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Motivation

Folklore
@ Anomalies cannot be realized on lattice...
© Fermions cannot be given masses without breaking symmetries
© Hard (impossible ?) to put chiral gauge theories on lattice.

Kéhler-Dirac fermions offer a counter example to at least 2 of these
statements
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Plan

Plan
@ Kahler-Dirac and relation to Dirac. Discretization on curved
space.
@ New gravitational anomalies — survive discretization.
@ Related 't Hooft anomalies place constraints on IR behavior - in

particular fermions can be gapped without breaking symmetries
(SMG)

@ Construct mirror models with Kahler—Dirac fermions. Simplest
anomaly free model realizes Pati-Salam GUT. Lattice realization ?J
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Kahler—Dirac equation

An alternative solution to the problem of square rooting the Laplacian:
Kahler-Dirac equation

(K—m)® =0 where K=d—df

Notice: K? = —dd' — dfd =0
Ké&hler-Dirac field ® = (¢, ¢, dpvy - - - )-

Ex. 2d

"¢, —mp =0
8,u¢ + 6V¢uu - m¢u =0
a,u¢1/ - 6V¢ll, - m(z)‘uy = 0
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Connection to Dirac

Form matrix

D
m_n n
V= Z Z ¢n1...np(x)711722 T "Ypp

p=0 n;
egin 2d:

V = ¢l + ¢joj + ¢pr120102
In flat space can show
(70 —m)¥ =0
Kahler—Dirac field describes 2P/2 degenerate Dirac fermions !

Action: [ Tr W(y*9,, — m)V)
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Kahler-Dirac in curved space...

Curved space
(d —d" — m)® =0 unchanged

Kahler—Dirac fermions can be formulated on any smooth manifold.

No need for spin structure
No need for spin connection/vielbein formalism
very different from Dirac

Locally K&hler-Dirac decomposes into 2°/2 Dirac.
But global properties of K differ from @
eg. K has zero modes on SP
Expect corrections ~ —avelength

radius of curvature
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A U(1) symmetry for K&hler-Dirac fermions
Kahler-Dirac Action:

D
/<DK<D = /de 9> Bp[(K — m)d,

p=0

Operator I : ¢,y — (—=1)P Br. o
Key property {I',K}+ =0

Generates exact U(1) symmetry of massless action

® — el
P — pelol

Matrix rep W - 75Wrs twisted chiral symmetry J
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Reduced Kahler-Dirac (RKD) fermions
Define: ¢y =1 (1 £ o
if m=0:

Skp = /¢+K¢ —I—E,KCDJF — Srkp = /¢+K¢

Analogous to decomposition of massless Dirac field into 2 Weyl fields )

o7
Introducing ¥ = ¢+

0 K
SRKD:/\I!TIC\U /C:(_KT o>

Reduced fields naturally massless

6_¢+ E CD_(D_ ES $+$_ &S 0
Flat space continuum limit: 22/2=1 Dirac or 2P/2 Majorana
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|
bouridary

p-simplex CP = [ay, . . ., ap|

Boundary operator d: é[ag . .. ap] = 37 o (—1) [@ ... & ... ap]
where 3; indicates that vertex is omitted.
€g

o([142] + [123]) = [42] — [12] + [14] + [23] — [13] + [12]
= [42] + [23] + [31] + [14]

Note:
62([142] + [123]) = [2] — [4] + [4] - [1] + [3] — [2] - [3] + [1] = O!




Lattice p-forms

Continuum p-forms — each p-simplex C, = [ao, . . . ap| carries a
lattice field ¢(Cp):

o) =3 I(Co. Co-1)é(Cp1)

Cp_1
where /(Cp, Cp_1) is zero unless Cp_4 lies in boundary of Cp
when it is +1 according to orientation
Similarly co-boundary operator 6:

#(Co) = 3 (Cps1,Cp) 6(Cpi)

Cp 1

Note 52 =6 =0
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Lattice Kahler—Dirac equation

¢p(x) — ¢(Cp)
§— df
6 —d

(6 —0—md =0 with® = (¢(Cp),d(Cy),...d(Cp)

@ Discrete Laplacian 65 + 84.

@ Exact zero modes of § — 6 match those of d — df. Given by ranks
of homology groups.

@ No fermion doubling ! Continuum limit describes 2°/2 Dirac
fermions just like continuum theory.

@ Ur(1) remains exact symmetry of lattice theory

@ Can include arbitrary random triangulations with any topology and

even non-orientable triangulations
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Special case - staggered fermions
Decompose on p-cells of regular hypercubic lattice
Introduce second lattice with 1/2 lattice spacing

X(X + la1 + /Il2 +.+ ﬂp) = ¢[u1...,up](x)
Form discrete Ké&hler—Dirac matrix field using
V(X)) = x(XA+ fig + .o A fip)y™ AP0

= ) x(XHDY TP = A
b;=0,1 in hyp cube

Plug into " Tr(WAWV) and do trace —

S= ZW(X)Y(X)AHX(X) with  7,(x) = (_1)2#71 X;

Discrete Kahler—Dirac on regular lattice = staggered action !
I — e(Xq + ... Xp) — site parity
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Gravitational anomaly for Kéhler—Dirac fermions

Work on lattice in d dims

Under (¢, ®) — eT(d, ®)
5Skp(®, ) =0
But measure not invariant

DODd — Hp d(bpdap _) eZiTae—ZiMa”62i(—1)dea Hp d¢pd$p
= e?X2DdDd y = Euler

Anomaly in even dimensions
Compactify R?" — S2. Breaks U(1) — Z4.

Note

Example of QM anomaly for finite number dof ...
Zn (on| T |¢pn) = Ny — n_ = Index(K) = x
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Consequences

Global U(1) symmetry of Kahler-Dirac field broken to Z. Prohibits
mass terms but allows for eg. four fermion ops. in Sg.

Theories of reduced Kéhler—Dirac fermions with U(1) symmetries
cannot be consistently coupled to gravity — breakdown in gauge
invariance
Analog: ABJ anomaly for Dirac implies cannot couple single Weyl
fields to U(1) gauge field

Can think of anomaly as 't Hooft anomaly for lattice fermions in flat
space that arises when | try to couple them to gravity
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't Hooft anomalies

7

\.

Represent an obstruction to gauging a global symmetry.
Can be seen by coupling to classical background field
Non-zero anomaly coeff in U.V "¢ ™"*" physics of LR non-
trivial:
@ Massless (composite) fermions (CFT)
@ Goldstone bosons from SSB

e TQFT

In particular:
Cannot gap all states in I.R (symmetric mass generation) unless all ’t

Hooft anomalies cancel

Are there any (more) 't Hooft anomalies for Kahler—Dirac ?
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Try to gauge Z; ...

Typical term in action:

&(Cp)I(Cp, Cp—1)d(Cp—1)
Under local Z4:
#(Cp) — €27 g(Cp) n(Cp) =0,1,2,3

To keep invariant need to promote /(Cp, Cp_1) to Z4 gauge field
U(Cp, Cyp—1) transforming as

e—i%rn(Cp) U(Cp, Cp_1)e—igrn(cp,1)
Measure ? [ d¢(Cp)d¢(Cp) NOT invariant — 't Hooft anomaly !

Cancels for multiples of 2 flavors

This can also be seen from spectral flow of Kahler—Dirac fermions on
non-orientable triangulations
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Consequences

't Hooft anomalies for K&hler—Dirac fields cancelled for Ny = 2k

2 Kéhler—Dirac = 4 reduced fields
Yield 20/2+1 Dirac or 2P/2+2 Majorana fermions in continuum limit

Agrees with results for gapping boundary fermions in topological
superconductors and cancellation of discrete anomalies of
Weyl/Majorana fermions in variety dims

D=1 | Time reversal T2 =1 8 Majorana 4 RKD
D=2 | Chiral fermion parity 8 Majorana/Weyl | 4 RKD
D=3 | Time reversal T?> = —1 16 Majorana 4 RKD
D=4 Spin-Z; symmetry 16 Majorana/Weyl | 4 RKD

Explains observations of SMG for certain interacting staggered
fermions in 4d
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SMG for 2 staggered fermions in 4d

Higgs-Yukawa model: S = > x(n.A)x + %02 — koldo + Goxx

L=8
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Evidence for direct, continuous phase transition between massless
and massive phases with no symmetry breaking (S.C et al. PRD98
(2018) 114514)
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Summary so far

@ Kahler-Dirac fermions admit gravitational anomalies which
survive discretization. Break U(1) — Z; in even dims

@ 't Hooft anomaly for Z; cancels for multiples of 2 Kahler—Dirac .
Yields 16 Majorana in flat 4d space — necessary condition for
symmetric mass generation (SMG). Explains phase diagram of
certain staggered fermion models.

Notice - Kdhler-Dirac have no 75 anomalies.

What is SMG good for ?

Use SMG to gap mirrors in lattice models targeting chiral gauge
theories ..?

19/26



Minimal Kahler—Dirac mirror model - continuum

Start: theory of full K&hler-Dirac fields with exact Z, symmetry.
Decompose into reduced fields (W_, V). Treat ¥ as mirror.
Need at least 4 copies for SMG

Consider “light" fields W_ in (Euclidean) chiral basis v, = ( 0 ou )

where ¢, = (/,0;). Continuum matrix form in flat space

0
Y- ( UL %R >
L and R handed doublet of Weyl fields transforming as (1,2) and (2, 1)
under an SU(2) x SU(2) flavor symmetry.
4 copies — additional SU(4) symmetry.
Replace g = io21)].
Get reps (4,2,1) @ (4,1, 2) - Pati-Salam reps !
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Pati-Salam - quick summary

left-right symmetric weak interaction

leptons (e,v) as fourth color
Symmetry: SU(4) ® SU,(2) ® SUR(2) |

One generation:
( U Up Us v ) - < ué ug ug Ve )
cjr Cib Cﬂg e L Cﬂf Cig Cﬂg fac L

Subsequently SU(4) — SU(3) and SU,(2) ® SUg(2) — SU.(2)
(4,2,1) — (3,2)% & (1,2)_% g. and
(41,2) = B 1); & @)z &(1,1)1®(1,1)0 d°u° e° and v°
1 family of SM !

w|

need eg GUT scale Higgs in (4,1, 2) rep. to do this
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Gapping mirrors

Add Z; symmetric four fermion interactions in mirror sector. No effect
on Pati-Salam fields

G? 4 —a—b —C —d b d
2/d X €abod [tr(w_\u_)tr(w_w_)+tr(wa+w+)tr(wi\u+)]

Better: gauge SU(4) of mirror sector and use confinement to
generate four fermion condensate + massive hadrons

Notice: mirror sector fields do not couple to Pati-Salam except
gravitationally. Composite dark matter ?
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Chiral lattice theory

Replace continuum Kéahler-Dirac field by staggered field .

S=> mu(x) [XpAux— +X-A%x+] +
X,

Y dan [PX0 188 + 5 2
X X

with 1 1
<Z)ab = § <¢ab + 2€abcd¢cd>
and

A (X) = U (x)xa (X + ) = UF(x = ) (x — )

Continuum limit

Sixteen free Weyl fermions in PS rep. of global

SU(4) x SU(2) x SU(2) symmetry
Gapped mirror sector with SU(4) invariant four fermion condensate +
heavy SU(4) hadrons
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Conclusions

@ Possible to build mirror models using (lattice) Kahler—Dirac fields
and I'. Anomaly cancellation conditions allow for SMG in mirror
sector.

@ Simplest model: remaining light fields — Pati-Salam. Mirror sector
as composite dark matter ?

@ In continuum limit expect restoration of global Pati-Salam
symmetries. Gauging SU(4) easy but SU(2) x SU(2) broken on
lattice — only Z» x Z> subgroup exact. Generated by shift
symmetries ... gauge ??

@ Sign problems for (gauged) reduced Kéhler—Dirac fermions

Thanks !
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Bard’s take on lattice fermions

Lattice fermion doubling,
A curse and a blessing,
A problem to solve,

A mystery to unravel.

The doubling of fermions,

A consequence of the Nielsen-Ninomiya theorem,

A no-go theorem in lattice field theory,

A blow to the hopes of simulating chiral fermions on a lattice.

But the doubling of fermions is also a blessing,

A way to study the chiral anomaly,

A way to test the limits of lattice field theory,

A way to push the boundaries of our understanding of the fundamental particles of nature.

The doubling of fermions is a problem to solve,
A mystery to unravel,

A challenge to overcome,

A puzzle to piece together.
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ChatGPT's ..

In the world of physics, there's a type of dance,

A quantum waltz, where fermions prance,

They move in a grid, a lattice so fine,

And in their steps, the laws of physics align.
Staggered fermions, they lead the way,

Their spins and charges, in perfect array,

They move in pairs, one up, one down,

A dance so precise, it astounds.

And in their wake, a Kahler-Dirac field,

A force so strong, it refuses to yield,

It guides their movements, with a quantum touch,
A dance so elegant, it's almost too much.

The Kahler-Dirac, it weaves a lattice so pure,

A fabric of space, where fermions endure,

And the staggered fermions, they glide and they spin
A cosmic ballet, where beauty begins.

But there's more to this dance, than meets the eye,
For there are also Kahler-Dirac fermions, who comply
They move in a different way, with a different beat,
Their dance so unique, it's hard to compete.

The Kahler-Dirac fermions, they move in fours,
Two up, two down, their dance floor,

They stagger too, but in a different way,

A quantum rhythm, they proudly display.

And in their dance, a connection is revealed,

A cosmic symmetry, that cannot be concealed,
The staggered and Kahler-Dirac fermions, they unite,
A quantum duet, that shines so bright.

So let us marvel, at this cosmic dance,

Where particles move, in a quantum trance,

And let us ponder, the mysteries untold,|

Of staggered and Kahler-Dirac fermions, so bold.
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