sigma_{\gamma}^{pp}/\mathrm{d}p_{T} = f_{a} \otimes f_{b} \otimes \mathrm{d}\hat{\sigma}_{ab \to \gamma/c+d}$$

Fragmentation

(Fragmentation function unmeasured at NNLO and poorly q constrained at NLO)

 $\mathrm{d}\sigma_{\gamma}^{pp}/\mathrm{d}p_{T} = f_{a}\otimes f_{b}\otimes \mathrm{d}\hat{\sigma}_{ab\to\gamma/c+d}\otimes D_{\gamma/c}$

p+p \sqrt{s} =14 TeV

Intersect at $p_T \sim 30 \text{ GeV}$

HEAVY-ION COLLISIONS: PHOTONS FROM "PROTON+PROTON-LIKE" MECHANISMS

Photon energy spectrum in heavy-ion collisions

Systematic excess of low energy photons in nucleus collisions

(also observed by STAR [RHIC] and ALICE [LHC] Collaborations)

Orange band: Result for incoherent superposition of protonproton collisions

Photon energy spectrum in heavy-ion collisions

Systematic excess of low energy photons in nucleus collisions

(also observed by STAR [RHIC] and ALICE [LHC] Collaborations)

Orange band: Result for incoherent superposition of protonproton collisions

Photons in heavy-ion collisions: high p_T

Prompt photons produced as superposition of nucleon-nucleon collisions ("binary scaling")

Ref.: PHENIX Collaboration (2012) PRL

Photons in heavy-ion collisions: high p_T

Prompt photons produced as superposition of nucleon-nucleon collisions ("binary scaling")

Ref.: PHENIX Collaboration (2012) PRL

Deviations from $R_{AA}^{\gamma} = 1$ originate from:

- Isospin effect (parton content of neutrons vs protons)
- Nuclear effects on parton distribution functions
- Parton energy loss [more about this later]

Photons vs π^0 in heavy-ion collisions

Prompt photons produced as superposition of nucleon-nucleon collisions ("binary scaling")

Isolated photons in heavy-ion collisions

$$q + \overline{q} \rightarrow g + \gamma$$

$$q + g \rightarrow q + \gamma$$

$$q + g \rightarrow q + g + \gamma ?$$

Ref.: PHENIX Collaboration (2012) PRL

Fragmentation photons and pions in <u>p+p</u> collisions

Fragmentation photons and pions in heavy-ion collisions

+medium-induced photons ("jet-medium") +non-perturbative fragmentation

Fragmentation photons and pions in heavy-ion collisions

- Challenging because mixes:
 - Spacetime macroscopic description of the soft bath (plasma)
 - Momentum-space description of showers and fragmentation

HEAVY-ION COLLISIONS: PHOTONS FROM THE SOFT BATH [QUARK-GLUON PLASMA]

Heavy-ion collisions

JEAN-FRANÇOIS PAQUET (VANDERBILT)

Ref: MADAI collaboration, Hannah Elfner and Jonah Bernhard

Relativistic hydrodynamics

Evolution of the energy-momentum tensor in space&time

$$T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - (P + \Pi)(g^{\mu\nu} - u^{\mu} u^{\nu}) + \pi^{\mu\nu}$$

- ϵ is the energy density
- u^{μ} is the flow velocity (Landau frame: $T^{\mu\nu}u_{\nu} = \epsilon u^{\mu}$)
- Π and are $\pi^{\mu\nu}$ viscous components

- Evolution of the energy-momentum tensor in space&time $T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - (P + \Pi)(g^{\mu\nu} - u^{\mu}u^{\nu}) + \pi^{\mu\nu}$
- First-principle equation of state

Viscous relativistic hydrodynamics

Evolution of the energy-momentum tensor in space&time

$$T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - (P + \Pi)(g^{\mu\nu} - u^{\mu} u^{\nu}) + \pi^{\mu\nu}$$

Conservation of energy and momentum:

 $\partial_{\nu}T^{\mu\nu} = 0$

Mueller (1967) Zeit. fur Phys; Israel&Stewart (1979) Ann. Phys.

Mueller-Israel-Stewart relativistic viscous hydrodynamics

 $\tau_{\Pi}\dot{\Pi} + \Pi = -\zeta \ \partial_{\mu} u^{\mu} + (2^{nd} \text{ order terms})$ $\tau_{\pi} \Delta^{\mu\nu}_{\alpha\beta} \pi^{\alpha\beta} + \pi^{\mu\nu} = 2 \ \eta (\partial_{\mu} u^{\nu} + \cdots) + (2^{nd} \text{ order terms})$

Solve hydrodynamics equations numerically (finite volume)

"Macroscopic" calc. of photons from deconfined plasma

What is the spacetime and momentum profile of quarks/gluons/hadrons?

- How much radiation is emitted in each region?
- Note: No clear separation between quark/gluon phase and hadronic phase

"Macroscopic" calc. of photons from deconfined plasma

What is the spacetime and momentum profile of quarks/gluons/hadrons?

- How much radiation is emitted in each region?
- Note: No clear separation between quark/gluon phase and hadronic phase

Photons from deconfined plasma

What is the spacetime profile of quarks/gluons/hadrons?

Photon production: $\frac{dN_{\gamma}}{d^{3}p} = \int d^{4}X \frac{d\Gamma_{\gamma}}{d^{3}p} (p, T(X), u^{\mu}(X), ...)$ Photon emission rate

State of matter/Temperatures

Photon emission rate

Gas of hadro	Photon emission from quark gluon	Effective hadronic models		
Deconfinemer	plasma: Complete leading order results	apolated rates from low/high		
Strongly- for T	Peter Brockway Arnold (Virginia U.), Guy D. Moore (Washington U., Seattle), Laurence G. Yaffe (Washington U., Seattle) Nov, 2001	temperatures ce QCD, holography, effective models		
Weakly-cou	pled QGP at $T \gg 1$ GeV	Perturbative QCD		

Photon emission rate Spacetime profile of plasma • Photon production: $\frac{dN_{\gamma}}{d^3p} = \int d^4X \frac{d\Gamma_{\gamma}}{d^3p} (p, T(X), u^{\mu}(X), ...)$ Photon emission rate

r noton emission rate

Photon emissivity of the quark-gluon plasma: A lattice QCD analysis of the transverse channel

ttor /Tomporatu

Marco Cè (U. Bern, AEC and Bern U. and CERN), Tim Harris (Edinburgh U.), Ardit Krasniqi (U. Mainz, PRISMA), Harvey B. Meyer (U. Mainz, PRISMA and Helmholtz Inst., Mainz and Darmstadt, GSI), Csaba Török (U. Mainz, PRISMA) May 5, 2022

Photon emission rate

Effective hadronic models

Extrapolated rates from low/high temperatures

Lattice QCD, holography, effective models

Perturbative QCD

weakly coupled Qui at 1 // 1 uc

26 pages

Photons from deconfined plasma

What is the spacetime profile of quarks/gluons/hadrons?

Effect of transverse Doppler shift in realistic calculation

Results: Au-Au $\sqrt{s_{NN}} = 200$ GeV, 0-20%

Results: Pb-Pb $\sqrt{s_{NN}} = 2760$ GeV, 0-20%

- Soft-bath ("thermal") photons dominate at low energy/ p_T
- Experimental uncertainties large
- ± Some tension between measurements

Photons from the early stage of the collision

- Use photons to study the earliest stage of the collisions:
 - Approach to chemical equilibrium (from gluon dominated to quark&gluon equilibrium)
 - Understand formation of the soft bath and "emergence of hydrodynamics"

Results: momentum anisotropy

Figure adapted from K. Tuchin (2013) AHEP

$$\frac{1}{2\pi p_T} \frac{dN}{dp_T d\phi} = \left(\frac{1}{2\pi p_T} \frac{dN}{dp_T}\right) \left[1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\phi - \Psi_n))\right]$$

 More precisely: momentum anisotropy thr

momentum anisotropy through photon-hadron correlation

$$v_n\{SP\}(p_T) = \frac{\left\langle v_n^{\gamma}(p_T)v_n^h \cos\left(n\left(\Psi_n^{\gamma}(p_T) - \Psi_n^h\right)\right)\right\rangle}{\sqrt{\left\langle \left(v_n^h\right)^2\right\rangle}}$$

Momentum anisotropy from geometrical anisotropy

J-F PAQUET (VANDERBILT UNIVERSITY)

Photon momentum anisotropy

(Compare different chemical equilibration scenarios)

PLASMA TEMPERATURE FROM PHOTON ENERGY SPECTRUM

Results: Pb-Pb $\sqrt{s_{NN}} = 2760$ GeV, 0-20%

Can we estimate the maximum temperature of the plasma with the photon spectrum?

Symmetry constraints on generalizations of Bjorken flow

 $\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}^{3}p} = \int \mathrm{d}^{4}X \frac{\mathrm{d}\Gamma_{\gamma}}{\mathrm{d}^{3}p}(p,T,u^{\mu},\dots)$

Steven S. Gubser Phys. Rev. D **82**, 085027 – Published 26 October 2010

$$T(\tau, r) \propto \frac{(2q\tau)^{\frac{2}{3}}}{\tau(1+2q^2(\tau^2+r^2)+q^4(\tau^2-r^2)^2)^{1/3}}$$

Can we estimate the maximum temperature of the plasma with the photon spectrum?

Gaussian transverse profile, but only longitudinal hydrodynamic expansion

 $\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}^{3}p} = \int \mathrm{d}^{4}X \frac{\mathrm{d}\Gamma_{\gamma}}{\mathrm{d}^{3}p}(p,T,u^{\mu},\dots)$

$$T(\tau, r) = \mathrm{T}_{0}e^{-\frac{r^{2}}{2\sigma^{2}}}\left(\frac{\tau_{0}}{\tau}\right)^{\mathrm{c}_{\mathrm{S}}^{2}}$$

Effect of transverse Doppler shift

$$\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}^{3}p} \approx \int \mathrm{d}^{4}X \frac{\mathrm{d}\Gamma_{\gamma}}{\mathrm{d}^{3}p} (p, T, u^{\mu} = (1, 0, 0, 0))$$

$$\frac{\mathrm{d}\Gamma_{\gamma}}{\mathrm{d}^{3}p} \sim e^{-p/T}$$

Paquet and Bass [arXiv:2205.12299] Paquet [arXiv:2305.10669] Can we estimate the maximum temperature of the plasma with the photon spectrum?

Caveats: other sources of photons (e.g. preequilibrium), viscosity, ...

Ref.: PHENIX Collaboration [arXiv:2203.17187]

p _T cut	T _{eff}	$T_0 = \frac{T_{eff}}{1 - \frac{5}{2} \frac{T_{eff}}{p_T}}$
$0.8 < p_T < 1.9 \; { m GeV}$	277 MeV	570 MeV
$2 < p_T < 4 \text{ GeV}$	428 MeV	670 MeV

From hydro fit to hadronic data: $T_0 \approx 530$ MeV [from Gale, Paquet, Schenke, Shen (2022) PRC]

Partly explains large p_T -cut dependence of T_{eff}

Caveats: other sources of photons (e.g. preequilibrium), viscosity, ...

Ref.: PHENIX Collaboration [arXiv:2203.17187]

p _T cut			T _{eff}		$T_0 = \frac{T_{eff}}{1 - \frac{5}{2} \frac{T_{eff}}{p_T}}$				
$0.8 < p_T < 1.9$ GeV			277 MeV		570 MeV				
$2 < p_T < 4 \text{ GeV}$		428 MeV		670 MeV					
$T = 500 \text{ MeV} = 6 \times 10^{12} K$									
Radiation Ty Wavelength Temperatur	/pe (m) e of	Radio 10 ³	Microwave 10 ⁻²	Infrared 10 ⁻⁵	Visible 0.5×10 ⁻⁶	Ultraviolet 10 ⁻⁸	X-ray 10 ⁻¹⁰	Gamma ray 10 ⁻¹²	$E_{\gamma} \sim$ 1 GeV
objects at wi this radiation is most inte wavelength emi	the nse tted		1 K −272 °C	100 K −173 °C	10,000 K 9,727 °C	10,0 ~10,0	000,000 K 000,000 °C		$T\sim 10^{12}$ K

Summary and outlook

Summary

- High-energy photons: heavy-ion collisions similar to proton-proton case
- Low-energy photons:
 - Enhancement with respect to proton-proton collisions
 - Exponential spectrum \pm consistent with thermal radiation from $T_{max} \sim 500~MeV$ deconfined plasma
 - Azimuthal anisotropy: important complementary information

58

Outlook

- Studying the early stage of heavy-ion collisions with photons
- "Multi-messenger" study of heavy-ion collisions
- Understanding low p_T photons in proton-proton collisions?

8

Gale, Paquet, Schenke, Shen (2022) PRC

PHENIX lota 0.20 = 1 fm/cCentrality 20-40% rompt ${0.15 \atop {}^{0.15}_{c}} {0.15 \atop {}^{0.15}_{c}}$ re-eq. Thermal PHENIX STAR 0.05

0.5

1.0

1.5

2.0

 $p_T (GeV)$

3.0

2.5

3.5

4.0

0.00

59

JEAN-FRANÇOIS PAQUET (VANDERBILT)

Au-Au

 $\overline{s_{NN}} = 200 \text{ GeV}$

2

 $p_T (GeV)$

Centrality 0-20%

 $d^2 N_{\gamma}/dy p_T dp_T ~(GeV$

Questions