

New Physics from Multi-messenger Studies of Neutron Star Mergers

Bhupal Dev

(bdev@wustl.edu)

Washington University in St. Louis

based on

BD, Jean-François Fortin, Steven Harris, Kuver Sinha, Yongchao Zhang, *Phys. Rev. Lett.* **132** (2024) 10, 101003 [arXiv: 2305.01002] and *ongoing*

S@INT Seminar

Institute for Nuclear Theory, University of Washington

March 14, 2024

Search for New Physics

Let's not forget the Cosmic Frontier

Multi-messenger Observation of Binary Neutron Star Merger GW170817

Multi-messenger Observation of Binary Neutron Star Merger GW170817

M. Branchesi, Springer Proc. Phys. 287, 255 (2023)

Impact on many fields

M. Branchesi, Springer Proc. Phys. 287, 255 (2023)

E.g., Axion-like particles (ALPs), CP-even scalars, dark photons, light Z',....

E.g., Axion-like particles (ALPs), CP-even scalars, dark photons, light Z',....

Probing ALPs using Multi-messenger Data from GW170817

• Use generic ALP feature: Coupling to photons.

$$\mathcal{L} \supset \frac{1}{2} \partial^{\mu} a \partial_{\mu} a - \frac{1}{2} m_a^2 a^2 - \frac{1}{4} g_{a\gamma\gamma} a F^{\mu\nu} \widetilde{F}_{\mu\nu} \,.$$

- Both production and decay of ALPs are governed by the same coupling g_{aγγ}.
- Use GW170817 data to draw constraints in the $(m_a, g_{a\gamma\gamma})$ plane.
- Comparison with SN1987A constraints.
- Future prospects with improved gamma-ray measurements.
- Can be extended to other 'light' dark sector particles.

ALP Production via Primakoff and Photon Coalescence

Gravitational Trapping/Redshift Effect

- $E_a > m_a/\eta \gtrsim 1.5 1.7m_a$.
- In contrast, for supernovae, $E_a \gtrsim 1.12 m_a$. [Caputo, Janka, Raffelt, Vitagliano, 2201.09890 (PRL '22)]
- For Schwarzschild geometry, lapse factor $\eta = \sqrt{1 2GM/r}$ for r > R.
- For axisymmetric geometry of the merger, η also depends on θ .

Equatorial radius [km]

Production Rates for Different Profiles

ALP Decay and Geometry Effect

ALP Decay and Geometry Effect

Master Formula for Photon Spectrum

$$\begin{split} \omega_{\gamma}^2 \frac{\mathrm{d}^2 F_{\gamma}}{\mathrm{d}\omega_{\gamma} \mathrm{d}t}(\omega_{\gamma}, D+t) &= \int_{-1}^1 \mathrm{d}z \, \int_0^\infty \mathrm{d}L \, \frac{\omega_{\gamma}^2}{4\pi D(L_{\gamma}+Lz)} \frac{\mathrm{d}^2 N_a}{\mathrm{d}\omega_a \mathrm{d}t}(\omega_a, D+t-L/\beta_a-L_{\gamma}) \\ & \times \operatorname{Jac}(\omega_a, \omega_{\gamma}) \frac{m_a^2}{\omega_a^2(1-\beta_a z)^2} \frac{\exp\left(-L/\ell_a\right)}{\ell_a} \Theta(L-R_{\star}) \Theta(L-D/\sqrt{1-z^2}) \,. \end{split}$$

Multimessenger Analysis

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L12 (59pp), 2017 October 20

Abbott et al.

Table 3 Gamma-Ray Monitoring and Evolution of GW170817

			000 Plan Linnin Linnin		
Observatory	UT Date	Time since GW Trigger	$(erg cm^{-2} s^{-1})$	Energy Rand	GCN/Reference
Observatory	01 Date	Time since OW Trigger	(erg em 3)	Likitgy Dailo	GettyReference
Insight-HXMT/HE	Aug 17 12:34:24 UTC	-400 s	3.7×10^{-7}	0.2-5 MeV	Li et al. (2017)
CALET CGBM	Aug 17 12:41:04 UTC	0.0	1.3×10^{-7}	10-1000 keV	Nakahira et al. (2017)
Konus-Wind	Aug 17 12:41:04.446 UTC	0.0	3.0 × 10 ⁻⁷ [erg cm ⁻²]	10 keV-10 MeV	Svinkin et al. (2017a)
Insight-HXMT/HE	Aug 17 12:41:04.446 UTC	0.0	3.7×10^{-7}	0.2-5 MeV	Li et al. (2017)
Insight-HXMT/HE	Aug 17 12:41:06.30 UTC	1.85 s	6.6×10^{-7}	0.2-5 MeV	Li et al. (2017)
Insight-HXMT/HE	Aug 17 12:46:04 UTC	300 s	1.5×10^{-7}	0.2-5 MeV	Li et al. (2017)
AGILE-GRID	Aug 17 12:56:41 UTC	0.011 days	3.9×10^{-9}	0.03-3 GeV	V. Verrecchia et al. (2017, in preparation)
Fermi-LAT	Aug 17 13:00:14 UTC	0.013 days	4.0×10^{-10}	0.1-1 GeV	Kocevski et al. (2017)
H.E.S.S.	Aug 17 17:59 UTC	0.22 days	3.9×10^{-12}	0.28-2.31 TeV	H. Abdalla et al. (H.E.S.S. Collaboration) (2017, in preparation)
HAWC	Aug 17 20:53:14-Aug 17 22:55:00 UTC	0.342 days + 0.425 days	1.7×10^{-10}	4-100 TeV	Martinez-Castellanos et al. (2017)
Fermi-GBM	Aug 16 12:41:06-Aug 18 12:41:06 UTC	± 1.0 days	$(8.0-9.9) \times 10^{-10}$	20-100 keV	Goldstein et al. (2017a)
NTEGRAL IBIS/ISGRI	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	2.0×10^{-11}	20-80 keV	Savchenko et al. (2017)
INTEGRAL IBIS/ISGRI	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	3.6×10^{-11}	80-300 keV	Savchenko et al. (2017)
INTEGRAL IBIS/PICsIT	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	0.9×10^{-10}	468-572 keV	Savchenko et al. (2017)
INTEGRAL IBIS/PICsIT	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	4.4×10^{-10}	572-1196 keV	Savchenko et al. (2017)
INTEGRAL SPI	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	2.4×10^{-10}	300-500 keV	Savchenko et al. (2017)
INTEGRAL SPI	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	7.0×10^{-10}	500-1000 keV	Savchenko et al. (2017)
INTEGRAL SPI	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	1.5×10^{-9}	1000-2000 keV	Savchenko et al. (2017)
INTEGRAL SPI	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	2.9×10^{-9}	2000-4000 keV	Savchenko et al. (2017)
H.E.S.S.	Aug 18 17:55 UTC	1.22 days	3.3×10^{-12}	0.27-3.27 TeV	H. Abdalla et al. (H.E.S.S. Collaboration) (2017, in preparation)
H.E.S.S.	Aug 19 17:56 UTC	2.22 days	1.0×10^{-12}	0.31-2.88 TeV	H. Abdalla et al. (H.E.S.S. Collaboration) (2017, in preparation)
H.E.S.S.	Aug 21 + Aug 22 18:15 UTC	4.23 days + 5.23 days	2.9×10^{-12}	0.50-5.96 TeV	H. Abdalla et al. (H.E.S.S. Collaboration) (2017, in preparation)

Table 3 Gamma-Ray Monitoring and Evolution of GW170817

Observation	LIT Data	Time since OW Trianer	90% Flux Upper Limit	Engager Band	CCN /Pelement
Observatory	UI Date	Time since Ow Trigger	(erg chi s)	Energy Danu	OCN/Relefence
Insight-HXMT/HE	Aug 17 12:34:24 UTC	-400 s	3.7×10^{-7}	0.2-5 MeV	Li et al. (2017)
CALET CGBM	Aug 17 12:41:04 UTC	0.0	1.3×10^{-7}	10-1000 keV	Nakahira et al. (2017)
Konus-Wind	Aug 17 12:41:04.446 UTC	0.0	3.0×10^{-7} [erg cm ⁻²]	10 keV-10 MeV	Svinkin et al. (2017a)
Insight-HXMT/HE	Aug 17 12:41:04.446 UTC	0.0	3.7×10^{-7}	0.2-5 MeV	Li et al. (2017)
Insight-HXMT/HE	Aug 17 12:41:06.30 UTC	1.85 s	6.6×10^{-7}	0.2-5 MeV	Li et al. (2017)
Insight-HXMT/HE	Aug 17 12:46:04 UTC	300 s	1.5×10^{-7}	0.2-5 MeV	Li et al. (2017)
AGILE-GRID	Aug 17 12:56:41 UTC	0.011 days	3.9×10^{-9}	0.03-3 GeV	V. Verrecchia et al. (2017, in preparation)
Fermi-LAT	Aug 17 13:00:14 UTC	0.013 days	4.0×10^{-10}	0.1-1 GeV	Kocevski et al. (2017)
H.E.S.S.	Aug 17 17:59 UTC	0.22 days	3.9×10^{-12}	0.28-2.31 TeV	H. Abdalla et al. (H.E.S.S. Collaboration) (2017, in preparation)
HAWC	Aug 17 20:53:14-Aug 17 22:55:00 UTC	0.342 days + 0.425 days	1.7×10^{-10}	4-100 TeV	Martinez-Castellanos et al. (2017)
Fermi-GBM	Aug 16 12:41:06-Aug 18 12:41:06 UTC	± 1.0 days	$(8.0-9.9) \times 10^{-10}$	20-100 keV	Goldstein et al. (2017a)
NTEGRAL IBIS/ISGRI	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	2.0×10^{-11}	20-80 keV	Savchenko et al. (2017)
INTEGRAL IBIS/ISGRI	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	3.6×10^{-11}	80-300 keV	Savchenko et al. (2017)
INTEGRAL IBIS/PICsIT	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	0.9×10^{-10}	468-572 keV	Savchenko et al. (2017)
INTEGRAL IBIS/PICsIT	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	4.4×10^{-10}	572-1196 keV	Savchenko et al. (2017)
INTEGRAL SPI	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	2.4×10^{-10}	300-500 keV	Savchenko et al. (2017)
INTEGRAL SPI	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	7.0×10^{-10}	500-1000 keV	Savchenko et al. (2017)
INTEGRAL SPI	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	1.5×10^{-9}	1000-2000 keV	Savchenko et al. (2017)
INTEGRAL SPI	Aug 18 12:45:10-Aug 23 03:22:34 UTC	1-5.7 days	2.9×10^{-9}	2000-4000 keV	Savchenko et al. (2017)
H.E.S.S.	Aug 18 17:55 UTC	1.22 days	3.3×10^{-12}	0.27-3.27 TeV	H. Abdalla et al. (H.E.S.S. Collaboration) (2017, in preparation)
H.E.S.S.	Aug 19 17:56 UTC	2.22 days	1.0×10^{-12}	0.31-2.88 TeV	H. Abdalla et al. (H.E.S.S. Collaboration) (2017, in preparation)
H.E.S.S.	Aug 21 + Aug 22 18:15 UTC	4.23 days + 5.23 days	2.9×10^{-12}	0.50-5.96 TeV	H. Abdalla et al. (H.E.S.S. Collaboration) (2017, in preparation)

19

Future Sensitivity of Gamma-ray Telescopes

- At least 100 times better sensitivity expected with existing Fermi-LAT.
- Might further improve with future MeV gamma-ray missions (e.g., AMEGO-X, e-ASTROGAM, APT, GECCO).
- Peak sensitivity in the 50–500 MeV range is most suitable for us.

Result: GW170817 Gamma-ray Constraint on ALP

Future Sensitivity with a Stacked Analysis

Future Sensitivity for a Nearby Source

Future Sensitivity with an Extended Observation Time Window

With Better Flux Sensitivity and Extended Observation Time Window

Fireball

[Diamond, Fiorillo, Marques-Tavares, Tamborra, Vitagliano, 2305.10327 (PRL '24)]

Fireball

[Diamond, Fiorillo, Marques-Tavares, Tamborra, Vitagliano, 2305.10327 (PRL '24)]

Other Constraints: HB Stars

[Lucente, Straniero, Carenza, Giannotti, Mirizzi, 2203.01336 (PRL '22)]

Other Constraints: SN1987A Neutrino

[Caputo, Raffelt, Vitagliano, 2109.03244 (PRD '22)]

Other Constraints: Low-energy Supernova Calorimetry

[Caputo, Janka, Raffelt, Vitagliano, 2201.09890 (PRL '22))]

29

Other Constraints: Diffuse Gamma-ray Background

[Caputo, Raffelt, Vitagliano, 2109.03244 (PRD '22)]

Killer Constraint: SN1987A Gamma-ray Constraint from ALP Decay

[Müller, Calore, Carenza, Eckner, Marsh, 2304.01060 (JCAP '23)]

Other Constraints: ALP Decay from SN2023ixf

[Müller, Carenza, Eckner, Goobar, 2306.16397 (PRD '24)]

• Both are interesting sources for probing new physics.

- Both are interesting sources for probing new physics.
- Similar core temperatures.

- Both are interesting sources for probing new physics.
- Similar core temperatures.
- But SN1987A is 1000 times closer than GW170817.

- Both are interesting sources for probing new physics.
- Similar core temperatures.
- But SN1987A is 1000 times closer than GW170817.
- Rate of GW-observable NS mergers $[(10-1700)/\text{Gpc}^3/\text{yr}]$ is higher than that of local, neutrino-observable supernovae [1 per 40 ± 10 yr].

- Both are interesting sources for probing new physics.
- Similar core temperatures.
- But SN1987A is 1000 times closer than GW170817.
- Rate of GW-observable NS mergers $[(10-1700)/\text{Gpc}^3/\text{yr}]$ is higher than that of local, neutrino-observable supernovae [1 per 40 ± 10 yr].
- NS mergers give clean timing information due to the GW signal.

- Both are interesting sources for probing new physics.
- Similar core temperatures.
- But SN1987A is 1000 times closer than GW170817.
- Rate of GW-observable NS mergers $[(10-1700)/\text{Gpc}^3/\text{yr}]$ is higher than that of local, neutrino-observable supernovae [1 per 40 ± 10 yr].
- NS mergers give clean timing information due to the GW signal.
- No astrophysical background expected in the first second. [Kasliwal et al., 1710.05436 (Science '17)]

- Both are interesting sources for probing new physics.
- Similar core temperatures.
- But SN1987A is 1000 times closer than GW170817.
- Rate of GW-observable NS mergers $[(10-1700)/\text{Gpc}^3/\text{yr}]$ is higher than that of local, neutrino-observable supernovae [1 per 40 ± 10 yr].
- NS mergers give clean timing information due to the GW signal.
- No astrophysical background expected in the first second. [Kasliwal et al., 1710.05436 (Science '17)]
- Multi-messenger observation of the **first second** of the NS merger is crucial for BSM physics.

- Both are interesting sources for probing new physics.
- Similar core temperatures.
- But SN1987A is 1000 times closer than GW170817.
- Rate of GW-observable NS mergers $[(10-1700)/Gpc^3/yr]$ is higher than that of local, neutrino-observable supernovae [1 per 40 ± 10 yr].
- NS mergers give clean timing information due to the GW signal.
- No astrophysical background expected in the first second. [Kasliwal et al., 1710.05436 (Science '17)]
- Multi-messenger observation of the **first second** of the NS merger is crucial for BSM physics.
- Possible with future early-warning system. [Sachdev et al., 2008.04288 (ApJL '20)]

Thanks to

Jean-François Fortin (Laval)

Steven Harris (INT/Indiana)

Kuver Sinha (Oklahoma)

Yongchao Zhang (Southeast)

Backup Slides

ALP Couplings

