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Before we start. . .

The good, the bad and the ugly beautiful (Claim of this talk)

1. The “automated algebra” is promising and there is untapped potential following this direction
2. AA is unfortunately limited (still useful) due to the computational wall
3. Tried to avoid being overly technical, but inevitably somewhat technical

The Devil’s Dictionary
Automated Algebra the thing making this talk coming true

Quantum Virial Expansion a term with confusing ambiguity
Quantum Matter our ticket to the party
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Fermionic many-body systems
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Ultracold Atoms

Properties of interest

• Experimentally accessible
the well-known laser trapping and cooling techniques

• Highly tunable
coupling strength, polarization, dimension, etc.

• Clean and simple
non-relativistic, dilute spin-1/2 fermions
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Hamiltonian

We consider exclusively the non-relativistic, contact interaction model

Ĥ = T̂ + V̂ + V̂ext

• Non-relativistic

T̂ =

∫
dp

p2

2m
[n̂↑(p) + n̂↓(p)]

• Contact interaction

V̂ = −g
∫

dx n̂↑(x)n̂↓(x)
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BCS-BEC crossover (3D)
Phase Diagram
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Overview

1. Review of Quantum Virial Expansion
2. Introduction of Automated-Algebra method
3. Homogeneous Systems
• Unitary Fermi Gas
• General dimension and coupling strength

4. Harmonically Trapped System
• General dimension and coupling strength (*)

5. Summary, outlook, and ongoing works
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Line of Research
Hou, Czejdo, DeChant, Shill and Drut, PRA 100, 053627 (2019)
Hou and Drut, PRL 125, 050403 (2020) - UFG
Hou and Drut, PRA 102, 033319 (2020) - UFG & General dimension
Hou, Morrell, Czejdo and Drut , PRR 3, 033099 (2021) - Trapped system
Czejdo, Drut, Hou and Morrell, Condensed Matter 7, 13 (2022) - Review

Spinoff
Czejdo, Drut, Hou, McKenney and Morrell, PRA 101, 063630 (2020)
Rammelmüller, Hou, Drut and Braun, PRA 103, 043330 (2021)



Quantum Virial Expansion

Quantum virial expansion is an expansion in powers of fugacity z

−βΩ = lnZ = Q1

∞∑
n=1

znbn

z = exp(βµ) - fugacity
Ω - grand potential

bn - nth order virial coefficient

The grand-canonical partition function is

Z = TrF [e−β(Ĥ−µN̂)] =

∞∑
n=0

znQn

β = 1/(kT ) - inverse temperature
Qn - canonical n-particle

partition function
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Quantum Virial Expansion
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First few bns
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−
(
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b22
2

)
Q1 − b2

Q2
1

2!
− Q3

1

4!

For formulas of higher-order terms:
Hou, Czejdo, DeChant, Shill and Drut, Phys. Rev. A 100, 053627 (2019)
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Quantum Virial Expansion
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Quantum Virial Expansion

History of ∆bn

• Second order: ∆b2
analytically given by Beth-Uhlenbeck formula (1937)
(1D, 2D, 3D, arbitrary coupling)

• Third order: ∆b3
numerical methods (2000s-2010s)
Path Integral Monte Carlo, sum-over-states, complex Langevin, ...

See also Larsen, S. Y. et al. Ann. Phys., 374, 291-313 (2016) for a generalization of Beth-Uhlenbeck formula to three-body problem.

• Beyond: ∆bn
very few numerical attempts at ∆b4, nothing beyond
solving n−particle system for large n is hard
limited to unitarity (i.e. all in 3D only)
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METHODOLOGY
(THE UGLY/BEAUTIFUL)
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Automated-algebra method

Expression to evaluate

The n-body physics is encoded in bn, which depends on QN

QN = trN [e−βĤ ]
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Automated-algebra method

Expression to evaluate

The n-body physics is encoded in bn, which depends on QN

QN = trN [e−βĤ ]

Discretize imaginary time with relative small Nτ

QN = trN

[
exp
(
−βĤ

)]
' trN

[
Nτ∏

exp
(
−τ T̂

)
exp
(
−τ V̂

)]
with Trotter-Suzuki decomposition

e−β(T̂+V̂ ) =

Nτ∏
e−τ(T̂+V̂ ) '

Nτ∏(
e−τT̂ /2e−τV̂ e−τT̂ /2

)
Yaqi Hou Toward an Automated-Algebra framework for Quantum Matterwith the Quantum Virial Expansion and beyond 13 / 37



Automated-algebra method

Expression to evaluate

QN = trN

[
Nτ∏

exp
(
−τ T̂

)
exp
(
−τ V̂

)]

In momentum space
QN =

∑
P(1)

〈
P(1)

∣∣∣∏
Nτ

exp
(
−τ T̂

)
exp
(
−τ V̂

)∣∣∣P(1)
〉

Inserting complete sets for each time slice

QN =
∑
{P}

ε[P(1)]ε[P(2)] · · · ε[P(Nτ )]

× V [P(1),P(2)]V [P(2),P(3)] · · ·V [P(Nτ ),P(1)]
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ε(p) = e
−τp2
2m



Automated-algebra method

Expression to evaluate

QN =
∑
{P}

ε[P(1)]ε[P(2)] · · · ε[P(Nτ )]× V [P(1),P(2)]V [P(2),P(3)] · · ·V [P(Nτ ),P(1)]

V [P(i),P(j)] =
〈
P(i)

∣∣∣exp
(
−τ V̂

)∣∣∣P(j)
〉

=1 + Cf1(P(i),P(j)) + C2f2(P(i),P(j)) + · · ·

Example of fn function in (2+2) system:

f1(P,Q) = δp1+p3,q1+q3δp2,q2δp4,q4 + δp2+p3,q2+q3δp1,q1δp4,q4

+ δp1+p4,q2+q4δp2,q2δp3,q3 + δp2+p4,q2+q4δp1,q1δp3,q3

f2(P,Q) = δp1+p3,q1+q3δp2+p4,q2+q4 + δp1+p4,q1+q4δp2+p3,q2+q3
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C = exp(τg)−1



Automated-algebra method

Expression to evaluate

QN = Q
(0)
N + CQ

(1)
N + C2Q

(2)
N + · · ·+ ClmaxQ

(lmax)
N

where each Q(l)
N

contains only Gaussian and delta functions, and lmax is capped by Nτ and min(M,J)

After “crunching” the δ-function from potential terms, the lth-order coefficient is the summation of
terms of the form

Q
(l)
N =

∑
{P′}

ε[P′(1)]ε[P′(2)] · · ·

Taking the continuum limit
∑
k →

(
L
2π

)d ∫
ddk, every term is converted to a multidimensional

Gaussian integral ∫
Dx exp

(
−1

2
xTAx

)
=

√
(2π)n

detA
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“AAll” in one diagram
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QN = trN

[
exp
(
−βĤ

)]

detA1 detA2 detA3 detA4 detA5



“AAll” in one diagram
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QN = trN

[
exp
(
−βĤ

)]

detA1 detA2 detA3 detA4 detA5

• AA ≈ a symbolic calculator
≈ “poor man’s (much more
specialized) Mathematica”
• Unlike noodles, all the final

expressions are independent
of each other, affinity to
scalable parallelization



Automated-algebra method

Extra steps to ∆bn

• Volume Cancellation (Analytical)
Recall the relation of bn and QN ,

∆b3 =
∆Q3

Q1
−Q1∆b2

• Renormalization
C is the new “bare coupling”, which needs to be renormalized to the desired two-body
physics, encoded by ∆b2

• Large-Nτ Extrapolation
Extrapolate ∆bn to the Nτ →∞ limit
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RESULTS: HOMOGENEOUS SYSTEM AT
UNITARITY
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Overview

• Estimates of ∆bn up to n = 5 (or maybe a few extras)
• Observables
• polarized and unpolarized systems
• Pressure / Density / Compressibility / Susceptibility

Yaqi Hou Toward an Automated-Algebra framework for Quantum Matterwith the Quantum Virial Expansion and beyond 17 / 37



Estimations of ∆b4 at unitarity

ENS MIT Yan &
Blume

Ngamprue-
tikorn et al.

Endo &
Castin

0.06

0.07

0.08

0.09

0.10

0.11

bUF
G

4

Experiment
Theory
This work

Orange Experiment
Blue Theory
Red Our results
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Estimations of ∆bn

0.0 0.2 0.4 0.6 0.8 1.0
b2/ bUFG
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0.1

b n

b3

b4

b5

a0 0 a0

0.06

0.08

0.10

Leyronas b3

Wholespace contributions

• Nonmonotonic ∆b4 and ∆b5

• Similar magnitude of |∆b4| and |∆b5|
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Estimations of ∆bn
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n = m + j

a0 0 a0

n = 4

Subspace breakdown

∆b4 = 2∆b31 + ∆b22
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Estimations of ∆bn
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b2/ bUFG
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j
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b22
n = m + j

a0 0 a0

b21
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n = 3
n = 4
n = 5

Subspace breakdown

• Subspace sequences
polaron ∆bm1 / ∆bm2

alternating sign
more monotonic

• Subspace competitions

• Insights to future conjectures
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Pressure at unitarity

1 2 3 4 5
z

1.0

1.2

1.4

1.6

1.8

2.0

2.2

P/
P 0

3rd order VE
4th order VE
5th order VE
Pade [2/1] (Resum VE3)
Pade [2/2] (Resum VE4)
Pade [3/2] (Resum VE5)
MIT Experiment

Pressure P = P0 + ∆P compared
with experimental determination

∆P =
2

λ3T

∞∑
n=2

∆bnz
n

• Higher-order corrections are not “too”
negligible

• Resummation methods show excellent
agreement at large fugacity
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Density at unitarity

1 2 3 4 5
z = exp( )

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

n/
n 0

MIT experiment
2nd order VE
3rd order VE
4th order VE
5th order VE

b4 = 0.096
Pade[3/2]

Density n = n0 + ∆n compared with
experimental determination

∆n =
2

λ3T

∞∑
k=2

k∆bkz
k
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Density at unitarity - Zoom-in

0.0 0.2 0.4 0.6 0.8 1.0
z = exp( )

0.03

0.04

0.05
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0.07
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(n
n(3

)
vi

ria
l)

3 T
/(8

z4 )

Our results
ENS experiment
MIT experiment
Endo-Castin conjecture
Yan-Blume PIMC
Rossi Diagrammatic MC

Zoom in higher-order contribution to
the density
• Linear relation: ∆b4 + ∆b5 · z
• Non-linear relation: higher-order

contribution is required
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Inner dark red: Uncertainty in slope (∆b5) only
Outer light red: Uncertainties in both intercept (∆b4) and slope (∆b5)

Rossi et al.
Phys. Rev. Lett. 121, 130405 (2018)



Density in polarized system

3 2 1 0 1 2
1.0

1.5

2.0

2.5

3.0

3.5

n/
n 0

h = 0.0
h = 0.4
h = 0.8

h = 1.2
h = 1.6
h = 2.0

VE3
VE4
VE5
Pade

VE3
VE4
VE5
Pade

Density for each species

∆n↑ =
2

λ3
T

∞∑
n=2

∑
m+j=n

mz
m
↑ z

j
↓∆bmj

∆n↓ =
2

λ3
T

∞∑
n=2

∑
m+j=n

jz
m
↑ z

j
↓∆bmj

Usually express z↑ and z↓ in terms of z = exp(βµ) and
exp(βh), where

µ = (µ↑ + µ↓)/2

h = (µ↑ − µ↓)/2
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Compressibility
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Borel-Pade [2/3]
Luttinger-Ward
MIT Experiment
Complex Langevin

κ = − 1

V

[
∂V

∂P

]
T

=
β

n2

[
∂n

∂βµ

]
T

where the derivative

∂∆n

∂(βµ)
=

∞∑
m=2

m2
∑
ij

∆bijz
i
↑z
j
↓

κ0 = 3/(2nεF )
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Spin susceptibility - βh = 0

10 1 100 101 102

T/TF

0.0

0.1

0.2
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0.4

0.5

/
0

5th order VE
Pade [3/2]
T-Matrix (Palestini et al.)
T-Matrix (Pantel et at.)
PIMC (Wlazlowski et al.)
LW (Enss and Haussmann)
AF-QMC (Jensen et al.) Spin susceptibility

∆χ =
λ2
T

8π
Q1

∞∑
n=3

∑
mj

(m− j)2∆bmjz
m
↑ z

j
↓

χ0 = 3n/(2εF)
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Tan Contact at unitarity

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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/(N
k F

)

2nd order VE
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5th order VE
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MIT Exp.
Swinburne Exp.
BDMC

Tan Contact compared with
experimental determinations

I =
8π2

λT
Q1

∞∑
m=2

cmz
m

cm =
1√
2π

∂∆bm
∂λ

where λ =
√
β/as.
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Summary

Calculation of ∆bn
1

• ∆b3: agreement with existing numerical results
• ∆b4: resolved long-standing debate
• ∆b5: first-time prediction

Application of ∆bn
2 (with resummation)

• non-negligible higher-order contribution
• significant improvement with resummation
• (empirical) insights into analytical properties

radius of convergence, optimal truncated order, etc.
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The journey has not yet finished (but nearly)

0.0 0.2 0.4 0.6 0.8 1.0
b2/ bUFG
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• Quantitatively confident
estimations for ∆b6 and ∆b7

• Qualitatively confident estimations
for ∆b8 and ∆b9
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The journey has not yet finished (but nearly)
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We found no significant improvements
when including higher-order
coefficients, possibly because
• Quantitative improvements are

needed
• The resummation + QVE reaches

the point of diminishing return
• Or anything could go wrong
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The short yet meaningful journey
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The polaron sequence is in order just
as usual
• Alternating sign
• Diminishing magnitude, i.e.

approaching the non-interacting
limit
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The short yet meaningful journey
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The sequence ∆bM2 shows similar
features
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The short yet meaningful journey
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The “sequence” of ∆bM3 subspace is
where things start to look more
interesting
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RESULTS: HARMONICALLY TRAPPED SYSTEM
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Trapped Virial Coefficients - Wholespace
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(c)

∆bTn at unitarity under external
harmonic trapping
• Good agreement for ∆b3

• QMC suffers a sampling problem
for ∆b4 at small βω, resulting in
large uncertainty
• Analytic curves from the AA

method

Yaqi Hou Toward an Automated-Algebra framework for Quantum Matterwith the Quantum Virial Expansion and beyond 31 / 37

Hou and Drut
Phys. Rev. Res. 3, 033099(2021)

Yan and Blume
Phys. Rev. Lett. 116, 230401 (2016)



Trapped Virial Coefficients - Subspace
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∆bTij at unitarity under external
harmonic trapping

• The polaron sequence

• Nearly collapse with the conjecture by
Endo and Castin over all frequency
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DISCUSSION AND OUTLOOK
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Conclusions

• The study of higher-order terms in the QVE is meaningful as they are not that negligible
Our calculations at fifth (seventh) order is the first step in this direction

Issue: computatonal cost

• With higher-order available and resummation methods, the QVE can be more than a
benchmark method
The analytic nature makes it ideal to explore unknown phenomena

Issue 1: more systematic studies on resummation method

Issue 2: correctness is not guaranteed a priori

• We may have reached / be very close to the point of diminishing return
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Why is AA a good idea?

• Results are analytical∗ functions of external parameters
• Continuum limit is taken immediately: no spatial extrapolation required
• No statistical sampling = No signal-to-noise issue = No Sign Problem
• Observables computation is straightforward: no source term required

• The computational cost becomes very high as Nτ increases
(M !N !)Nτ → (M !N !)

∑
{N}

∏
li∈N

C
li
M
C
li
N

(Computaitonal cost for (3,3)-system, excluding the common factor M !N !)

Nτ 1 2 3 4 5 6 7 8
Num. of Terms 33 798 1.76E4 4.39E5 1.06E7 2.98E8 8.03E9 2.36E11

• Error estimation could be difficult: discretization error, extrapolation error from limited Nτ

New perspective

The combination of numerical and analytical fronts, pushing automated algebra as far as
possible, may be a worthwhile research direction.
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Outlook for AA method

1. Generalize it to more general Hamiltonian and observables
Neutron matter / Bose gas / Repulsive interaction

Momentum distribution / correlation (e.g. structure factor) / time-dependent (e.g. quantum quench)

2. Further mathematical investigation
Better understanding of resummations

Incorporate symmetry to reduce computational cost

3. Technical improvement
optimization / larger-scale parallel computation

4. Extension of the idea combining analytical and numerical computations
Quantum Thermodynamics Computation Engine (QTCE)
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Resummation Method

Idea

F (z) =

∞∑
n

fnz
n

With only the first few fn known, is there a better approximation than the truncated series?

Pade resummation
Pade approximant at order [M/N] with M +N known coefficients

F̃ (z) =
PM (z)

QN (z)
=
p0 + p1z + · · ·+ pMz

M

1 + q1z + · · ·+ qNzN
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Resummation Method

Borel transformation

BF (z) =

∞∑
n

fn
n!
zn

B(z) ≡
∫ ∞
0

dt e−tBF (tz)→ F (z)

Borel-Pade resummation
Apply Pade approximant to the series BF (z)

B(z) =

∫ ∞
0

dte−t
PM (tz)

QN (tz)
,
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Automated algebra - Working example

For a (1, 1)-system

Q11 =
∑
p1p2

〈p1p2|e−βT̂ e−βV̂ |p1p2〉

=
∑
p1p2

e−β(p
2
1+p

2
2)/2m〈p1p2|e−βV̂ |p1p2〉.

Inserting a complete sets, and the last term becomes

e−βV̂ |x1x2〉 =
∏
z

(1 + Cn̂↑(z)n̂↓(z))|x1x2〉

= |x1x2〉+ C
∑
z

δx1,zδx2,z|x1x2〉

= [1 + Cδx1,x2 ] |x1x2〉,

where C = (eβg − 1)`d is the “coupling strength” to be renormalized.
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Automated algebra - Working example

The final result

∆Q11 = C
∑

p1p2,x1x2

e−β(p
2
1+p

2
2)/2mδx1,x2 |〈x1x2|p1p2〉|2,

In general case, we have

QMN =
∑

P1···Pk

e−τP
2
1/2m · · · e−τP2

k/2m 〈P1|e−τV̂ |P2〉 · · · 〈Pk|e−τV̂ |P1〉

and the interaction term is

e−βV̂ |X〉 = [1 + Cf1(X) + C2f2(X) + ...+ Cmin(M,N)fmin(M,N)(X)] |X〉

where fi(X) is composed of a series of δ-functions.
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Automated algebra - Technical details

Computational Costs

• Complicity mainly comes from the interaction operator
• Roughly speaking, it increases sub-factorially (M !N !)Nτ

• Luckily, there are symmetries

Technical advantages

• Parallelization with high scalability
• Treat control parameters (dimension, trapping frequency, momentum, etc.) symbolically i.e.

analytic smooth curve without repeating computations
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Automated-algebra method revisited

What it is

• A “symbolic calculator” to perform a limited set of algebraic operations
• An alternative/complementary to conventional statistical methods
• A parallelable method with nearly perfect scalability

What it is NOT

• Not a tool for any functions or operators
"Yet Another Mathematica"

• Not a “user-friendly” method (for now)
• Not a tool only for the calculation of bn
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Comparison with stochastic methods

Automated algebra

• No statistical error, at expense of decomposition error (smaller Nτ and finite particle number)
• Symbolic parameters: results are analytic smooth function of d, ω, etc.
• Better scalability: each term is independent and easy to evaluate

Open Science Grid
• Not applicable to lattice model as it relies on efficient Gaussian integral
• Renormalization: tuning C = eτg − 1 on ∆b2

• Limited on specific interaction types (for now)
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Magnetization

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
h

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
/n

(
h

=
0)

2nd order VE
3rd order VE
4th order VE
5th order VE
Pade [2/3]

= 3
= 2
= 1
= 0 m = n↑ − n↓

Dimensionless magnetization
compared with QMC calculations

• Truncated results diverge as for
βµ = −1 and 0

• Resummed results shows nearly perfect
agreements in both cases
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The search of pseudogap

The suppression of spin susceptibility is an indicator of the pairing phase
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Claim
With the analytic expressions, we can obtain the smooth curve in unknown regimes with no
extra computational costs.
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RESULTS: HOMOGENEOUS SYSTEM IN GENERAL
SETTINGS
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1D System - Virial Coefficients
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• Polaron sequence in subspace
• Similar competitions
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2D System - Virial Coefficients
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2D System - Density
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QMC • The region of convergence is

narrower compared to the 3D case
• The resummed results captures the

qualitative behaviors
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Outlook for AA method

Qn = trn[e−βĤ ]

=
∑
P

〈P|e−τT̂ e−τV̂ · · · e−τT̂ e−τV̂ |P〉
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Base Formula

• Original formulation for canonical partition function
• Suitable for homogeneous ultracold atoms



Outlook for AA method

Qn = trn[e−βĤ ]

=
∑
X

〈
X
∣∣∣e−τĤ0e−τV̂ · · · e−τĤ0e−τV̂

∣∣∣ X 〉
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In coordinate representation

• Adapted to harmonically trapped ultracold atoms



Outlook for AA method

Qn = trn[e−βĤ ]

=
∑
P

〈P|e−τT̂ e−τV̂ · · · e−τT̂ e−τV̂ |P〉
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Different interactions

• Fermionic systems: SU(N) system / repulsive interaction
Nishida and Son, Phys. Rev. A, 82, 043606 (2010)

• Bosonic systems: two- and three-body forces
• Spin-orbit coupling / p-wave interaction / ...



Outlook for AA method

Qn

〈
Ô
〉

= trn[e−βĤÔ]

=
∑
PQ

〈P|(e−τT̂ e−τV̂ )k|Q〉 〈Q|Ô|P〉
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Observables

• One-body operator: momentum distribution n̂(q)
Drut et al, Phys. Rev. Lett., 106, 205302, (2011)

• Two-body operator: static structure factor
∑

r e
−iq·rn̂(r)n̂(0)

Alexandru et al, Phys. Rev. Lett., 126, 132701 (2021)



Outlook for AA method

Qn

〈
Ô
〉

= trn[e−βĤÔ]

=
∑
PQ

〈P|(e−τT̂ e−τV̂ )k|Q〉 〈Q|eitĤ1Ôe−itĤ1 |P〉
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Real-time evolution

• Quantum quench Ĥ0 → Ĥ0 + Θ(t)Ĥ1

Sun et al. Phys. Rev. Lett., 125, 110404 (2020)

• Dynamic structure factor
∑

r e
−i(q·r−ωt)n̂(r, t)n̂(0, 0)



Outlook for AA method
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Conclusions / Claims about AA

• AA method has potential in more general settings
• The combination between numerical and analytical methods may be worth further

investigations
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