Exact lattice anomalies and a new path to lattice chiral gauge theories ?

Simon Catterall (Syracuse)

Seattle INT April 2023

Motivation

Folklore

(1) Anomalies cannot be realized on lattice...
(2) Fermions cannot be given masses without breaking symmetries
(0 Hard (impossible?) to put chiral gauge theories on lattice.
Kähler-Dirac fermions offer a counter example to at least 2 of these statements

Plan

Plan

- Kähler-Dirac and relation to Dirac. Discretization on curved space.
- New gravitational anomalies - survive discretization.
- Related 't Hooft anomalies place constraints on IR behavior - in particular fermions can be gapped without breaking symmetries (SMG)
- Construct mirror models with Kähler-Dirac fermions. Simplest anomaly free model realizes Pati-Salam GUT. Lattice realization?

Kähler-Dirac equation

An alternative solution to the problem of square rooting the Laplacian:
Kähler-Dirac equation

$$
(K-m) \Phi=0 \quad \text { where } K=d-d^{\dagger}
$$

Notice: $K^{2}=-d d^{\dagger}-d^{\dagger} d=\square$
Kähler-Dirac field $\Phi=\left(\phi, \phi_{\mu}, \phi_{\mu \nu}, \ldots\right)$.
Ex. 2d

$$
\begin{aligned}
\partial^{\mu} \phi_{\mu}-m \phi & =0 \\
\partial_{\mu} \phi+\partial^{\nu} \phi_{\nu \mu}-m \phi_{\mu} & =0 \\
\partial_{\mu} \phi_{\nu}-\partial_{\nu} \phi_{\mu}-m \phi_{\mu \nu} & =0
\end{aligned}
$$

Connection to Dirac

Form matrix

$$
\Psi=\sum_{p=0}^{D} \sum_{n_{i}} \phi_{n_{1} \ldots n_{p}(x)} \gamma_{1}^{n_{1}} \gamma_{2}^{n_{2}} \cdots \gamma_{p}^{n_{p}}
$$

eg in 2d:

$$
\Psi=\phi \boldsymbol{I}+\phi_{i} \sigma_{i}+\phi_{12} \sigma_{1} \sigma_{2}
$$

In flat space can show

$$
\left(\gamma^{\mu} \partial_{\mu}-m\right) \Psi=0
$$

Kähler-Dirac field describes $2^{D / 2}$ degenerate Dirac fermions !
Action: $\left.\int \operatorname{Tr} \bar{\Psi}\left(\gamma^{\mu} \partial_{\mu}-m\right) \Psi\right)$

Kähler-Dirac in curved space...

Curved space

$$
\left(d-d^{\dagger}-m\right) \Phi=0 \quad \text { unchanged }
$$

Kähler-Dirac fermions can be formulated on any smooth manifold.
No need for spin structure
No need for spin connection/vielbein formalism very different from Dirac

Locally Kähler-Dirac decomposes into $2^{D / 2}$ Dirac.
But global properties of K differ from $\not \partial$
eg. K has zero modes on S^{D}
Expect corrections $\sim \frac{\text { wavelength }}{\text { radius of curvature }}$

A $U(1)$ symmetry for Kähler-Dirac fermions

 Kähler-Dirac Action:$$
\int \bar{\Phi} K \Phi \equiv \int d^{D} x \sqrt{g} \sum_{p=0}^{D} \bar{\Phi}_{p}[(K-m) \Phi]_{p}
$$

Operator $\Gamma: \phi_{\mu_{1} \ldots \mu_{\rho}} \rightarrow(-1)^{p} \phi_{\mu_{1} \ldots \mu_{\rho}}$
Key property $\{\Gamma, K\}_{+}=0$
Generates exact $U(1)$ symmetry of massless action

$$
\begin{aligned}
& \Phi \rightarrow e^{i \alpha \Gamma} \Phi \\
& \bar{\Phi} \rightarrow \bar{\Phi} e^{i \alpha \Gamma}
\end{aligned}
$$

Matrix rep $\Psi \stackrel{\Gamma}{\rightarrow} \gamma_{5} \Psi_{\gamma_{5}} \quad$ twisted chiral symmetry

Reduced Kähler-Dirac (RKD) fermions
Define: $\Phi_{ \pm}=\frac{1}{2}(1 \pm \Gamma) \Phi$
if $m=0$:

$$
S_{\mathrm{KD}}=\int \bar{\Phi}_{+} K \Phi_{-}+\bar{\Phi}_{-} K \Phi_{+} \rightarrow S_{\mathrm{RKD}}=\int \bar{\Phi}_{+} K \Phi_{-}
$$

Analogous to decomposition of massless Dirac field into 2 Weyl fields
Introducing $\psi=\binom{\Phi_{+}^{T}}{\Phi_{-}}$

$$
S_{\mathrm{RKD}}=\int \Psi^{\top} \mathcal{K} \Psi \quad \mathcal{K}=\left(\begin{array}{cc}
0 & K \\
-K^{T} & 0
\end{array}\right)
$$

Reduced fields naturally massless

$$
\bar{\Phi}_{-} \Phi_{+}=\Phi_{-} \Phi_{-}=\bar{\Phi}_{+} \bar{\Phi}_{-}=0
$$

Flat space continuum limit: $2^{D / 2-1}$ Dirac or $2^{D / 2}$ Majorana

Discrete curved space \rightarrow triangulation

$$
\text { p-simplex } C^{p}=\left[a_{0}, \ldots, a_{p}\right]
$$

Boundary operator $\delta: \delta\left[a_{0} \ldots a_{p}\right]=\sum_{i=0}^{p}(-1)^{i}\left[a_{0} \ldots \hat{a}_{i} \ldots a_{p}\right]$ where \hat{a}_{i} indicates that vertex is omitted.
eg

$$
\begin{aligned}
\delta([142]+[123]) & =[42]-[12]+[14]+[23]-[13]+[12] \\
& =[42]+[23]+[31]+[14]
\end{aligned}
$$

Note:

$$
\delta^{2}([142]+[123])=[2]-[4]+[4]-[1]+[3]-[2]-[3]+[1]=0!
$$

Lattice p-forms

Continuum p-forms \rightarrow each p-simplex $C_{p} \equiv\left[a_{0}, \ldots a_{p}\right]$ carries a lattice field $\phi\left(C_{P}\right)$:

$$
\delta \phi\left(C_{p}\right)=\sum_{C_{p-1}} I\left(C_{p}, C_{p-1}\right) \phi\left(C_{p-1}\right)
$$

where $I\left(C_{p}, C_{p-1}\right)$ is zero unless C_{p-1} lies in boundary of C_{p} when it is ± 1 according to orientation

Similarly co-boundary operator $\bar{\delta}$:

$$
\begin{gathered}
\bar{\delta} \phi\left(C_{p}\right)=\sum_{C_{p+1}} I\left(C_{p+1}, C_{p}\right)^{T} \phi\left(C_{p+1}\right) \\
\text { Note } \delta^{2}=\bar{\delta}^{2}=0
\end{gathered}
$$

Lattice Kähler-Dirac equation

$$
\begin{aligned}
\phi_{p}(x) & \rightarrow \phi\left(C_{p}\right) \\
\delta & \rightarrow d^{\dagger} \\
\bar{\delta} & \rightarrow d
\end{aligned}
$$

$$
(\delta-\bar{\delta}-m) \Phi=0 \quad \text { with } \Phi=\left(\phi\left(C_{0}\right), \phi\left(C_{1}\right), \ldots \Phi\left(C_{D}\right)\right.
$$

- Discrete Laplacian $\delta \bar{\delta}+\bar{\delta} \delta$.
- Exact zero modes of $\delta-\bar{\delta}$ match those of $d-d^{\dagger}$. Given by ranks of homology groups.
- No fermion doubling! Continuum limit describes $2^{D / 2}$ Dirac fermions just like continuum theory.
- $U_{\Gamma}(1)$ remains exact symmetry of lattice theory
- Can include arbitrary random triangulations with any topology and even non-orientable triangulations

Special case - staggered fermions

Decompose on p-cells of regular hypercubic lattice Introduce second lattice with $1 / 2$ lattice spacing

$$
\chi\left(x+\hat{\mu}_{1}+\hat{\mu}_{2}+\ldots+\hat{\mu}_{\rho}\right)=\phi_{\left[\mu_{1} \ldots \mu_{p}\right]}(x)
$$

Form discrete Kähler-Dirac matrix field using

$$
\begin{aligned}
\Psi(x) & =\sum \chi\left(\mathbf{x}+\hat{\mu}_{1}+\ldots+\hat{\mu}_{p}\right) \gamma^{\mu_{1}} \cdots \gamma^{\mu_{D}} \\
& =\sum_{\mathrm{b}_{\mathrm{i}}=0,1 \text { in hyp cube }} \chi(x+b) \gamma^{x+b} \quad \gamma^{x}=\gamma_{1}^{x_{1}} \gamma_{2}^{x_{2}} \ldots \gamma_{D}^{x_{D}}
\end{aligned}
$$

Plug into $\sum \operatorname{Tr}(\bar{\Psi} \Delta \Psi)$ and do trace \rightarrow

$$
S=\sum_{x, \mu} \eta_{\mu}(x) \bar{\chi}(x) \Delta_{\mu} \chi(x) \quad \text { with } \quad \eta_{\mu}(x)=(-1)^{\sum_{i}^{\mu-1} x_{i}}
$$

Discrete Kähler-Dirac on regular lattice = staggered action!

$$
\Gamma \rightarrow \epsilon\left(x_{1}+\ldots x_{D}\right)-\text { site parity }
$$

Gravitational anomaly for Kähler-Dirac fermions

Work on lattice in d dims

Under $(\Phi, \bar{\Phi}) \rightarrow e^{i \alpha \Gamma}(\Phi, \bar{\Phi})$

$$
\delta S_{\mathrm{KD}}(\Phi, \Phi)=0
$$

But measure not invariant

$$
\begin{gathered}
D \Phi D \bar{\Phi}=\prod_{p} d \phi_{p} d \bar{\phi}_{p} \rightarrow e^{2 i N_{0} \alpha} e^{-2 i N_{1} \alpha} . . e^{2 i(-1)^{d} N_{d} \alpha} \prod_{p} d \phi_{p} d \bar{\phi}_{p} \\
=e^{2 i \chi \alpha} D \bar{\Phi} D \Phi \quad \chi \equiv \text { Euler }
\end{gathered}
$$

Anomaly in even dimensions
Compactify $R^{2 n} \rightarrow S^{2 n}$. Breaks $U(1) \rightarrow Z_{4}$.
Note
Example of QM anomaly for finite number dof ...

$$
\sum_{n}\left\langle\phi_{n}\right| \Gamma\left|\phi_{n}\right\rangle=n_{+}-n_{-}=\operatorname{Index}(K)=\chi
$$

Consequences

Global $U(1)$ symmetry of Kähler-Dirac field broken to Z_{4}. Prohibits mass terms but allows for eg. four fermion ops. in $S_{\text {eff }}$.

Theories of reduced Kähler-Dirac fermions with $U(1)$ symmetries cannot be consistently coupled to gravity - breakdown in gauge invariance
Analog: ABJ anomaly for Dirac implies cannot couple single Weyl fields to $U(1)$ gauge field

Can think of anomaly as 't Hooft anomaly for lattice fermions in flat space that arises when I try to couple them to gravity

't Hooft anomalies

Represent an obstruction to gauging a global symmetry. Can be seen by coupling to classical background field Non-zero anomaly coeff in U.V $\xrightarrow{\text { RG invariant }}$ physics of I.R nontrivial:

- Massless (composite) fermions (CFT)
- Goldstone bosons from SSB
- TQFT

In particular:

Cannot gap all states in I.R (symmetric mass generation) unless all 't Hooft anomalies cancel

Are there any (more) 't Hooft anomalies for Kähler-Dirac ?

Try to gauge $Z_{4} \ldots$
Typical term in action:

$$
\bar{\phi}\left(C_{p}\right) I\left(C_{p}, C_{p-1}\right) \phi\left(C_{p-1}\right)
$$

Under local Z_{4} :

$$
\phi\left(C_{p}\right) \rightarrow e^{i \frac{\pi}{2} \Gamma n\left(C_{p}\right)} \phi\left(C_{p}\right) \quad n\left(C_{p}\right)=0,1,2,3
$$

To keep invariant need to promote $I\left(C_{p}, C_{p-1}\right)$ to Z_{4} gauge field $U\left(C_{p}, C_{p-1}\right)$ transforming as

$$
e^{-i \frac{\pi}{2} \Gamma n\left(C_{p}\right)} U\left(C_{p}, C_{p-1}\right) e^{-i \frac{\pi}{2} \Gamma n\left(C_{p-1}\right)}
$$

Measure ? $\int d \phi\left(C_{p}\right) d \bar{\phi}\left(C_{p}\right)$ NOT invariant \rightarrow 't Hooft anomaly!
Cancels for multiples of 2 flavors

This can also be seen from spectral flow of Kähler-Dirac fermions on non-orientable triangulations

Consequences

't Hooft anomalies for Kähler-Dirac fields cancelled for $N_{f}=2 k$
2 Kähler-Dirac $\equiv 4$ reduced fields
Yield $2^{D / 2+1}$ Dirac or $2^{D / 2+2}$ Majorana fermions in continuum limit

Agrees with results for gapping boundary fermions in topological superconductors and cancellation of discrete anomalies of Weyl/Majorana fermions in variety dims

$D=1$	Time reversal $T^{2}=1$	8 Majorana	4 RKD
$D=2$	Chiral fermion parity	8 Majorana/Weyl	4 RKD
$D=3$	Time reversal $T^{2}=-1$	16 Majorana	4 RKD
$D=4$	Spin- Z_{4} symmetry	16 Majorana/Weyl	4 RKD

Explains observations of SMG for certain interacting staggered fermions in 4d

SMG for 2 staggered fermions in 4d

Higgs-Yukawa model: $S=\sum \chi(\eta . \Delta) \chi+\frac{1}{2} \sigma^{2}-\kappa \sigma \square \sigma+G \sigma \chi \chi$

Evidence for direct, continuous phase transition between massless and massive phases with no symmetry breaking (S.C et al. PRD98 (2018) 114514)

Summary so far

- Kähler-Dirac fermions admit gravitational anomalies which survive discretization. Break $U(1) \rightarrow Z_{4}$ in even dims
- 't Hooft anomaly for Z_{4} cancels for multiples of 2 Kähler-Dirac . Yields 16 Majorana in flat 4d space - necessary condition for symmetric mass generation (SMG). Explains phase diagram of certain staggered fermion models.

Notice - Kähler-Dirac have no γ_{5} anomalies.

What is SMG good for?

Use SMG to gap mirrors in lattice models targeting chiral gauge theories ..?

Minimal Kähler-Dirac mirror model - continuum

Start: theory of full Kähler-Dirac fields with exact Z_{4} symmetry. Decompose into reduced fields $\left(\Psi_{-}, \Psi_{+}\right)$. Treat Ψ_{+}as mirror. Need at least 4 copies for SMG

Consider "light" fields ψ_{-}in (Euclidean) chiral basis $\gamma_{\mu}=\left(\begin{array}{cc}0 & \sigma_{\mu} \\ \sigma_{\mu} & 0\end{array}\right)$ where $\sigma_{\mu}=\left(I, \sigma_{i}\right)$. Continuum matrix form in flat space

$$
\psi_{-}=\left(\begin{array}{cc}
0 & \psi_{R} \\
\psi_{L} & 0
\end{array}\right)
$$

L and R handed doublet of Weyl fields transforming as $(1,2)$ and $(2,1)$ under an $S U(2) \times S U(2)$ flavor symmetry.

$$
4 \text { copies - additional } S U(4) \text { symmetry. }
$$

Replace $\psi_{R}=i \sigma_{2} \psi_{L}^{*}$.

$$
\text { Get reps }(\mathbf{4}, \mathbf{2}, \mathbf{1}) \oplus(\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2}) \text { - Pati-Salam reps ! }
$$

Pati-Salam - quick summary

> leptons (e, ν) as fourth color left-right symmetric weak interaction Symmetry: $S U(4) \otimes S U_{L}(2) \otimes S U_{R}(2)$

One generation:

$$
\left(\begin{array}{llll}
u_{r} & u_{b} & u_{s} & \nu \\
d_{r} & d_{b} & d_{g} & e
\end{array}\right)_{L} \oplus\left(\begin{array}{llll}
u_{r}^{c} & u_{b}^{c} & u_{s}^{c} & \nu^{c} \\
d_{r}^{c} & d_{b}^{c} & d_{g}^{c} & e^{c}
\end{array}\right)_{L}
$$

Subsequently $S U(4) \rightarrow S U(3)$ and $S U_{L}(2) \otimes S U_{R}(2) \rightarrow S U_{L}(2)$

$$
(4,2,1) \rightarrow(3,2)_{\frac{1}{6}} \oplus(1,2)_{-\frac{1}{2}} q_{L} \text { and } I_{L}
$$

$(\overline{4}, 1,2) \rightarrow(\overline{3}, 1)_{\frac{1}{3}} \oplus(\overline{3}, 1)_{-\frac{2}{3}} \oplus(1,1)_{1} \oplus(1,1)_{0} d^{c}, u^{c}, e^{c}$ and ν^{c} 1 family of SM !
need eg GUT scale Higgs in $(4,1,2)$ rep. to do this

Gapping mirrors

Add Z_{4} symmetric four fermion interactions in mirror sector. No effect on Pati-Salam fields

$$
\frac{G^{2}}{2} \int d^{4} x \epsilon_{a b c d}\left[\operatorname{tr}\left(\bar{\Psi}_{-}^{a} \bar{\Psi}_{-}^{b}\right) \operatorname{tr}\left(\bar{\Psi}_{-}^{c} \bar{\Psi}_{-}^{d}\right)+\operatorname{tr}\left(\Psi_{+}^{a} \Psi_{+}^{b}\right) \operatorname{tr}\left(\Psi_{+}^{c} \Psi_{+}^{d}\right)\right]
$$

Better: gauge $\operatorname{SU}(4)$ of mirror sector and use confinement to generate four fermion condensate + massive hadrons

Notice: mirror sector fields do not couple to Pati-Salam except gravitationally. Composite dark matter ?

Chiral lattice theory

Replace continuum Kähler-Dirac field by staggered field χ.

$$
\begin{aligned}
& S=\sum_{x, \mu} \eta_{\mu}(x)\left[\bar{\chi}_{+} \Delta_{\mu} \chi_{-}+\bar{\chi}_{-} \Delta_{\mu}^{c} \chi_{+}\right]+ \\
& G \sum_{x} \hat{\phi}_{a b}\left[\bar{\chi}_{-}^{a} \bar{\chi}_{-}^{b}+\chi_{+}^{a} \chi_{+}^{b}\right]+\frac{1}{2} \sum_{x} \hat{\phi}_{a b}^{2}
\end{aligned}
$$

with

$$
\hat{\phi}_{a b}=\frac{1}{2}\left(\phi_{a b}+\frac{1}{2} \epsilon_{a b c d} \phi_{c d}\right)
$$

and

$$
\Delta_{\mu}^{c} \chi_{+}(x)=U_{\mu}(x) \chi_{+}(x+\mu)-U^{\dagger}(x-\mu) \chi_{+}(x-\mu)
$$

Continuum limit

Sixteen free Weyl fermions in PS rep. of global $S U(4) \times S U(2) \times S U(2)$ symmetry
Gapped mirror sector with $S U(4)$ invariant four fermion condensate + heavy $S U(4)$ hadrons

Conclusions

- Possible to build mirror models using (lattice) Kähler-Dirac fields and 「. Anomaly cancellation conditions allow for SMG in mirror sector.
- Simplest model: remaining light fields \rightarrow Pati-Salam. Mirror sector as composite dark matter?
- In continuum limit expect restoration of global Pati-Salam symmetries. Gauging $S U(4)$ easy but $S U(2) \times S U(2)$ broken on lattice - only $Z_{2} \times Z_{2}$ subgroup exact. Generated by shift symmetries ... gauge ??
- Sign problems for (gauged) reduced Kähler-Dirac fermions

Thanks!

Bard's take on lattice fermions

Lattice fermion doubling,
A curse and a blessing,
A problem to solve,
A mystery to unravel.
The doubling of fermions,
A consequence of the Nielsen-Ninomiya theorem,
A no-go theorem in lattice field theory,
A blow to the hopes of simulating chiral fermions on a lattice.
But the doubling of fermions is also a blessing,
A way to study the chiral anomaly,
A way to test the limits of lattice field theory,
A way to push the boundaries of our understanding of the fundamental particles of nature.
The doubling of fermions is a problem to solve,
A mystery to unravel,
A challenge to overcome,
A puzzle to piece together.

ChatGPT's ..

In the world of physics, there's a type of dance, A quantum waltz, where fermions prance,
They move in a grid, a lattice so fine,
And in their steps, the laws of physics align. Staggered fermions, they lead the way,
Their spins and charges, in perfect array,
They move in pairs, one up, one down, A dance so precise, it astounds.
And in their wake, a Kahler-Dirac field, A force so strong, it refuses to yield, It guides their movements, with a quantum touch, A dance so elegant, it's almost too much.
The Kahler-Dirac, it weaves a lattice so pure, A fabric of space, where fermions endure, And the staggered fermions, they glide and they spin A cosmic ballet, where beauty begins.
But there's more to this dance, than meets the eye, For there are also Kahler-Dirac fermions, who comply
They move in a different way, with a different beat, Their dance so unique, it's hard to compete.
The Kahler-Dirac fermions, they move in fours, Two up, two down, their dance floor, They stagger too, but in a different way, A quantum rhythm, they proudly display. And in their dance, a connection is revealed, A cosmic symmetry, that cannot be concealed, The staggered and Kahler-Dirac fermions, they unite, A quantum duet, that shines so bright. So let us marvel, at this cosmic dance, Where particles move, in a quantum trance, And let us ponder, the mysteries untold, Of staggered and Kahler-Dirac fermions, so bold.

