March 2nd 2023

The Stability-Causality Theorem

Lorenzo Gavassino

Based on: Phys. Rev. X **12**, 041001 (2022)

VANDERBILT UNIVERSITY

Funding:

- Polish National Science Centre grant OPUS 2129/33/B/ST9/00942
- Vanderbilt Seeding Success Grant

- Superfluids
- Superconductors
- Solids
- Supersolids

- Superfluids
- Superconductors
- Solids
- Supersolids

- Chemistry
- Coupling with neutrino radiation
- Phase transitions

- Superfluids
- Superconductors
- Solids
- Supersolids

- Chemistry
- Coupling with neutrino radiation
- Phase transitions

- MHD
- Magnetization
- Radiation hydro
- Plasmas
- Two temperatures

- Superfluids
- Superconductors
- Solids
- Supersolids

- Chemistry
- Coupling with neutrino radiation
- Phase transitions

- MHD
- Magnetization
- Radiation hydro
- Plasmas
- Two temperatures

- Bulk viscosity far from equilibrium
- Multifluids

- Superfluids
- Superconductors
- Solids
- Supersolids

- Chemistry
- Coupling with neutrino radiation
- Phase transitions

- MHD
- Magnetization
- Radiation hydro
- Plasmas
- Two temperatures

- Bulk viscosity far from equilibrium
- Multifluids

- Shear viscosity
- Exotic degrees of freedom (holography)
- Spin hydro

We need relativistic DISSIPATIVE hydro!

- Superfluids Chemistry • Superconductors Coupling with neutrino radiation • Solids Phase transitions • Supersolids • MHD BP k visc sity far Shear viscosity lion Magnetiza from equilibrium • Exotic degrees of Radiation Lyaro iviultifluids freedom (holography) Plasmas • Spin hydro
- Two temperatures

What does "dissipation" mean?

Hydrodynamic state space (a Sobolev space)

Dissipation is irreversibility

Heat equation vs Backward heat equation

Goal: Implement this behaviour in relativity

We know that it is possible (Israel-Stewart, divergence-type, BDNK,...). But for some reason it is hard!

There is something about dissipation that makes it "delicate".

Goal: Implement this behaviour in relativity

We know that it is possible (Israel-Stewart, divergence-type, BDNK,...). But for some reason it is hard!

There is something about dissipation that makes it "delicate".

Example:

- Misner-Thorne-Wheeler ("Gravitation"): Exercise 22.7;
- Weinberg ("Gravitation and cosmology"): Pages 53-58;

They present the theory of Eckart, the first relativistic viscous theory (1940).

Let's use it to describe the ocean...

Recall that
$$E = mc^2$$

Eckart theory

Recall that
$$E = mc^2$$

Eckart theory

Recall that
$$E = mc^2$$

Eckart theory

The ocean accelerates!

The ocean accelerates!

Diffusion equation

 $\partial_t T = \partial_x^2 T$ It is first order in time. Thus, you need to fix T(0, x). Boost it!

$$\gamma(\partial_{t'} - \nu \partial_{x'})T = \gamma^2 \left(\partial_{x'}^2 - 2\nu \partial_{x'}\partial_{t'} - \nu^2 \partial_{t'}^2\right)T$$

It is second order in time. Thus, you need to fix T(0, x'), $\partial_{t'}T(0, x')$. You have 'double' solutions.

$$T(t', x') = T_D(t', x') + T_U(t', x')$$
Dissipative
Looks like
$$Unstable$$
Looks like
$$Uoks like$$

$$-\partial_t T = \partial_x^2 T$$

Apparently, $\Lambda(Dissipative) = Unstable$

It is time to explain this!

Perturbations in the real world...

...But what if, for some reason, something propagates outside the lightcone?

Dissipation cares about chronology. Causality violations reverse it in Bob's frame.

Minkowski Diagram

(

$$\partial_{t_A} T = \partial_{x_A}^2 T + \delta(t)\delta(x)$$

Retarded Green function:

$$T(t_A, x_A) = \frac{\Theta(t_A)}{\sqrt{4\pi t_A}} \exp\left(-\frac{x_A^2}{4t_A}\right)$$

Superluminal propagation

$$\partial_{t_A} T = \partial_{x_A}^2 T + \delta(t)\delta(x)$$

Retarded Green function:

$$T(t_A, x_A) = \frac{\Theta(t_A)}{\sqrt{4\pi t_A}} \exp\left(-\frac{x_A^2}{4t_A}\right)$$

The effect precedes the cause

Violation of causality: the heat is there before Alice injects it!

Some snapshots

Looks like " $-\partial_t T = \partial_x^2 T$ " (unstable)

 x_B

Recall: $T(t', x') = T_D(t', x') + T_U(t', x')$

Pure T_D Looks like " $\partial_t T = \partial_x^2 T$ " (dissipative)

Pure T_U Looks like " $-\partial_t T = \partial_x^2 T$ " (unstable)

Main message

 If you break causality, then dissipation cannot be Lorentz-invariant. 2) If causality holds, then all observers agree on whether the fluid is dissipative or unstable.

Theorem: If a causal linear theory presents a growing Fourier mode in some reference frame, then it is unstable in all reference frames.

Theorem: If a causal linear theory presents a growing Fourier mode in some reference frame, then it is unstable in all reference frames. **Proof:** Suppose that $\varphi(t, x) = e^t \sin(kx - \omega t)$

Theorem: If a causal linear theory presents a growing Fourier mode in some reference frame, then it is unstable in all reference frames.

Proof: Boost it $\varphi(t', x') = e^{\gamma(t'+\nu x')} \sin(k'x' - \omega't')$

Theorem: If a causal linear theory presents a growing Fourier mode in some reference frame, then it is unstable in all reference frames.

Proof: Boost it $\varphi(t', x') = e^{\gamma(t'+\nu x')} \sin(k'x' - \omega't')$

Theorem: If a causal linear theory presents a growing Fourier mode in some reference frame, then it is unstable in all reference frames. **Proof**: Construct a new solution by "gluing" initial data.

Now the initial state is "innocent".

Theorem: If a causal linear theory presents a growing Fourier mode in some reference frame, then it is unstable in all reference frames. **Proof**: Construct a new solution by "gluing" initial data.

Now the initial state is "innocent".

In conclusion

Dissipation is Lorentz-invariant if and only if information cannot travel faster than light.

Featured in Physics

Open Access

Can We Make Sense of Dissipation without Causality?

L. Gavassino Phys. Rev. X **12**, 041001 – Published 3 October 2022

Physics See Viewpoint: Seeking Stability in a Relativistic Fluid

- VIEWPOINT

Seeking Stability in a Relativistic Fluid

Gabriel Denicol

Department of Physics, Fluminense Federal University, Niterói, Brazil

October 3, 2022 • Physics 15, 149

A fluid dynamics theory that violates causality would always generate paradoxical instabilities—a result that could guide the search for a theory for relativistic fluids.

In conclusion

Dissipation is Lorentz-invariant if and only if information cannot travel faster than light.

Featured in Physics

Open Access

Can We Make Sense of Dissipation without Causality?

L. Gavassino Phys. Rev. X **12**, 041001 – Published 3 October 2022

Physics See Viewpoint: Seeking Stability in a Relativistic Fluid

Thank you for your attention!

Seeking Stability in a Relativistic Fluid

VIEWPOINT

Gabriel Denicol

Department of Physics, Fluminense Federal University, Niterói, Brazil

October 3, 2022 • *Physics* 15, 149

A fluid dynamics theory that violates causality would always generate paradoxical instabilities—a result that could guide the search for a theory for relativistic fluids.

Appendices

The instability is violent!

It is the growth **time** (not the growth rate!) that changes sign smoothly when we go from the stable to the unstable reference frames.

In some frame, the instability is infinitely fast!

The result is general

Alice's point of view

Bob's point of view

In summary

Acoustic cone

Dissipation is compatible with Special Relativity **only if** information cannot travel than light (i.e. causality).

Why "information"?

Alice can choose whether to perturb the system of not. Thus, she can send a binary message (True-False) to all observes who sit inside the acoustic cone!

Causality is a tricky beast!

Simulations of the QGP in a heavy-ion collision:

- Red = acausal;
- Purple = unknown;
- Blue = causal.

The best simulations currently available propagate information faster than light!

If you do not believe me, ask the authors ⁽²⁾

(Phys. Rev. C 105, L061901, 2022)

Acausal simulations are everywhere

This accretion disk, if simulated correctly, should explode within one numerical timestep.

(P. Chris Fragile *et al* 2018 *ApJ* **857** 1)

What if you have simulated an acausal theory?

Plot the acoustic cone...

Cold Neutron Stars

Cold neutron stars are superfluid. We need a relativistic generalization of Landau's two-fluid model.

Stability and causality of Carter's multifluid theory L Gavassino^{2,1} Published 23 August 2022 • © 2022 IOP Publishing Ltd Classical and Quantum Gravity, Volume 39, Number 18 Citation L Gavassino 2022 Class. Quantum Grav. 39 185008

Extending Israel and Stewart hydrodynamics to relativistic superfluids via Carter's multifluid approach

L. Gavassino, M. Antonelli, and B. Haskell Phys. Rev. D **105**, 045011 – Published 16 February 2022

Neutron Mergers

Bulk-viscous effects due to nuclear reactions may be important.

arXiv > astro-ph > arXiv:2207.00442

Astrophysics > High Energy Astrophysical Phenomena

[Submitted on 1 Jul 2022]

Emergence of microphysical viscosity in binary neutron star post-merger dynamics

Elias R. Most, Alexander Haber, Steven P. Harris, Ziyuan Zhang, Mark G. Alford, Jorge Noronha

arxiv > gr-qc > arXiv:2204.11809

General Relativity and Quantum Cosmology

[Submitted on 25 Apr 2022]

Simulating bulk viscosity in neutron stars I: formalism

Giovanni Camelio, Lorenzo Gavassino, Marco Antonelli, Sebastiano Bernuzzi, Brynmor Haskell

Open Access

First-Order General-Relativistic Viscous Fluid Dynamics

Fábio S. Bemfica, Marcelo M. Disconzi, and Jorge Noronha Phys. Rev. X **12**, 021044 – Published 24 May 2022

Also the Universe is bulk-viscous!

General Relativity and Quantum Cosmology

[Submitted on 24 Oct 2022 (v1), last revised 2 Nov 2022 (this version, v2)]

Cosmological consequences of first-order general-relativistic viscous fluid dynamics

Fábio S. Bemfica, Marcelo M. Disconzi, Jorge Noronha, Robert J. Scherrer

And, of course, the quark-gluon plasma!

But I leave this topic to better people...

Example: boosted heat equation

 2^{2} m

 $\frac{\partial T}{\partial t} = D \frac{\partial^2 T}{\partial x^2}$

$$\frac{\partial T}{\partial t'} - v \frac{\partial T}{\partial x'} = D\gamma \left(\frac{\partial^2 T}{\partial {x'}^2} - 2v \frac{\partial^2 T}{\partial x' \partial t'} + v^2 \frac{\partial^2 T}{\partial {t'}^2} \right)$$

 $\sim m$

Homogeneous limit:

$$\frac{\partial T}{\partial t'} = D\gamma v^2 \frac{\partial^2 T}{\partial t'^2}$$

$$T = T_0 + \frac{\dot{T_0}}{\Gamma_+} \left(e^{\Gamma_+ t'} - 1 \right) \qquad \Gamma_+ = \frac{1}{D\gamma v^2} > 0$$

Thermal runaway!

The rate diverges when we approach v = 0... as expected.

The curious case of bulk viscosity

Navier-Stokes: $\Pi = -\zeta \nabla_{\mu} u^{\mu}$

Bad! Acausal, unstable, breaks the arrow of time.

Experiment: mixture of two species $\{a, b\}$ with a reaction

$$a + a \leftrightarrow b + b$$

This is a thermodynamically consistent theory! Introduce the affinity $A = \mu_b - \mu_a$ (= 0 at equilibrium)

Expand in the affinity. Eventually you get

 $\tau \dot{\Pi} + \Pi = -\zeta \nabla_{\mu} u^{\mu}$

Now yes! Causal, stable and consistent with the arrow of time.

First fully General-Relativistic bulk-viscous simulation of neutron star oscillations (Camelio et al. <u>arXiv:2204.11810</u>)

Brief recap: Lorentz boost

"True" equation does not imply "true" solution

A well-known example: radiation reaction

Abraham-Lorentz-Dirac radiation reaction force:

$$m\ddot{x} = F_e(x, \dot{x}) + b\ddot{x}$$

Space of possible states: $\{x, \dot{x}, \ddot{x}\}$

The phase space is larger than the usual space $\{x, \dot{x}\}$ of dynamical systems. You have many more solutions. **Most of them blow up!**

Dirac's proposal: the only physical solutions are those that don't blow up. Use future knowledge to set $\ddot{x} = \ddot{x}(x, \dot{x}).$

Another example: the boosted heat equation

$$\frac{\partial T}{\partial t} = D \frac{\partial^2 T}{\partial x^2} \qquad \text{Boost it!} \quad \begin{cases} t' = \gamma(t - vx) \\ x' = \gamma(x - vt) \end{cases}$$

$$\frac{\partial T}{\partial t'} - v \frac{\partial T}{\partial x'} = D\gamma \left(\frac{\partial^2 T}{\partial {x'}^2} - 2v \frac{\partial^2 T}{\partial x' \partial t'} + v^2 \frac{\partial^2 T}{\partial {t'}^2} \right)$$

Let's take a look at the state space: In the rest frame $\{T(x)\}$; In the boosted frame $\{T(x'), \partial_{t'}T(x')\}$;

There are many more solutions. Most of them blow up! Example: $T(t', x') = \exp(t'/D\gamma v^2)$

Dirac-like solution: use future knowledge to set $(\partial_{t'}T)_{t'=0} = \partial_{t'}T[T_{t'=0}]$. Not very practical...

I **define** $T^{-1} \coloneqq \sqrt{-\beta_{\nu}\beta^{\nu}}$, so I do not need to "transform" T