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Python notebooks here!

Important for success: interact with computer scientists, applied
mathematicians, statisticians. And now the MOR community!
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Goal: Facilitate principled Uncertainty Quantification in Nuclear Physics

BAND (Bayesian Analysis of Nuclear Dynamics)
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Case Study Database BANDs

An NSF CSSI Framework
(5 years from 7/2020)
Look to
https://bandframework.
github.io/ for papers,
talks, and software!
v0.3 coming soon!
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What is an emulator? Emulators are low-
dimensional surrogate models capable of
(rapidly and) reliably approximating high-
fidelity models, making practical
otherwise impractical calculations.

Why do we need emulators in (low-
energy) nuclear physics? Uncertainty
guantification (UQ) generally requires
many samples of expensive calculations.
E.g., for calibration, sensitivity analysis,
experimental design.

Does emulator technology have other
applications? Yes! E.g., extrapolate from
easy to difficult Hamiltonians.
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https://journals.aps.org/prc/abstract/10.1103/PhysRevC.107.014001

Universe of model reduction methods

Need: to vary parameters for General classification of ROMs
design, control, optimization, UQ.

Exploit: much information in high-
fidelity models is superfluous.

Solution: reduced-order model
(ROM) = emulator (fast & accurate™).

Data driven: interpolate output of high-fidelity model w/o understanding > non-intrusive
Examples: Gaussian processes; dynamic mode decomposition; artificial neural network, also hybrid ML

Model driven: derive reduced-order equations from high-fidelity equations = intrusive
Features: physics-based, respects underlying structure - can extrapolate; often uses projection

See Melendez et al., 2022 for many references from the wide MOR literature;
various types of emulators already successful in NP (e.g., refs. in Drischler et al., 2022)
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https://www.frontiersin.org/articles/10.3389/fphy.2022.1092931/full

lllustrative example: anharmonic oscillator [Try your own!]

Eigenvalue problem: H(0)|y) = E|¢) V(r;0)
rip(r) V(0) | Fixed: o,, = [0.5,2,4] fm
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Variational emulator = diagonalize the Hamiltonian H (8)in a finite basis: D ;o1 Bits



https://github.com/buqeye/frontiers-emulator-review

lllustrative example: anharmonic oscillator [try your own!]

3
Eigenvalue problem: H(0)|¢) = El) V(r;0) = Vao(r) + Z 9M /77" & affinel
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Variational emulator = diagonalize the Hamiltonian H (8)in a finite basis: D ;o1 Bits


https://github.com/buqeye/frontiers-emulator-review
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lllustrative example: anharmonic oscillator [try your own!]
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lllustrative example: anharmonic oscillator [try your own!]
3
V(r;0) = Vuo(r) + ZH(")e_T2/"”2 < affine!l  Fixed: o0,, = [0.5,2,4] fm
n=1

Ground-State Energy Residuals Ground-State Radius Residuals

GP QP
10~ " F
1072 | HO HO
RBM RBM
10-5 F 107*
# imports from scikit-learn
from sklearn.gaussian process import GaussianProcessRegressor
from sklearn.gaussian process.kernels import RBF, ConstantKernel as C
kernel = C(1) * RBF(length scale=[1, 1, 1])
gp = GaussianProcessRegressor (kernel=kernel)
gp.fit(p train, emulator.E train) # training the GP on the training thetas and energies

E pred gp, E std gp = gp.predict(p valid, return std=True) # predictions for validation points
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Summary: GP doesn’t use the structure of the high-fidelity system to its advantage;
HO emulator knows the problem to be solved is an eigenvalue problem; RBM (aka EC)
training data are curves rather than scalars, takes advantage of system structure.
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Snapshot RBM emulators for nuclear observables

Ground-state eigenvectors from a selection
of parameter sets is an extremely effective
variational basis for other parameter sets.

Characteristics: fast and accurate!
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Emulator doesn’t require specialized calculations!
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https://journals.aps.org/prc/abstract/10.1103/PhysRevC.104.064001
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.032501

Snapshot RBM emulators for nuclear observables

Ground-state eigenvectors from a selection
of parameter sets is an extremely effective
variational basis for other parameter sets.
Characteristics: fast and accurate!
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Fast & rigorous predictions

for A=6 nuclei with Bayesian
posterior sampling

Pr(y|X, Yexp) =
/ pr(y|x, 0)p(0|yexp)dd
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Snapshot RBM emulators for nuclear observables

Ground-state eigenvectors from a selection
of parameter sets is an extremely effective
variational basis for other parameter sets.
Characteristics: fast and accurate!
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Already applied to many observables:
* Ground-state properties (energies, radii)
* Transition matrix elements
e Excited states
* Resonances

Adapted to special situations and methods
e Pairing; shell model
* Coupled cluster approach; MBPT
e Systems in a finite box
* Subspace diag. on quantum computers

Extended to non-eigenvalue problems
* Reactions and scattering; fission

See recent ESNT workshop page for details
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From Christian Forssen’s talk at ISNET-9 (may, 2023)
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Konig et al., PLB 810, 135814 (2020) Kondo et al., in preparation Jiang et al., arXiv 2212.13216

& arXiv 2212.13203

How do these emulators achieve such large speed-ups?


https://indico.cern.ch/event/1223721/contributions/5152813/attachments/2651449/4591937/forssen-ISNET-230522_with_builds.pdf

Constructing a reduced-basis model (aka emulator)

High-fidelity system

H(6) ¥y =E |¥)
-
=E
Nh X Nh _ Nh- - Nh-
Time: ( ) per 6 sample

CPU time scales with the length of C D

J. A. Melendez et al., J. Phys. G
49, 102001 (2022)

E. Bonilla, P. Giuliani et al.,
Phys. Rev. C 106, 054322 (2022)

P. Giuliani, K. Godbey et al.,
Front. Phys. 10, 1212 (2022)

C. Drischler et al., Quarto +
Front. Phys. 10, 1365 (2022)
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Constructing a reduced-basis model (aka emulator)

High-fidelity system

Constructing a reduced-order model for bound states

Offline stage

H(0) vy =E |¢¥) Snapshots ¥(6;) Projectio(after orthonormalizing snapshots
Nh X Nh Nh Nh Nh X Np np X Nh Nh X Nh Nh X Np Nnp X Np
Time: ( ) per 6 sample np X C ) ~ D
CPU time scales with the length of ( D

* Offline stage (pre-calculate):
e Construct basis using snapshots from high-fidelity system (simulator)
* Project high-fidelity system to small-space using snapshots

* J. A. Melendez et al., J. Phys. G
49, 102001 (2022)

* E. Bonilla, P. Giuliani et al.,
Phys. Rev. C 106, 054322 (2022)

* P Giuliani, K. Godbey et al.,
Front. Phys. 10, 1212 (2022)

e C. Drischler et al., Quarto +
Front. Phys. 10, 1365 (2022)
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https://www.frontiersin.org/articles/10.3389/fphy.2022.1054524/full
https://doi.org/10.3389/fphy.2022.1092931
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Constructing a reduced-basis model (aka emulator)

: o Constructing a reduced-order model for bound states
High-fidelity system

Offline stage
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Basic tool: singular value decomposition (SVD) = apply to basis and keep leading
In statistics, known as Principal Component Analysis (PCA)
In MOR world, known as Proper Orthogonal Decomposition (POD)
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Constructing a reduced-basis model (aka emulator)

High-fidelity system

Constructing a reduced-order model for bound states

Offline stage

Online stage

H(0) vy =E |¢¥) Snapshots 1)(6;) Projection (after orthonormalizing snapshots) Emulation (E ~ E)
- < o) 8 - ENg
(N=1)
Nh X Nh Nh Nh Nh X Np np X Nh Nh X Nh Nh X Np Nnp X Np All size—nb operations
Time: ( ) per 68 sample np X C ) ~ D 0 per 8 sample
CPU time scales with the length of ( D

* Offline stage (pre-calculate size N,):

e Construct basis using snapshots from high-fidelity system (simulator)

* Project high-fidelity system to small-space using snapshots

* Online stage (emulation size n, only):

 Make many predictions fast & accurately (e.g., for Bayesian analysis)

* J. A. Melendez et al., J. Phys. G
49, 102001 (2022)

* E. Bonilla, P. Giuliani et al.,
Phys. Rev. C 106, 054322 (2022)

* P Giuliani, K. Godbey et al.,
Front. Phys. 10, 1212 (2022)

e C. Drischler et al., Quarto +
Front. Phys. 10, 1365 (2022)
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https://www.frontiersin.org/articles/10.3389/fphy.2022.1054524/full
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Constructing a reduced-basis model (aka emulator)

High-fidelity system

Constructing a reduced-order model for bound states

Offline stage

Online stage

H(0) vy =E |¢¥) Snapshots 1)(6;) Projection (after orthonormalizing snapshots) Emulation (E ~ E)
. . o) 8 - ENg
(N=1)
Nh X Nh Nh Nh Nh X Np np X Nh Nh X Nh Nh X Np Nnp X Np All size—nb operations
Time: ( ) per 6 sample np X C ) ~ D 0 per 8 sample
CPU time scales with the length of ( D

* For speed: only size-n, operations in online stage = affine structure -

3
V(r;0) = Vio(r) + Y 0™Me /7" & affinein 6
n=1

3
= WV 0)e;) = Wil Vio(r)lwy) + > 0™ (ile™ /7 opy) -
n=1

J. A. Melendez et al., J. Phys. G
49, 102001 (2022)

E. Bonilla, P. Giuliani et al.,
Phys. Rev. C 106, 054322 (2022)

P. Giuliani, K. Godbey et al.,
Front. Phys. 10, 1212 (2022)

C. Drischler et al., Quarto +
Front. Phys. 10, 1365 (2022)
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Schematic picture of projection-based emulators
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* High-fidelity trajectory is in blue.
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Variational = stationary functional

EW] = (Y| H(0)[y) — E(6) ((¢]4) — 1)
Use trial|y) = Y02, Bilw:) and (&M
Solve generalized eigenvalue problem:
H(6)5(6) = E(9)N5(6)
[H(O)]i; = (Wl H(O)[W;), [N(6)]i = (wilth;)

Galerkin projection € use weak form
(C|H(0) — E(8)|¢) =0, V(]
Reduce dimension: |¢) — |{bv) = >0 Bilvi)
Limit orthogonality: (¢;|H(0) — E(8)|¢) =0
Choose ((;| = (;| (Ritz) = variational
More general: ((;| # (¥;| (Petrov-Galerkin)



Variational vs. Galerkin for differential equations

. , Variational = stationary functional
Projection-based emulator for solution ¢ to

D(;0) =01in Q; B(y;0)=0o0nT SlY] =/QdQFM +/FdFG[¢]
where D and B are operators. Example: Use trial [¢) = 327, Bil4;) and (69
—V2y = ¢(0)]a [()_L = f(0)]r If linear operators, then solve for 3, :

T e 6S = AB, +5=0
v Galerkin projection =2 use weak form
S\ /dﬂ<0(¢)+/dr63<w>=0
Q r

Reduce dimension:|y) — |¢) = S oo Bili)

If affine g(B), f(0) = calculate high-fidelity offline. Test bases: |¢) = S22, 66:|¢G), [€) — [€)
If nonlinear or nonaffine = hyper-reduction, etc. B

= 08:| [0 426 D) + J AU ¢ B(H)| =0

See Melendez et al., 2022 for details and references



https://iopscience.iop.org/article/10.1088/1361-6471/ac83dd

Variational vs. Galerkin emulators via concrete example

E.g., Poisson equation with Neumann BCs = [~ V21 = ¢(0)] with [% = f(0)|r

~

Emulator > ¥ (0) = ¢(0) = Zfil(ﬁ*)zwz — XB., X =112 - ¥n,] find optimal 3. online

Variational (Ritz) Ritz-Galerkin
Weak formulation with test function

[ anc(-v?—g)+ [ ar¢(Gh-r)=0
=>/st2(vg-w—gg)—/drfg:o

S[] :/dﬂ (%Vz/)-vw—gz,/)) —/FdI’fw

Q

o,
=>5S:/d525/—V2 — —l—/dl‘&/ ——
Q v ( v g) r g ( on f)

So 6S =0 gives the Poisson eq. and BCs. Emulate)(0): r
S[] — 6S[¢ Z o5, (5&- =0 - n, equations for 3, | Assert holds fory) — Y = XfFand =310 6Bt
L o 5i/dQVi-V--— i—/dFi:O
If linear AB. =g+ f, Aij = [V - Vi, P [ Q (\ Y ~ ViP; %) r &]
(as here) g9i = Jo9(0)i, fi= [ [(O)¢ Aig v &

— same result as variational, but Galerkin is
If affine g(@), f(@) = calculate high-fidelity offline. more general. If (; # v¥;, then Petrov-Galerkin.




RBM implementation freedom: examples from scattering

Quantum mechanical two-body scattering problem can be formulated in multiple ways:
Schrédinger equation in coordinate or momentum space; variational methods; ...

Variational Principle Galerkin Projection Information See Drischler et al., (2022)
N for details and references
Name Functional for K / Strong Form\ Trial Basis Test Basis Constrained?
531“1 IN(E + <ZZ|H - EW / H W =F |¢> \ |¢z> <¢z‘ Yes J. Melendez C. Drischler
(X|H — E|x) + (¢|V]X)

Koh
Non) + (01H — Elé) + (XV]g)

Schwinger (U1 190+ (@IVIY) _i+ GV | e o No

— |V = VGV I|Y)
V +VGoK + KGoV
Newton U ON ON =V +VGK K; K; No

[E—H][x)=VI]¢) [Xi) {xil No

—KGoK + KGgVGoK



https://www.frontiersin.org/articles/10.3389/fphy.2022.1092931/full

RBM implementation freedom: examples from scattering

Quantum mechanical two-body scattering problem can be formulated in multiple ways:
Schrédinger equation in coordinate or momentum space; variational methods; ...

Variational Principle Galerkin Wn Information See Drischler et al., (2022)
for details and references
Name Functional for K Strong Form ﬁ rial Bas& Test Basis Constrained?
53hn ZN(E + <ZZ|H - E|QZ> H|y) = E|y) (Wil Yes J. Melendez C. Drischler
X|H — E|x) + (o|VIX
Kohn X X <~| X [E—H][x) =V| (Xl No
(No )) +(¢lH — E[¢) + (x|V|®)
bV |0) + (|V ]
Schwinger <¢|~ 9} + (9] |7ﬁ> V) = |¢) + GV | (i) No
— WV = VGoV|y)
V 4+ VGoK + KGoV
Newton 0 0 K=V +VGyK K; No

“KGoK + KGoVGoK



https://www.frontiersin.org/articles/10.3389/fphy.2022.1092931/full

RBM implementation freedom: examples from scattering

Quantum mechanical two-body scattering problem can be formulated in multiple ways:
Schrodinger equation in coordinate or momentum space; variational methods; ...

Variational Principle Galerkin Projection Information See Drischler et al., (2022)
for details and references
Name Functional for K Strong Form Trial Basis Test Basis Constrained?
I%\ohn Kg+ (0|H — E[Y) H ) = E ) ;) (] Yes Every variational way
(A) -
(No)) 1 (0lH = Elp) + (x|V]e) part!
. (W[V]6) + ($V[¢)

Schwinger ~ [¥) = 16) + GoV |9) [¥i) (il No _variati

— WV = VGV y) Non”va.rlz.atlif)nal, also,

I e.g., “origin” emulator,
V 4+ VGoK + KGyV

Newt - - - - K=V 4+VGyK K; K; N C
WION o K+ RGOV GE 0 0 where snapsho,t BCs:
(r$)(0) = 0, (r)'(0) =1

What is the best way to implement a 3-body scattering emulator?
e E.g, for Bayesian XEFT LEC estimation or nuclear reactions.
e X.Zhang, rjf, PRC (2022) gave proof of principle (bosons) using KVP.

(applied below)



https://www.frontiersin.org/articles/10.3389/fphy.2022.1092931/full
https://journals.aps.org/prc/pdf/10.1103/PhysRevC.105.064004

Rel. Error

RBM emulators for NN scattering in chiral EFT (affine!)

Compare NVP to two implementations of KVP A Garcia et al., PRC 107 (2023)
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https://journals.aps.org/prc/abstract/10.1103/PhysRevC.107.054001

* P. Giuliani et al., “Bayes goes fast ...” (also “Training and Projecting”)
— apply Galerkin RBM to EDFs (covariant mean field, Skyrme)

* Efficient basis to evaluate functional for many parameter sets.
* = Fast and accurate emulation, ideal for Bayesian inference!
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RBM emulators for EDFs

* Energy density functionals (EDFs) present new challenges.
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Coming soon: RBM for non-affine Skyrme EDF (e.g., p* term)



https://arxiv.org/abs/2209.13039
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.106.054322

RBM emulators for non-affine problems

Nuclear ROSE in BAND Framework v0.3 (this summer).
D AA.y kl Dly.m\ Reduced Order Scattering Emulator can handle local,
—'_\ I ‘ | 4 . . .

complex, non-affine interactions. [Future: non-local, ...]

Strategy: convert non-affine to affine =2 hyper-reduction methods D. Odell  P. Giuliani
Example: calibrating phenomenological optical potential with EIM

Scattering > Galerkin projection but potential
is non-affine in the parameters to fit:

U(r,8) = —V,[1 4+ e—R)/a] ™0

Problem: U doesn’t factor into products of r and @ functions, so integrals between test
and basis functions have to be calculated every time = no offline-online speed-up!



RBM emulators for non-affine problems

Nuclear ROSE in BAND Framework v0.3 (this summer).
D AA.y oh.l Drm\ Reduced Order Scattering Emulator can handle local,
—'_\ H 9N . . .

complex, non-affine interactions. [Future: non-local, ...]

Strategy: convert non-affine to affine =2 hyper-reduction methods D. Odell  P. Giuliani
Example: calibrating phenomenological optical potential with EIM

Scattering = Galerkin projection but potential Principal components of U(r, 0)
is non-affine in the parameters to fit:

)
_ fa(r)
U(r,0) = -V, [1+e(r_R”)/a”] R )

— U(r,0) Zb

| Empirical mterpolatlon Method: one work-around > 10 15 20



RBM emulators for non-affine problems

Nuclear ROSE in BAND Framework v0.3 (this summer).
D AA.y o*.l Dly.m\ Reduced Order Scattering Emulator can handle local,

—'_\ 9N . . .
complex, non-affine interactions. [Future: non-local, ...]

Strategy: convert non-affine to affine =2 hyper-reduction methods D. Odell  P. Giuliani
Example: calibrating phenomenological optical potential with EIM

Principal components of U(r, 0)

Scattering > Galerkin projection but potential

is non-affine in the parameters to fit: _ f1 (r)
_ fa(r)

U(T, 0) — _V’U [1 _I_ e(T—R’U)/a’U:I 1 _|_ .« oo \ /\ _— f3 7")
— U(r, ) Z by See T)d_eﬁ\jt al. for details and results!

| Empirical mterpolatlon Method: one work-around | 5 10 15 20




Summary of key RBM elements

Vast range of problems have been attacked with MOR in science and engineering,
including heat transfer, fluid dynamics, electronic DFT, ...~ coupled ode’s and pde’s
(incl. time-dependent and nonlinear); eigenvalue problems; and more!

There’s likely something out there in the MOR literature analogous to what you do!

Large speed-ups from offline-online paradigm if heavy compute resources are offline.
- move size- operations offline so that emulation varying 0 online is efficient.
Key: exploit affine parameter dependence in operators, e.g., H(0) = > h,(0)H,

For non-linear systems and non-affine parameters, use hyper-reduction methods.

Projection-based: (i) choose low-dimensional rep. of ¥ and (ii) write in integral form.
For (i): 1 (0) = Zf\i’l B = XB, X = |19 -+ Yp,| with X found offline.

Snapshot approaches: construct X from high-fidelity solutions ¥; = 1(0,) at set {6}.



Role of emulators: new workflows for NP applications
From Xilin Zhang, rjf, Fast emulation of quantum three-body scattering, Phys. Rev. C 105, 064004 (2022).

See also Drischler and Zhang, Few-Body Emulators Based on Eigenvector Continuation, in Few-Body Syst. (2022).

E:(p(ins.ive \
L calculations
5,,;f k\\\ . If you can create fast &
g’ ' 7 ,?5 ¢ ﬁ\\\\ 2 accurate™ emulators for
ﬁ,’,’f %.‘\\%%, observables, you can do
ﬁol,/,'cf Emulators 6?,,‘\\ % calculations without
gt & \\‘ specialized expertise and
expensive resources!
New experiments Other

Experiments 1 SRR -' applications

Data assimilation



https://journals.aps.org/prc/abstract/10.1103/PhysRevC.105.064004
https://link.springer.com/article/10.1007/s00601-022-01749-x

Research avenues for emulator applications in NP ()

See Drischler et al., (2022)

Emulator uncertainties need to be robustly quantified; this should be facilitated by the
extensive literature on uncertainties in the RBM.

What are best practices for efficient implementation of NP emulators? Can we exploit
MOR software libraries from other fields, such as pyMOR?

Galerkin and variational emulators for bound-state and scattering calculations are
equivalent for properly chosen test and trial basis. But [Petrov]-Galerkin emulators are
more general; applications to nonlinear problems in NP can be fruitful but face challenges,
e.g., hyper-reduction methods need approximations that worsen accuracy and need UQ.

Technical aspects to explore further, e.g., greedy (or active-learning) and SVD-based
algorithms for choosing training points more effectively.


https://www.frontiersin.org/articles/10.3389/fphy.2022.1092931/full

Research avenues for emulator applications in NP (Il)

See Drischler et al., (2022)

Further applications to reactions: long-range Coulomb interactions and optical potentials
beyond two-body systems; emulators for time-dependent DFT; emulators for nuclear
dynamics at much higher energy scales (JLAB/EIC).

Emulators for extrapolation far from support of training (Frame et al., 2018); emulators as
resummation tool to increase convergence radius of series expansions (Demol et al.,
2020); emulators to extrapolate finite-box simulations of quantum systems (Yapa and
Konig, 2022); emulation in the complex energy plane for general qguantum continuum
states (Zhang, 2022).

Exploring synergy between projection-based and machine learning methods is a new
direction for MOR (e.g., POD-DL-ROM by Fresca and Manzoni, 2022).

Can we exploit in emulator applications use of field theory and RG methods for analyzing
deep neural networks (e.g., Why is Al hard and Physics simple? by Roberts (2021))?



https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.032501
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.101.041302
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.101.041302
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.106.014309
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.106.014309
https://fribtheoryalliance.org/content/Resources/Talks/LECM2022_xz.pdf
https://www.sciencedirect.com/science/article/pii/S0045782521005120
https://arxiv.org/abs/2104.00008
https://www.frontiersin.org/articles/10.3389/fphy.2022.1092931/full

Thank you!

Recent and coming attractions:

2023: Workshop on Information and Statistics for Nuclear Experiment
and Theory (ISNET-9), May 22-26, at Washington University in St. Louis

2023: Workshop on Eigenvector continuation method in nuclear
structure and reaction theory, May 30-June 2, at CEA, France

2023: FRIB-TA Summer School on Practical Uncertainty Quantification
and Emulator Development in Nuclear Physics, June 26-28, at FRIB.

Jupyter and Quarto books for nuclear applications:
Learning from Data (OSU course Physics 8820)

BUQEYE Guide to Projection-Based Emulators in Nuclear Physics

Reduced Basis Methods in Nuclear Physics



https://esnt.cea.fr/Phocea/Page/index.php?id=109
https://esnt.cea.fr/Phocea/Page/index.php?id=109
https://indico.frib.msu.edu/event/65/
https://indico.frib.msu.edu/event/65/
https://furnstahl.github.io/Physics-8820/about.html
https://github.com/buqeye/frontiers-emulator-review
https://kylegodbey.github.io/nuclear-rbm/introduction/introduction.html
https://indico.cern.ch/event/1223721/
https://indico.cern.ch/event/1223721/

Extra slides



ANNs and GPs meet effective theories and RG

Recent developments™ merge field theory and renormalization group (RG) insights and
methods to describe ANNs (e.g., Why is Al hard and Physics simple? by Roberts (2021)).

Principle of sparsity plus effective theory approach (cf. Ising Model for counting):

ZO(N) k >O(Nk) spatial> O(N) translajzional> O(l)

locality locality invariance

Exploit large width limit of ANNs, in which they become GPs (via generalized central limit
theorem). Finite width expansion in depth / width of network; RG flow to criticality.

Effective [field] theory and RG approaches are natural for (nuclear) many-body theory!
The perturbative approach to leading non-trivial order is like Ginzburg-Landau form.

Can we apply insights to emulators and forge connections with reduced basis methods?

[*For up-to-date references, see Structures of neural network effective theories by Banta et al., arXiv:2305.02334.]



https://arxiv.org/abs/2104.00008
https://arxiv.org/abs/2305.02334

Lexicon for Model Order Reduction (MOR)

High fidelity
Reduced-order model
Intrusive

Offline-online paradigm
Affine

Snapshots

Proper Orthogonal
Decomposition (POD)

Greedy algorithm
Reduced basis methods

Hyper-reduction methods

Highly accurate, usually for costly calculation [Full-Order Model (FOM)]
General name for an emulator resulting from applying MOR techniques.
Non-intrusive treats FOM as black box; intrusive requires coding.

Heavy compute done once (offline); cheap to vary parameters (online).
Parameter dependence factors from operators, e.g., H(0) =) h,(0)H,
High-fidelity calculations at a set of parameters and/or times.

Generically the term POD is used for PCA-type reduction via SVD. In
snapshot context, PCA is applied to reduce/orthogonalize snapshot basis.

Serially find snapshot locations 0, at largest expected error (fast approx.).
Or RBMs. Implement snapshot-based projection methods.

Approximations to non-linearity or non-affineness (e.g., EIM).



Parametric MOR emulator workflow

Bird’s eye view but still for projection-based PMOR only (i.e., not an exhaustive set!)

(1) Sampling across range of parameters 0 for N, candidate snapshots = {6}
e E.g., space-filling design (like latin hypercube) or center near emulated values.
* Want N, £ Ng, e SNapshots; locate wisely based on basis construction method.

(2) Generating a basis X from the snapshots to create. Multiple options, including:
* Proper Orthogonal Decomposition (POD) [cf. PCA] = extract most important
basis vectors. Compute all Ny, Snapshots 1(6;) but keep Ny, based on SVD.
* Greedy algorithm is an iterative approach: next location 0. from fast estimated
emulator error at N, ., Values and choose value with largest expected error.
* For time-dependent case, sample also in time or frequency. Many options here!

(3) Construct the reduced system. Single basis X or multiple bases across 0
* Linear system and affine operators = projecting to single basis works well.
* If non-linear or non-affine = hyper-reduction approaches: e.g., empirical
interpolation method EIM or DEIM, which finds an affine (separable) expansion.



Some model reduction methods in context

Reduced Basis method (1980) widely used to emulate PDEs in
reduced-order approach. Specific choices in MOR framework:
* Parameter set chosen using greedy algorithm (or POD)
* Single basis X constructed from snapshots
 RB model built from global basis projection —

Parametric MOR ‘

RB method
EC

Eigenvector continuation (EC) is a particular implementation of the RB method
— parametric reduced-order model for an eigenvalue problem (lots of prior art)
* Global basis constructed with snapshot-based POD approach
* “Active learning” by Sarkar and Lee adds greedy sampling algorithm for next ©,

Summary: general features of good reduced-order emulators
e System dependent = works best when QOlI lies in low-D manifold and
operations on ) can be avoided during online phase
* Relative smoothness of parameter dependence
» Affine parameter dependence (or effective hyper-reduction or other approach)
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Empirical interpolation method for nonaffine/nonlinear

Key: avoid costly order ¢ (i.e., FOM) evaluations = approximation strategy.
* Some cases: use low-order terms of a Taylor series expansion.

 More general: selective sampling of nonlinear terms with interpolation.
* |Includes empirical interpolation method (EIM) and discrete variant DEIM.

EIM baSiCS [adapted from Hesthaven (2016)] Algorithm: Empirical Interpolation Method
c c c . Input: A family of functions g, : 2 — R, parametrized by a parameter u € Prry and a
* Ingredients are (Q is an integer): e
° Q interpolation points xll e, XQ Output: A set of Q basis functions {hq}qQ:1 and interpolation points {‘xq}qQ:]‘
. Q parameter points el' . eQ (e = l;l) Set g = 1. Do while err < tol:
c o 1. Pick the sample point
* Q basis functions hy, ... hg g =50 g~ 101,
o . . . KELETM
* The funCtlon g 1S nonafﬂne In annd e and the corresponding interpolation point
* Interpolationis Ig|ge](z) = Zqzl cq(0)hg() xg = arg sup |gy., (¥) — Tg—1lgp, 1(X)]- (5.5)
where [ xi)=gg(x;) 7=1,..., o
. Q [99]( .‘7 ) ge( J ) J ’ ’ Q 2. Define the next basis function as the scaled error function
is found by solving don — Toorlon]
Q o . = : —— : (5.6)
52 cq(O)hy(w;) = gola;) j=1,...,Q S e
* The h;are found as linear combinations of SLaRefine theieror
SnapShOtS Jo1, - Jeq (See box at rlght) err = |errp| g, With erry(w) = [gu — Ig-1l9u])] x,

andsetqg :=q + 1.




Snapshot RBM for scattering
73 _ T _ 7 (a) (a) . : _ 1p(a) Affine dependence
HO)=T+V(0)=T+>» 6“0 with LECs § = {9} are chival)
K matrix: k(E) = tand,(E) [cf. 5,(E) = *?¢(F)]  Take £ = 0 here, p = /2uE

1 ko(E)

ko(E)|iria 2 ~ : :
Kohn: & ol p)]t L h’g (Virial | H(O) — EWtrial)] = 0 with [tria1) - ];Sln(]”“) +

cos(pr)




Snapshot RBM for scattering

AN AN AN

HO)=T+V(0) = T + Z 0@ (@) with LECs 6 = {Q(a)} Could:\flcghci)rfl EFT or

K matrix: k(E) = tand,(E) [cf. 5,(E) = *?¢(F)]  Take £ = 0 here, p = /2uE

, ko (E)|trial 21 > B : 1 . ko(FE)
Kohn: ¢ [ 5 ~ 7 (Virial|H(0) — E|¢trial>] = 0 with [Yirial) - ]—?sm(pr) + cos(pr)
) = 3 sl (6 s = S (AT) (Fofply — 3) and 2 = A0 o/l ~ 1)
EC ’wtr1a1> — P Zwa(HZ» — 1T ; (AU)zj ([ko/p]] )\) d )\ T sz(Aﬁ);l

with AU;;(E) = ﬁ<¢E(9i)l2‘7(9) ~V(8;) - V(8,)|¥£(0;)) & Coulomb cancels!

Stationary functional for k,(E) but not an upper (or lower bound) = still works!

* Use nugget regularization to deal with ill-conditioning and/or mix boundary conditions
EC works for local or non-local potentials, r-space or k-space, complex potentials, 3-body
* More recent: also works for complex E and extrapolating in E (Xilin Zhang)



Testing snapshot RBM for scattering

Many different model problems tested: square well, + Coulomb, Yamaguchi potential, ...
- one example: Minnesota potential in 3S; channel (other plots available with notebooks)

%Sl (7“) — VOR 6_KRT2 + V()t 6_Ktr2 with KR — 1.487 fm_2/<;t = 0.639 fm_2 (ﬁxed)
0 = {VQR, VOt} — {200 MeV, —178 MeV}

“physical”
3S1 channel 1075 2 | T T T T T T
' X ' ' I ; X - Interpolation
x X X x x XX X X X : X
_1a0p X X % ) Xxxx;(e( . ® Dasis pts X Extrapolation
X X .
%X X >2><< % %  physical 106 L -
X 55 X X X X . : : 3
—160 XXX Txx X% XX e *  inferpolation points = 3S; mean of relative error
% ® x x X o x X x % X o X extrapolation points & !
X J (&)
E >><< X Xx x X X X x
S ooas0p NS TR X X * x’><< X x E
3 X X X VIO S =
X X >0()>§ X x X X E)
—_900k X
200 >§)(( XX)S. x y X x XX X5 X
X % X %2( X
X e XX
—220F X x X R . XXX X
X X X & X
X X %
160 180 200 220 240
Vor (MeV) 0 20 40 60 80 100 120 140

: . " L E (MeV)
Better: choose basis points by “greedy algorithm



Emulating the Lippmann-Schwinger (LS) equation

LS equation: Sets of parameters:  K-matrix formulation:

K(@) = V(@) + V(@) Go(E,) K@) - {d@i} - Ki(E,) = — tand,(E,)
Newton variational principle (NVP): Eq=q" /2

K(B) =Y BiK; = K[K] =V +VGK + KGoV — KGoK + KGoVGoK
| K[ Kexact + 0K] = Keyact + (6K)?

Implementation:

(¢'|K(@, B)|o) = (¢/|V(@)|¢) + BT mi(d) — %
K o L
a3 0 = (SIK@ B)I9) ~ (#IV @) + 5" M (@)

J. A. Melendez et
al., Phys. Lett. B
821, 136608 (2021)

—

BT M(a@)5




NVP emulation: SMS chiral potential

Dealing with

 Emulation of 351-3D1 coupled channel anomalies/singularities:
.. C. Drischler et al.
e Basis size of 12 at N*L /
O+ arXiv: 2108.08269 (2021)
| | 1 | 1 | |
Train
1+ K., |- - (K-
ks s Exact
10 1leeee Emulator
0
-1k -
1 | 1 | | 1 | |
10_6 -I | | 1 ] —l 1 | | i _l 1 | 1 j AbS
109 } 301 || 3s1 || Mixing Residual
10712 | 1t 1t -
1 1 1 1 1 1 1 1 1 1 1 1
0 100 200 300 0 100 200 300 0 100 200 300
Elab [MGV] Elab [MGV] Elab [MGV]

J. A. Melendez et al., Phys.
Lett. B821, 136608 (2021)



