

Fundamental Neutron Physics: Probing TeV physics with neV neutrons

Chen-Yu Liu

Indiana University/University of Illinois at Urbana-Champaign

6/7/2022

S@INT

Neutrons are a unique laboratory to study the four fundamental forces of nature.

Big Questions:

- 1. How was matter created?
- 2. How were the elements made in the Big Bang?
- 3. What are the fundamental particles and their interactions?

How to make neV Ultracold Neutrons (UCN)?

Ultracold neutrons (with long de Broglie wavelengths) are reflected by material potentials.

Eermi noten	Fermi notential: V —				
	that $v_F = -$	m_n			
	Material	V _F (neV)			
	D ₂ O	170			
	Be (BeO)	250			
	С	180			
	Mg	60			
	Al	50			
the part of the second	SiO_2 (quartz)	110			
A A A A A A A A A A A A A A A A A A A	Cu	170			
The second	Fe	220			
	Со	70			
	Ni	230			

7

UCN experiences the four fundamental forces at a comparable energy scales of ~ 100 neV

LANSCE UCN Experimental Area (2021)

UCN "*Pokotilovsky*" source operating at the Los Alamos Neutron Science Center (LANSCE)

A. Saunders, et al. RSI 84, 013304 (2013); T. M. Ito et al. Phys. Rev. C 97, 012501(R) (2018)

At the Los Alamos Neutron Science Center (LANSCE), we fill an empty bottle with UCN and dump them into a detector:

Demonstration of a UCN Gravity Spectrometer

narrator: Chris Morris operator: Zhaowen Tang

There is an unresolved discrepancy between two leading methods to measure the neutron lifetime: neutrons in a bottle seem to disappear faster.

14

The "beam" and "bottle" techniques

"It sounds hard, and it is hard" said Geoff Greene. (2021 Bonner Prize Recipient)

"It sounds easy, and it is hard" said Geoff Greene.

Many experiments need to correct for the systematic effects and extrapolate from the measured lifetime to report the Neutron Lifetime

Neutron-wall interactions

The UCN τ Magneto-Gravitational Trap using a "Halbach" array

18

Bailey inside the Halbach array performing field mapping (before Christmas 2012)

Tweeted by Canadian astronaut, Chris Hadfield:

← Tweet

Chris Hadfield 🤣 @Cmdr_Hadfield

That's Bailey in a neutron bottle. She helped discover that neutrons in the wild last 14.629 minutes (in an atom they can last billions of years). @LosAlamosNatLab The details: bit.ly/3mBp5Tm

...

9:20 AM · Nov 2, 2021 · Twitter Web App

We also implemented a new way to count the trapped neutrons:

In-situ UCN detection using a "dagger" detector: detection time ~ 8 s

Paired runs: a short-storage followed by a long-storage:

24

The principle of Bottle Method is simple:

The lifetime is derived from the Exponential Decay Law:

 $N(t) = N_0 e^{-t/\tau}$

1. We compare the number of neutrons after a short hold, $N_1 = N(t_1) = N_0 e^{-t_1/\tau}$

to the number of neutrons after a long hold, $N_2 = N(t_2) = N_0 e^{-t_2/\tau}$

- 2. We take the ratio of the neutron counts: $\frac{N_1}{N_2} = e^{-(t_1 t_2)/\tau}$
- 3. The neutron lifetime is then:

$$au = \frac{\Delta t}{\ln \frac{N_1}{N_2}}$$
 for each measurement cycle.

4. Then we repeat many measurement cycles of the same short holdlong hold pattern.

Quiz: How should we average the data from repeated runs? The lifetime formula: $\tau = \frac{\Delta t}{\ln \frac{N_1}{N_2}}$

Given a set of normalized data $\{N_{1i}, N_{2i}\}$, i = 1, 2, ..., M,

which of the following is the <u>un-biased</u> evaluation of the lifetime?

$$1. \left(\frac{\Delta t}{\ln \frac{N_1}{N_2}} \right) \text{ : take the mean of pair-wise } \tau_i \qquad \langle \ \rangle \text{ defines the (unweighted) mean: } \langle x \rangle = \frac{1}{M} \sum_{i}^M x_i$$
$$2. \frac{\Delta t}{\ln \left(\frac{N_1}{N_2} \right)} \quad \text{: take the mean of the ratio of the counts, then plug into the lifetime formula.}$$
$$3. \frac{\Delta t}{\ln \frac{\langle N_1 \rangle}{\langle N_2 \rangle}} \quad \text{: average the counts before taking the ratio, then plug into the lifetime formula.}$$

Different ways to average the data set could lead to non-zero "statistical bias"; it becomes important when $dt \rightarrow 0.2$ s

The principle of Bottle Method is simple:

The lifetime is derived from the Exponential Decay Law:

The 'expectation value' of the neutron counts $N(t) = N_0 e^{-t/\tau} \rightarrow \langle N(t) \rangle = N_0 e^{-t/\tau}$

1. We compare the number of neutrons after a short hold, $\langle N_1 \rangle = \langle N(t_1) \rangle = N_0 e^{-t_1/\tau}$

to the number of neutrons after a long hold, $\langle N_2 \rangle = \langle N(t_2) \rangle = N_0 e^{-t_1/\tau}$

2. We take the ratio of the neutron counts: $\frac{\langle N_1 \rangle}{\langle N_2 \rangle} = e^{-(t_1 - t_2)/\tau}$

3. The neutron lifetime is then:

 $\tau = \frac{\Delta t}{ln \frac{\langle N_1 \rangle}{\langle N_2 \rangle}}$ for each measurement cycle.

4. Then we repeat many measurement cycles of the same short hold-long hold pattern.

Therefore, option 3 is the only correct way to average data.

Correcting the statistical bias on the 'neutron lifetime'

The lifetime formula: $\tau = \frac{\Delta t}{\ln \frac{N_1}{N_2}}$

Moderate counting statistics: N₀=12,000 per load

The 'nonlinear' mapping from the measured variable to the derived variable introduces a distortion in the probability distributions.

Small counting statistics: N_o=120 per load

3 bears; 3 independent analyses

- Blinded data:
 - Holding time is modified
 - Measured lifetime blinded by up to ± 15 s
- Unblinding Criteria:
 - Three complete (statistical and systematic) analyses
 - After cross-checking analyses, lifetimes combined via unweighted average, using largest uncertainties

Eric Fries

(Caltech)

Frank Gonzalez (Indiana)

Chris Morris (LANL)

New Result: $\tau_n = 877.75 \pm 0.28^{+0.22}_{-0.16}$ s

Effect	Previous Reported Value (s)	New Reported Value (s)	Notes
$ au_{meas}$	877.5 ± 0.7	877.58 ± 0.28	Uncorrected Value!
UCN Event Definition	0 ± 0.04	0 ± 0.13	Single photon analysis vs. Coincidence analysis
Normalization Weighting		0 ± 0.06	Previously unable to estimate
Depolarization	0 + 0.07	0 + 0.07	
Uncleaned UCN	0 + 0.07	0 + 0.11	
Heated UCN	0 + 0.24	0 + 0.08	
Phase Space Evolution	0 ± 0.10		Now included in stat. uncertainty
Al Block		0.06 ± 0.05	Accidentally dropped into trap
Residual Gas Scattering	0.16 ± 0.03	0.11 ± 0.06	
Sys. Total	0.16 ^{+0.4} 0.2	$0.17^{+0.22}_{-0.16}$	
TOTAL	$877.7 \pm 0.7^{+0.4}_{-0.2}$	$877.75 \pm 0.28 ^{+0.22}_{-0.16}$	

F. M. Gonzalez et al. Phys. Rev. Lett. 127 162501 (October 13, 2021)

Neutron Lifetime Measurements

We report a measurement of τ_n with 0.34 s (0.039%) uncertainty, improving upon our past results by a factor of 2.25 using two blinded datasets from 2017 and 2018. The new result incorporates improved experimental and analysis techniques over our previous result [Science **360**, 627 (2018)].

Limits on lifetimes for *bound* neutrons are given in the section"p PARTIAL MEAN LIVES."

We average seven of the best eight measurements, those made with ultracold neutrons (UCN's). If we include the one in-beam measurement with a comparable error (YUE 2013), we get 879.6 ± 0.8 s, where the scale factor is now 2.0.

For a recent discussion of the long-standing disagreement between in-beam and UCN results, see CZARNECKI 2018 (Physical Review Letters 120 202002 (2018)). For a full review of all matters concerning the neutron lifetime until about 2010, see WIETFELDT 2011, F.E. Wietfeldt and G.L. Greene, "The neutron lifetime," Reviews of Modern Physics 83 1173 (2011).

VALUE (s)	DOCUMENT ID		TECN	COMMENT	
878.4 \pm 0.5 OUR AVERAGE Error ind	cludes scale factor of 1.8. See the	e ideogra	am below.		
$877.75 \pm 0.28 \stackrel{+0.22}{_{-0.16}}$	GONZALEZ	2021	CNTR	UCN asym. magnetic trap	
$878.3 \pm \! 1.6 \pm \! 1.0$	EZHOV	2018	CNTR	UCN magneto-gravit. trap	
$877.7 \pm 0.7 \ ^{+0.4}_{-0.2}$	¹ PATTIE	2018	CNTR	UCN asym. magnetic trap	
$881.5 \pm 0.7 \pm 0.6$	SEREBROV	2018	CNTR	UCN gravitational trap	
880.2 ± 1.2	² ARZUMANOV	2015	CNTR	UCN double bottle	
$882.5 \pm \! 1.4 \pm \! 1.5$	³ STEYERL	2012	CNTR	UCN material bottle	
$880.7 \pm \! 1.3 \pm \! 1.2$	PICHLMAIER	2010	CNTR	UCN material bottle	
$878.5 \pm 0.7 \pm 0.3$	SEREBROV	2005	CNTR	UCN gravitational trap	
	• • We do not use the follow	wing date	a for averaç	ges, fits, limits, etc. • •	
$887 \pm \! 14 {}^{+7}_{-3}$	⁴ WILSON	2021	CNTR	space-based n rate	
$887.7 \pm \! 1.2 \pm \! 1.9$	⁵ YUE	2013	CNTR	In-beam n_i trapped p	
$881.6 \pm 0.8 \pm 1.9$	⁶ ARZUMANOV	2012	CNTR	See ARZUMANOV 2015	
$886.3 \pm \! 1.2 \pm \! 3.2$	NICO	2005	CNTR	See YUE 2013	
$886.8 \pm \! 1.2 \pm \! 3.2$	DEWEY	2003	CNTR	See NICO 2005	

The CKM matrix quantifies the quark flavor mixing.

Precision Test on the CKM Unitarity First Row: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 + \Delta_{BSM}$

 $V_{ub} \ll V_{ud}$ and V_{us} , so negligible contribution

Measurements of V_{ud} :

- Most precise "Superallowed" $0^+ \rightarrow 0^+$ decays
- Mirror nuclei and Pions less precise
- Large theoretical uncertainties from radiative corrections and nuclear structure

Measurements of V_{us} :

- Most precise from Kaon decays
- Cabibbo angle anomaly $(V_{us}=\lambda=\sin \Theta_c)$ between different decay channels
- Also limits from au and Λ hyperons

Most precise measurements disagree (up to 3σ)!

Discovery potential of the beta decay anomalies

A concrete example: First-row CKM unitarity with $|V_{ud}|$ from 0⁺ beta decay and $|V_{us}|$ from K₁₃ decay

$$|V_{ud}|^2_{0^+} + |V_{us}|^2_{K_{\ell 3}} + |V_{ub}|^2 - 1 = -0.0021(7)$$

SOURCES OF UNCERTAINTY:	$ V_{ud} _{0^+}^2 + V_{us} _{K_{\ell 3}}^2 - 1$	-2.1×10^{-3}
	$\delta V_{ud} ^2_{0^+}, \exp$	2.1×10^{-4}
$\delta V_{ud} _{0^+}^2$, RC:	$\delta V_{ud} ^2_{0^+}, { m RC}$	1.8×10^{-4}
Theory uncertainties in the	$\delta V_{ud} ^2_{0^+}, {f NS}$	5.3×10^{-4}
single nucleon radiative corrections	$\delta V_{us} ^2_{K_{\ell 3}}, ext{exp+th}$	1.8×10^{-4}
(RC)	$\delta V_{us} ^2_{K_{\ell 3}}, \mathbf{lat}$	1.7×10^{-4}
	Total uncertainty	$6.5 imes 10^{-4}$
	Significance level	3.2σ

Chien-Yeah Seng's talk DNP 2021

CYS, Galviz, Marciano and Meißner, 2107.14708³⁷

Extracting V_{ud} with neutron decays

To match the theoretical uncertainty: 3.5×10^{-4} , it requires experimental uncertainties of: $\Delta A/A = 4\Delta \lambda/\lambda < 2 \times 10^{-3}$ and $\Delta \tau/\tau = 3.5 \times 10^{-4}$.

To be consistent with CKM unitarity, it requires a smaller $|g_A|$, or a shorter τ_n .

Axial Coupling: Status

Results from beta asymmetry A, unless where noted otherwise

Bastian Märkisch (TUM) | Vud from Neutron Decay - Status and Prospects | 16.5.2019

35

With new UCN τ lifetime result (+ Perkeo III), the extracted V_{ud} agrees with the CKM unitarity.

We report a measurement of τ_n with 0.34 s (0.039%) uncertainty, improving upon our past results by a factor of 2.25 using two blinded datasets from 2017 and 2018. The new result incorporates improved experimental and analysis techniques over our previous result [Science **360**, 627 (2018)].

This is the first neutron lifetime measurement precise enough to confront SM theoretical uncertainties.

40

Neutron Lifetime is an important input into the Big-Bang Nucleosynthesis, which creates light elements

Rev. Mod. Phys. 88, 015004 (2016)

- Weak interactions control the neutron-proton ratio, via freeze out, etc..
- BBN describes the production of the "light elements", ⁴He, D, ³He and ⁷Li
- The number of free parameters that enters in standard BBN has now been reduced to zero: tests of new physics.

}

886

$$Y_p \sim rac{2e^{-t_d/ au_n}}{1+e^{\Delta m/kT_f}}$$

lifetime remains largest uncertainty in calculating helium abundance

Big-bang nucleosynthesis of ⁴He and other light elements: the ⁴He abundance (Y_p) depends on the value of the neutron lifetime and the number of light neutrino

After ~ 10 years of work, we concluded that the neutron lifetime in a bottle is shorter than the pre-2010 PDG value.

The discrepancy of neutron lifetime persists.

A particular arrangement that is more advantageous in many cases is one in which the oscillating field is confined to a small region at the beginning of the space in which the energy levels are being studies and to another small region at the end, there being no oscillating field in between.

-- N. Ramsey (1950)

Smith, Purcell, Ramsey, Phys. Rev. 108, 120 (1957)

UCN Bottle nEDM experiments

Double-cell configuration:

In one load, the EDM is extracted by the frequency difference between the two cells. \rightarrow Less sensitive to *temporal drifts* of the background B fields.

nEDM sensitivity:

The principle is to measure frequency of spin precession, but in practice we are still <u>counting</u> neutrons.

ħ $\sigma(d_n) \ge$ $\overline{2\alpha ET\sqrt{N}\sqrt{M}}$

- α : fringe visibility
- *E*: Electric field
- T: Free precession time
- N: number of neutrons counted
- M: number of repeats

PSI published a new nEDM limit (2020)

$$\sigma(d_n) \ge \frac{\hbar}{2\alpha ET\sqrt{N}\sqrt{M}}$$
$$\alpha = 0.76$$
$$E = 11 \text{ kV/cm}$$
$$T = 180 \text{ s}$$
$$N = 11,400$$
$$M = 288 \text{ cycles/day}$$

2005-2015: improving OILL apparatus @ PSI 2015-2016: physics data taking 2017: field mapping

- Previous Measurement: $(-0.2 \pm 1.5_{stat} \pm 1.0_{sys}) \times 10^{-26}$ e cm
 - Infer $|d_n| < 3 \times 10^{-26}$ e cm (90% CL)
 - J. M. Pendlebury et al. Phys. Rev. D 92, 092003 (2015)
- New Measurement: $(0.0 \pm 1.1_{\text{stat}} \pm 0.2_{\text{sys}}) \times 10^{-26}$ e cm
 - Infer $|d_n| < 1.8 \times 10^{-26}$ e cm (90% CL)
 - C. Abel et al. PRL 124, 081803 (2020)

ETH zürich

Additional Systematics

	Effect	Shift (×10-28	e cm) Error	(x10 ⁻²⁸ e cm)	
la shuda dika	Error on $\langle z \rangle$		7		Dedicated mapping
	Higher-order gradients \hat{G}	69	10		measurements
Crossing Lines Fit	Transverse field correction $\langle B_T^2 \rangle$	0	5		
	Hg EDM [8]	-0.1	0.1		Constrained with — measurement at PTB
	Local dipole fields		4		Berlin
	$v \times E$ UCN net motion		2		
	Quadratic $v \times E$		0.1		– Cs Magnetometers
	Uncompensated G drift \cdots 7.5 \leftarrow				05 Magnetometers
	Mercury light shift		0.4		
	Inc. scattering ¹⁹⁹ Hg		7	•	Not anticipated at
	TOTAL	69	18		 design, bear in mind for next time

Total systematic error $0.18 \times 10^{-26} e cm$ Factor 5 improvement on previous measurement Only 20% of statistical error

Nicholas Ayres | 15.02.2021 | 17

ETHzürich

Leading Systematic: False EDMs and Gravitational Shift

Conspiracy between vertical gradient and motional magnetic field from Lorentz transform of *E* into Hg atom frame causes *E*-correlated frequency shift

$$d_{n \leftarrow Hg}^{\text{false}} = \frac{G_{1,0}}{1 \text{ pT/cm}} * 4.4 * 10^{-27} \text{e cm}$$

Slow UCN hang at the bottom of the chamber Shifts \mathcal{R} shift proportional to vertical gradient

$$\mathcal{R} = \mathcal{R}_0 \left(1 + G_{1,0} \ \frac{\Delta h}{B_0} \right) \qquad \Delta h \approx 0.35 \text{ cm}$$

To first order these are proportional, but more complicated fields can cause a "phantom" effect

PRA **99**, 042112 (2019)

Nicholas Ayres | 15.02.2021 | 13

Beyond 1e-26 e-cm...

$$\sigma(d_n) \ge \frac{\hbar}{2\alpha ET\sqrt{N}\sqrt{M}}$$

Experime nt	Facility	α	E (kV/cm)	Т (s)	N	neutron density (1/c.c.)	Chamber D (cm) or volume	Coating	σ(d) per day (e-cm)	σ(d) (e-cm)
OILL	PSI-sD2	0.76	11	180	11,400	2	47	DLC + dPS	11e-26	1.5e-26
n2EDM	PSI-sD2	0.8	15	180	121,000	2	80	DLC + dPS	2.6e-26	
LANL	LANL-sD2	0.8	12	180	80,000	15	47	dPS	4 e-26	3.4e-27 (1y)
TUCAN	TRIUMF-IHe				600,000- 2,000,000	200-400	30,000 c.c.	dPS		1e-27 (400d)
PanEDM	ILL—IHe					3.9 40		dPE	3.8e-26 (I) 7.9e-27 (II)	3.8e-27 (100d) 7.9e-28 (100d)
PNPI	PIK—lHe		12→27			200			1.5e-26	1e-27 (1y)
SNS	SNS—IHe		75	500	380,000	120	3,000 c.c.	dTPB-dPS		3e-28 (3y)
BeamEDM	ILL/ESS		40	4e-2			FP=50m		5e-26	

$$\sigma(d_n) \ge \frac{\hbar}{2\alpha ET\sqrt{N}\sqrt{M}}$$

nEDM sensitivity is still limited by the UCN counting statistics \rightarrow continuing efforts to make more intense UCN sources

Facility		Current	Power	UCN converter	Production volume (L)	UCN rate (1/s)	Storage (s)	Temper ature (K)	Heat load in target (W)	Neutron density (1/c.c.)
PSI	590 MeV p	2.4 mA (1%)	1.4 MW	sD2	30			5		2
LANL	800 MeV p	9 μΑ	7.2 kW	sD2	2		40	5		15
TRIUMF	480 MeV p	40 μΑ	20 kW	lHe	27	1.4- 1.6e+7	30	1.1	8.1+1.5	200-400
ILL	9A n flux			lHe	12			0.6		200
PNPI—PIK reactor	9A n flux	5e+8 (/cm^2-s-A)		lHe				1.15	3.85	350
SNS	9A n flux	5e+8 /s		lHe	3	0.31/c.c.		0.5		

nEDM@LANL

 Guiding Principles:

 take advantage of the upgraded UCN source;
 minimized R&D efforts by using proven technology;
 move towards EDM data-taking in a 3-year time frame.

Design features:

- Double cell
- Hg co-magnetometer
- Cs external magnetometers
- Magnetically shielded room
- Room temperature operation

53

• Construction (NSF MRI + LANL LDRD): 2018-2021

nEDM@SNS

Neutron electric-dipole moment, ultracold neutrons and polarized ³He ** "The Miracle of Helium" R. Golub^a and Steve K. Lamoreaux^b Physics Reports **237**, 1 (1994) POLARIZED ³He **OVERALL APPARATUS** MAGNET COIL SOURCE PACKAGE ³He SERVICES MODULE MAGNETICALLY SHIELDED ROOM MEASUREMENT **CELLS AND ELECTRODES**

Steady progress in preparing for the big cryogenic nEDM experiment

Neutrons are a unique laboratory to study the four fundamental forces of nature.

Summary

Low-energy neutrons are useful in testing the Standard Model of particle physics. Storage of UCN allows for the long observation times needed for precision measurement of many neutron observables. High-precision

measurements, confronted with theoretical predictions, probe high-energy physics through loop effects.

1. Precision measurements on the neutron lifetime ($\delta t < 0.1s$), combined with the beta-decay asymmetry ($\delta A/A < 0.1\%$), test the unitarity of the CKM matrix (to 1e-4 level of precision). Neutron decay offers improvements required, both theoretically and experimentally, to determine Vud better than 0+ \rightarrow 0+ nuclear decays.

With UCN τ , all systematic uncertainties have been quantified by measurements.

• $\tau_n = 877.75 \pm 0.28^{+0.22}_{-0.16}$ s (PRL 2021)

Moving forward:

• UCN τ +: <u>elevator loading</u>, reaching δ t=0.1 s

2. Precise knowledge of Neutron decay and EDM \rightarrow confirm symmetry-violating physics needed for baryogenesis (& nucleosynthesis) to account for the matter-antimatter asymmetry of the universe:

high priority for 50 years, likely to remain so. In the US, two efforts are underway:

- nEDM@LANL plans to reach 3e-27 e-cm with the LANL UCN source, and
- nEDM@SNS aims for < 5e-28 e-cm using an innovative superfluid helium technique.

The UCNτ Collaboration

Argonne National Laboratory

N. B. Callahan

California Institute of Technology

M. Blatnik, B. Filippone, E. M. Fries, K. P. Hickerson, S. Slutsky, V. Su, X. Sun, C. Swank, W. Wei

DePauw University

A. Komives

East Tennessee State University R. W. Pattie, Jr.

Indiana University/CEEM

M. Dawid, W. Fox, C.-Y. Liu, D. J. Salvat, J. Vanderwerp, G. Visser

Institute Laue-Langevin

P. Geltenbort

UCNT

Joint Institute for Nuclear Research E. I. Sharapov

Los Alamos National Laboratory

S. M. Clayton (co-spokesperson), S. A. Currie,M. A. Hoffbauer, T. M. Ito, M. Makela, C. L. Morris,C. O'Shaughnessy, Z. Tang, W. Uhrich,P. L. Walstrom, Z. Wang

North Carolina State University

T. Bailey, J. H. Choi, C. Cude-Woods, E.B. Dees, L. Hayen, R. Musedinovic, A. R. Young, B. A. Zeck

Oak Ridge National Laboratory

L. J. Broussard, F. Gonzalez, J. Ramsey, A. Saunders

Tennessee Technological University

R. Colon, D. Dinger, J. Ginder, A. T. Holley (cospokesperson), M. Kemp, C. Swindell

nEDM@LANL Collaboration

Los Alamos National Laboratory: S. Clayton, S. Currie, S. MacDonald, T. Ito, M. Makela, C. Morris, C. O'Shaughnessy, A. Saunders, A. Urbaitis

Indiana University: C.-Y. Liu, J. Long, W. Snow, Y. Chen, D. Wong, J. VanderWerp, P. Smith

University of Kentucky: A. Aleksandrova, J. Brewington, R. Dadisman, B. Plaster

University of Michigan: N. Sashdeva, T. Chupp

Yale University: S. Lamoreaux

Joint Institute of Nuclear Research: E. Sharapov

Caltech: C. Swank

East Tennessee State University: R. Pattie

Tennessee Technol. University: A. Holley

Trinity College: A. Reid

Mississippi State University: D. Dutta

Chinese Spallation Neutron Source: T. Xin

 MSR requisition, spin analysis, slow control Hg co-magnetometer, He-3 magnetometer
 Magnetic coils

External magnetometry Hg co-magnetometer

DAQ, data storage Spin transport simulation

NV diamond magnetometer He-3 magnetometer; Surface coating R&D