UNCERTAINTIES & CONSTRAINTS FOR υ opacities in CCSNE and BNS MERGERS

Zidu Lin

University of Tennessee, Knoxville

Seminar at Institute for Nuclear Physics, UW, 3/30/2023

Collaborators: A. W. Steiner, J. Margueron, G. Colo, Y. Ma, D. Lee

A. HOW DO NEUTRINOS INTERACT WITH DENSE MATTER IN COMPACT OBJECTS?

1.Why neutrino interactions are important in compact objects?

2.Why neutrino interactions are complicated?

- 3. Description of v opacities using RPA
- 4. Uncertainties of v opacities
- 5. Constraints for v opacities

WHY *v*-NUCLEON INTERACTIONS ARE IMPORTANT?

Structures of dense matter are very different, depending on (n, T, Ye)!

$$\bar{\nu}_{e} + p \rightarrow e^{+} + n$$

$$\frac{n}{p} \approx \frac{L_{\nu_{e}} \langle E_{\nu_{e}} \rangle}{L_{\nu_{e}} \langle E_{\nu_{e}} \rangle}$$
Neutron to Proton Ratio

Proton Ratio

$$egin{aligned}
u_i + p &
ightarrow
u_i + p \
u_i + n &
ightarrow
u_i + n \end{aligned}$$

NC

Neutrino Sphere Radius

 R_n

We focus on neutrino-nucleon interactions today!

WHY NEUTRINO INTERACTIONS ARE COMPLICATED?

(We focus on neutrino-nucleon interactions today)

Because of "in-medium" corrections

An illustration of "in-medium effect"

$S(q_0, q)$ at mean field level:

$$S_{0}(q_{0},q) = \frac{2 \operatorname{Im}\Pi_{0}}{1 - \exp[(-q_{0} - \mu^{\tau} + \mu^{\tau'})/T]}$$
$$= \frac{1}{2\pi^{2}} \int d^{3}k \,\delta(\epsilon^{\tau} - \epsilon^{\tau'} - q_{0}) f^{\tau}(\vec{k}) \times [1 - f^{\tau'}(\vec{k} + \vec{q})].$$

At MF level, such a correction mainly result from conservation laws & Pauli Blocking

An Example (v opacities from RPA consistent with NRAPR EoS)

MANY-BODY EFFECTS BASED ON EXACT DYNAMIC
RPA STRUCTURE FACTORS

$$IMFP = \int \frac{\partial^2 \sigma}{\partial \Omega \partial q_0} * \underline{S(q_0, q)} d\Omega dq_0$$

$$Transport IMFP =$$

$$\int \frac{\partial^2 \sigma}{\partial \Omega \partial q_0} * (1 - \cos\theta) * \underline{S(q_0, q)} d\Omega dq_0$$

Many-body correction is just a weighting factor....

CHECK: RPA VS AB-INITIAL LATTICE EFT IN NC

Lattice results from Y. Ma and D. Lee

Static Structure Factor

MANY-BODY EFFECTS BASED ON EXACT DYNAMIC RPA STRUCTURE FACTORS

Many-body effects on IMFP ≠Many-body effects on Transport IMFP Many-body effects for different E_v s Are different

n=0.05 fm^{-3} ; $E_v = 60 \text{ MeV}$

 $n=10^{-2}fm^{-3}$; $E_v = 30 \text{ MeV}_{15}$

CORRELATIONS BETWEEN v OPACITIES & EOS

CONSTRAINTS FOR G'FROM GTR

Note that V_{gt} =2G' at symmetric nuclear matter (SNM)

X. Roca-Maza, G. Colo, and H. Sagawa (2012)

The area covered by GTR peak is strongly Correlating with G'

AN MCMC CONSTRAINING G'

GTR results are from collaboration with G. Colo

We are also running G'MCMC on Sn132 & Ca48 More are coming

Information of G' told by different Nucleus is different... Finally, we need a Bayesian Inference of G'

Correlations between spin-dependent quantities and spin-independent ones are weak

The EoSs giving similar M-R of NSs may seem very different to neutrinos

For NSs, there are no difference since they are all gummy bears

For v s, they are quite different since v see the color of gummy bears...

It is important for us to construct Nuclear EoSs

that not only reasonably describe spin-independent properties

but also spin-dependent properties

because they determine important things like neutrino opacities/pion condensations/... in NSs

CONCLUSION

1.We compare RPA NC static structure factors with ab-initial calculations at densities around v sphere. The agreement is good.

2. The effect of many-body corrections on transport crx and on normal crx is different. The many-body corrections are also different for different incoming v energies 3.We estimated the uncertainties of v opacities 4.We constrain G' by using Gamow-Teller Resonance experiments in a MCMC simulation 5. Construct new EoSs with better description of spindependent quantities may be important for future study of NSs/CCSNe/mergers

Before we are lucky enough to get a galactic CCSN...

BACKUP SLIDES

Main Results: 2) Relative uncertainty of IMFP

Z. Lin et al. (2022)

Landau-Migdal Parameters

$$f_0 = \frac{1}{2} (f_0^{\tau\tau} + f_0^{\tau-\tau}), \quad f_0' = \frac{1}{2} (f_0^{\tau\tau} - f_0^{\tau-\tau}),$$
$$g_0 = \frac{1}{2} (g_0^{\tau\tau} + g_0^{\tau-\tau}), \quad g_0' = \frac{1}{2} (g_0^{\tau\tau} - g_0^{\tau-\tau}).$$

$$n_{3,0} = n_p - n_n$$

$$n_{3,3} = n_{p\uparrow} - n_{p\downarrow} - n_{n\uparrow} + n_{n\downarrow}$$

$$n_{0,3} = n_{p\uparrow} - n_{p\downarrow} + n_{n\uparrow} - n_{n\downarrow}$$

