(Un)welcome intruders: Getting your nucleus to come out of its shell (in *ab initio* calculations)

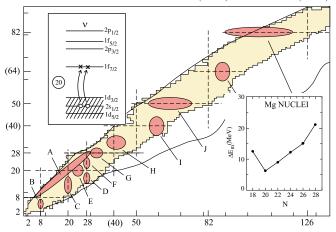
Mark A. Caprio

Department of Physics and Astronomy University of Notre Dame

> Institute for Nuclear Theory University of Washington Seattle, WA March 12, 2024

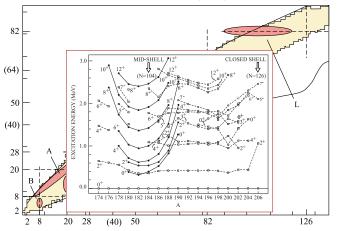
Intruder structure (and shape coexistence)

"[T]he intruder configuration ... corresponds to a more correlated state compared to the $0\hbar\omega$ states. Thus, low-lying 2p-2h intruder configurations are favored only at and near to the ... shell closure." Normal $(0\hbar\omega)$ vs. intruder $(2\hbar\omega)$



Intruder structure (and shape coexistence)

"[T]he intruder configuration ... corresponds to a more correlated state compared to the $0\hbar\omega$ states. Thus, low-lying 2p-2h intruder configurations are favored only at and near to the ... shell closure." Normal $(0\hbar\omega)$ vs. intruder $(2\hbar\omega)$



E0 transition as signature of shape mixing

"Transitions with E0 components are a model-independent signature of the mixing of configurations with different mean-square charge radii."

K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).

For *unmixed* ("pure") configurations $|\psi_1^{(0)}\rangle$ and $|\psi_2^{(0)}\rangle$... *Monopole moments*

$$\begin{split} M_1 &\equiv \langle \psi_1^{(0)} | \mathcal{M}(E0) | \psi_1^{(0)} \rangle = A r_1^2 \quad M_2 \equiv \langle \psi_2^{(0)} | \mathcal{M}(E0) | \psi_2^{(0)} \rangle = A r_2^2 \\ & \langle \psi_2^{(0)} | \mathcal{M}(E0) | \psi_1^{(0)} \rangle = 0 \end{split}$$

For *mixed* configurations $|\psi_1\rangle$ and $|\psi_2\rangle$... Mixing angle θ

$$\langle \psi_1 | \mathcal{M}(E0) | \psi_2 \rangle = \cos \theta \sin \theta \left[\langle \psi_2^{(0)} | \mathcal{M}(E0) | \psi_2^{(0)} \rangle - \langle \psi_1^{(0)} | \mathcal{M}(E0) | \psi_1^{(0)} \rangle \right]$$

$$= \frac{1}{2} (\sin 2\theta) A(r_2^2 - r_1^2)$$

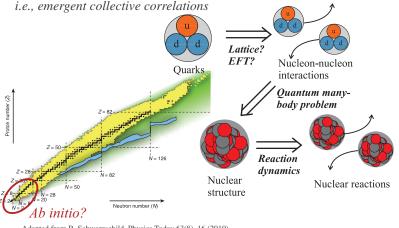
$$| \psi_2^{(0)} \rangle$$

$$| \psi_2^{(0)} \rangle$$
Pure states
$$| \psi_1^{(0)} \rangle$$
Mixed states

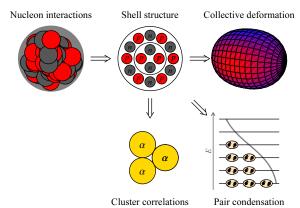
Goal of *ab initio* nuclear structure

First-principles understanding of nature Nuclei from QCD

Can we understand the origin of "simple patterns in complex nuclei"?



Adapted from B. Schwarzschild, Physics Today 63(8), 16 (2010).



Many-particle Schrödinger equation

$$\sum_{i=1}^{A} \left(-\frac{\hbar^2}{2m_i} \nabla_i^2 \right) \Psi + \frac{1}{2} \sum_{i,j=1}^{A} V(|\mathbf{r}_i - \mathbf{r}_j|) \Psi = \underline{E} \Psi$$

$$\Psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \dots, \mathbf{r}_A) = ?$$

Outline

- Rotation and shape coexistence from clustering
- Nuclear structure ab initio "No-core" approach
- Emergence of rotation Be isotopes
- Shape coexistence, E0 transitions & mixing ¹⁰Be, ¹⁴C

08			¹³ O	¹⁴ O	15 ^{1/2-}	¹⁶ O ⁰⁺
N 7			¹² N	13N	¹⁴ N	15N
C 6	⁹ C	¹⁰ C	11 ^{3/2-}	¹² C	13 ^{1/2-} C	14C 0+
B 5	⁸ B ²⁺	[⁹ B]	¹⁰ B ³⁺	¹¹ B	¹² B	13 ^{3/2-} B
Be 4	⁷ Be	[8Be]	⁹ Be	10Be	(11 Be)	(12Be)
Li 3	⁶ Li ¹⁺	⁷ Li	⁸ Li ²⁺	^{3/2-} ⁹ Li		¹¹ Li
•	3	4	5	6	7	8

Separation of rotational degree of freedom

Factorization of wave function $|\psi_{JKM}\rangle$ J = K, K + 1,...

$$|\phi_K\rangle$$
 Intrinsic structure $(K \equiv a.m. projection on symmetry axis)$

$$\mathcal{D}_{MK}^{J}(\vartheta)$$
 Rotational motion in Euler angles ϑ

Rotational energy

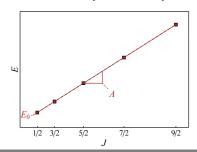
Coriolis (
$$K = 1/2$$
)

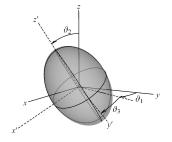
$$E(J) = E_0 + A[J(J+1) + a(-)^{J+1/2}(J+\frac{1}{2})]$$
 $A \equiv \frac{\hbar^2}{2\mathcal{J}}$

Rotational relations (Alaga rules) on electromagnetic transitions

$$B(E2; J_i \to J_f) \propto (J_i K20 | J_f K)^2 (eQ_0)^2$$
 $eQ_0 \propto \langle \phi_K | Q_{2,0} | \phi_K \rangle$

$$eQ_0 \propto \langle \phi_K | Q_{2,0} | \phi_K \rangle$$





e.g., D. J. Rowe, Nuclear Collective Motion: Models and Theory (World Scientific, Singapore, 2010).

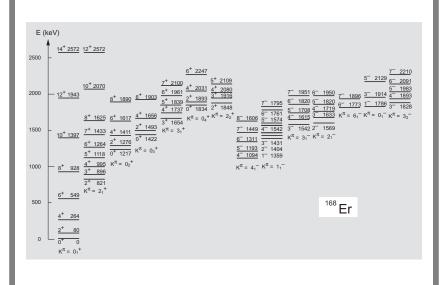


Figure from D. J. Rowe and J. L. Wood, Fundamentals of Nuclear Models: Foundational Models

M. A. Caprio, University of Notre Dame
(World Scientific, Singapore, 2010).

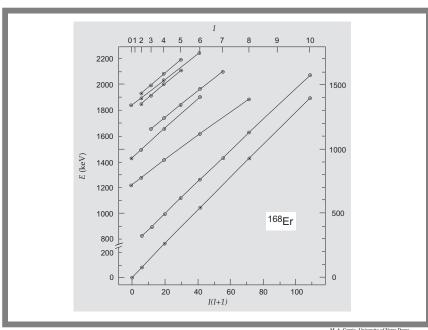
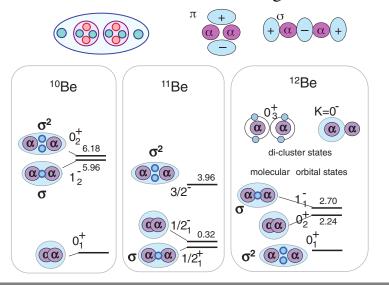
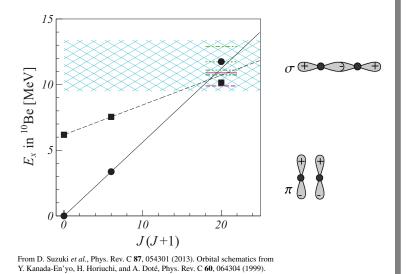


Figure from D. J. Rowe and J. L. Wood, Fundamentals of Nuclear Models: Foundational Models (World Scientific, Singapore, 2010).

Cluster molecular structure in light nuclei



Yrast and excited bands in ¹⁰Be



Outline

- Rotation and shape coexistence from clustering
- Nuclear structure ab initio "No-core" approach
- Emergence of rotation Be isotopes
- Shape coexistence, E0 transitions & mixing ¹⁰Be, ¹⁴C

_						
80			¹³ O	¹⁴ O	15 ^{1/2-}	¹⁶ O ⁰⁺
N 7			¹² N	13N	¹⁴ N	15N
C 6	⁹ C	¹⁰ C	¹¹ C	¹² C ⁰⁺	13 ^{1/2-} C	14C 0+
B 5	⁸ B ²⁺	[⁹ B]	¹⁰ B ³⁺	¹¹ B	¹² B	13 ^{3/2-} B
Be 4	(7Be)	[8Be]	⁹ Be	10Be	(11 Be)	(12Be)
Li 3	⁶ Li ¹⁺	^{3/2-} ⁷ Li	⁸ Li ²⁺	^{3/2-} ⁹ Li		^{3/2-} 11 Li
	3	4	5	6	7	8

Solution of Schrödinger equation in a basis

Hamiltonian

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x)$$

One particle in one dimension

Eigenproblem

$$\hat{H}\psi(x) = \underline{E}\psi(x)$$

Expand wave function in basis (unknown coefficients a_k)

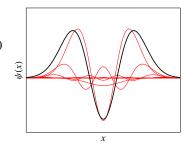
$$\psi(x) = \sum_{k=1}^{\infty} a_k \varphi_k(x)$$

Matrix elements of Hamiltonian

$$H_{ij} \equiv \langle \varphi_i | \hat{H} | \varphi_j \rangle = \int dx \, \varphi_i^*(x) \hat{H} \varphi_j(x)$$

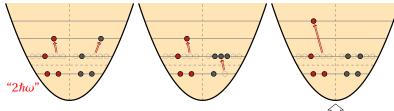
Reduces to matrix eigenproblem

$$\begin{pmatrix} H_{11} & H_{12} & \cdots \\ H_{21} & H_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \end{pmatrix} = \underbrace{E} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \end{pmatrix}$$



Many-body problem in an oscillator basis

No-core configuration interaction (NCCI) approach *a.k.a. no-core shell model (NCSM)*



Antisymmetrized product basis Slater determinants

Distribute nucleons over oscillator shells

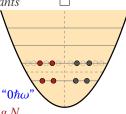
Organize basis by # oscillator excitations $N_{\rm ex}$

relative to lowest Pauli-allowed filling

$$N_{\rm ex} = 0, 2, \dots$$
 (i.e., "0 $\hbar\omega$ ", "2 $\hbar\omega$ ", ...)

Basis must be truncated: $N_{\rm ex} \le N_{\rm max}$

Convergence towards exact result with increasing N_{max} ...



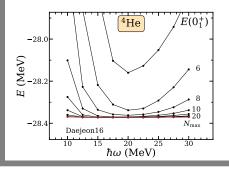
M. A. Caprio, University of Notre Dame

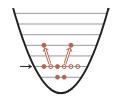
Results in finite space depend upon:

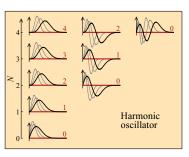
- Many-body truncation N_{max}
- Oscillator length b (or $\hbar\omega$)

$$b=\frac{(\hbar c)}{[(m_Nc^2)(\hbar\omega)]^{1/2}}$$

Convergence of results signaled by independence of $N_{\text{max}} \& \hbar \omega$





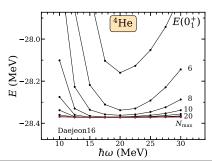


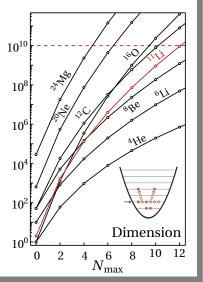
Results in finite space depend upon:

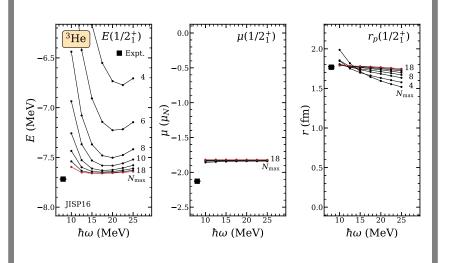
- Many-body truncation N_{max}
- Oscillator length b (or $\hbar\omega$)

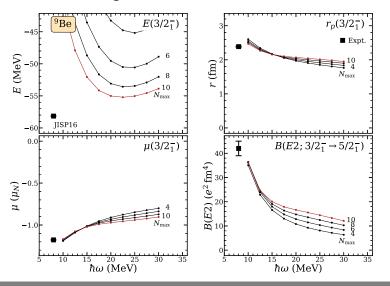
$$b=\frac{(\hbar c)}{[(m_Nc^2)(\hbar\omega)]^{1/2}}$$

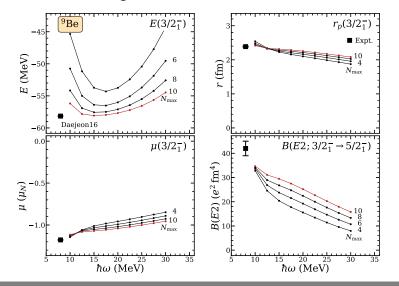
Convergence of results signaled by independence of $N_{\text{max}} \& \hbar \omega$





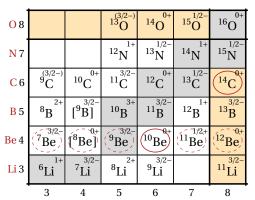




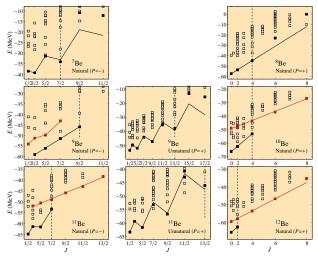


Outline

- Rotation and shape coexistence from clustering
- Nuclear structure ab initio "No-core" approach
- Emergence of rotation Be isotopes
- Shape coexistence, E0 transitions & mixing ¹⁰Be, ¹⁴C



Rotational bands in ^{7–12}Be from NCCI calculations



M. A. Caprio, P. Maris, and J. P. Vary, Phys. Lett. B 719, 179 (2013).
 P. Maris, M. A. Caprio, and J. P. Vary, Phys. Rev. C 91, 014310 (2015).

Separation of rotational degree of freedom

Factorization of wave function $|\psi_{JKM}\rangle$ J = K, K + 1,...

$$|\phi_K\rangle$$
 Intrinsic structure $(K \equiv a.m. projection on symmetry axis)$

$$\mathcal{D}_{MK}^{J}(\vartheta)$$
 Rotational motion in Euler angles ϑ

Rotational energy

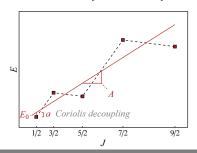
Coriolis (
$$K = 1/2$$
)

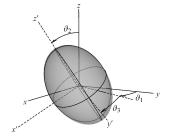
$$E(J) = E_0 + A[J(J+1) + a(-)^{J+1/2}(J+\frac{1}{2})]$$
 $A \equiv \frac{\hbar^2}{2J}$

Rotational relations (Alaga rules) on electromagnetic transitions

$$B(E2; J_i \to J_f) \propto (J_i K20 | J_f K)^2 (eQ_0)^2$$
 $eQ_0 \propto \langle \phi_K | Q_{2,0} | \phi_K \rangle$

$$eQ_0 \propto \langle \phi_K | Q_{2,0} | \phi_K \rangle$$





e.g., D. J. Rowe, Nuclear Collective Motion: Models and Theory (World Scientific, Singapore, 2010).

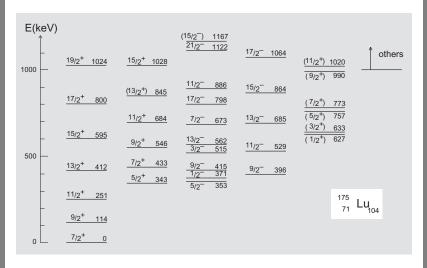
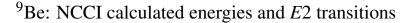
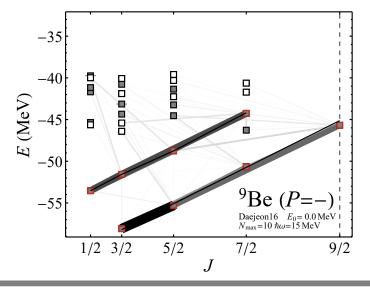


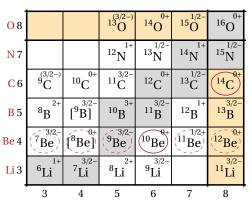
Figure from D. J. Rowe and J. L. Wood, Fundamentals of Nuclear Models: Foundational Models (World Scientific, Singapore, 2010).





Outline

- Rotation and shape coexistence from clustering
- Nuclear structure ab initio "No-core" approach
- Emergence of rotation Be isotopes
- Shape coexistence, E0 transitions & mixing ¹⁰Be, ¹⁴C



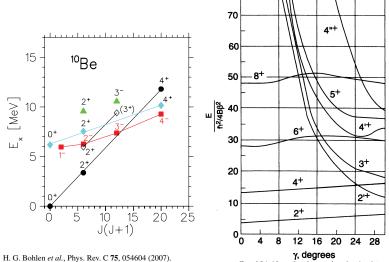
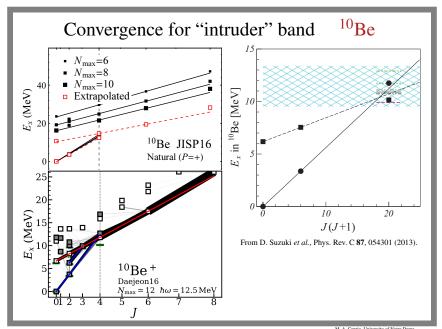
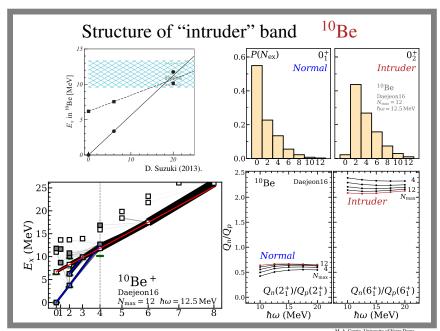


FIG. 6.24. Normal and anomalous levels of the triaxial rotor (Preston, 1975).

R. F. Casten, Nuclear Structure from a Simple Perspective, 2ed. (Oxford, 2000).

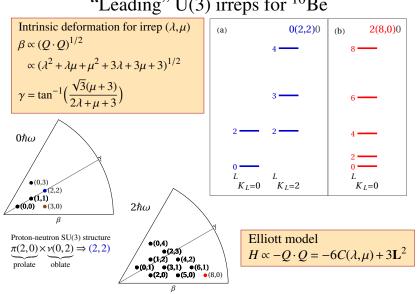


Extrapolation: Exponential in N_{max} (3-point); see P. Maris, J. P. Vary, and A. M. Shirokov, Phys. Rev. C 79, 014308 (2009).



See also: M. A. Caprio, P. J. Fasano, A. E. McCoy, P. Maris, and J. P. Vary, Bulg. J. Phys. 46, 455 (2019) (SDANCA19).

"Leading" U(3) irreps for ¹⁰Be



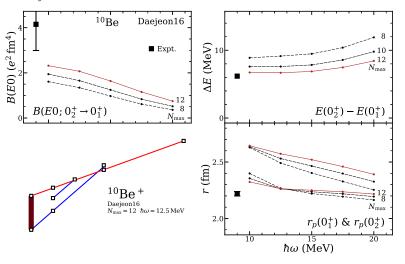
M. A. Caprio, University of Notre Dame M. A. Caprio, A. E. McCoy, P. J. Fasano, and T. Dytrych, Bulg. J. Phys. 49, 57 (2022) (SDANCA21).

_								
08					¹³ O	¹⁴ O	¹⁵ O	¹⁶ O
N 7					¹² N	¹³ N	¹⁴ N	¹⁵ N
C 6			⁹ C	¹⁰ C	¹¹ C	¹² C	¹³ C	¹⁴ C
B 5			⁸ B	[⁹ B]	¹⁰ B	¹¹ B	¹² B	¹³ B
N Be 4			⁷ Be	[8Be]	⁹ Be	10Be	¹¹ Be	¹² Be
Li 3			⁶ Li	⁷ Li	⁸ Li	⁹ Li		¹¹ Li
He 2	³ He	⁴ He		⁶ He		⁸ He		
H 1	² H	³ H						
,	1	2	3	4	5 J	6	7	8

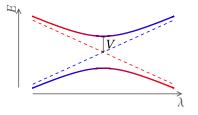
 ${f E0}=E0$ measured (0⁺ ightarrow0⁺) [T. Kibédi, A. B. Garnsworthy, and J. L. Wood, PPNP 123, 103930 (2022)]

Ab initio calculation of *E*0 transition in ¹⁰Be

Daejeon16 interaction



Two-state mixing



$$E_2^{(0)}$$
 Δ

$$E_1^{(0)}$$
 Pure states

$$H = \begin{pmatrix} E_1^{(0)}(\lambda) & 0 \\ 0 & E_2^{(0)}(\lambda) \end{pmatrix} + \begin{pmatrix} 0 & V \\ V & 0 \end{pmatrix} \qquad \begin{pmatrix} |\psi_1\rangle \\ |\psi_2\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} |\psi_1^{(0)}\rangle \\ |\psi_2^{(0)}\rangle \end{pmatrix}$$

Weak mixing (perturbative) limit... $V/\Delta^{(0)} \ll 1$

$$\theta \approx -\frac{\dot{V}}{2A^{(0)}}$$

Strong mixing (full) solution...

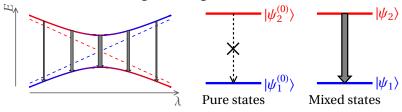
$$\tan 2\theta = -\frac{V}{A^{(0)}}$$

Level repulsion...

$$\Delta^2 = (\Delta^{(0)})^2 + V^2$$

M. A. Caprio, University of Notre Dame

Deducing mixing from transition



Suppose transition between pure states vanishes...

$$\langle \psi_2^{(0)}|\mathcal{M}|\psi_1^{(0)}\rangle=0$$

Then transition between mixed states comes from "mixed in" contribution from diagonal matrix elements...

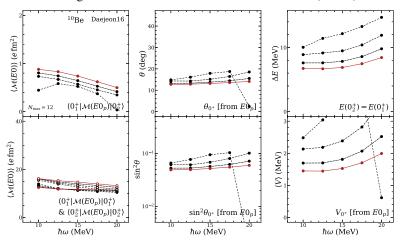
$$\langle \psi_1 | \mathcal{M} | \psi_2 \rangle = \frac{1}{2} (\sin 2\theta) \left[\langle \psi_2^{(0)} | \mathcal{M} | \psi_2^{(0)} \rangle - \langle \psi_1^{(0)} | \mathcal{M} | \psi_1^{(0)} \rangle \right]$$

Invert to deduce mixing angle from "mixed" matrix elements...

$$\tan 2\theta = \frac{2\langle \psi_2 | \mathcal{M} | \psi_1 \rangle}{\langle \psi_2 | \mathcal{M} | \psi_2 \rangle - \langle \psi_1 | \mathcal{M} | \psi_1 \rangle}$$

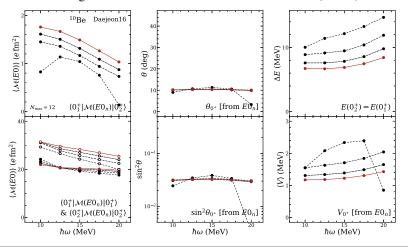
Mixing analysis of *ab initio* calculations for ¹⁰Be

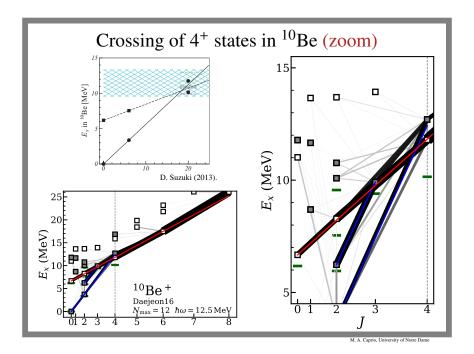
Assume $\langle 0\hbar\omega | \mathcal{M}(E0) | 2\hbar\omega \rangle$ vanishes for "pure" (unmixed) 0^+ states. Deduce mixing from matrix elements for NCCI calculated (mixed) states.



Mixing analysis of *ab initio* calculations for ¹⁰Be

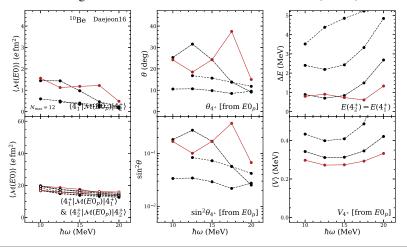
Assume $\langle 0\hbar\omega | \mathcal{M}(E0) | 2\hbar\omega \rangle$ vanishes for "pure" (unmixed) 0^+ states. Deduce mixing from matrix elements for NCCI calculated (mixed) states.





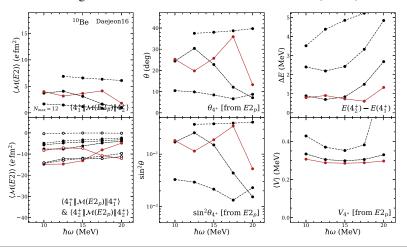
Mixing analysis of *ab initio* calculations for ¹⁰Be

Assume $\langle 0\hbar\omega | \mathcal{M}(E0) | 2\hbar\omega \rangle$ vanishes for "pure" (unmixed) 4⁺ states. Deduce mixing from matrix elements for NCCI calculated (mixed) states.

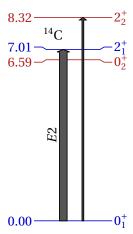


Mixing analysis of *ab initio* calculations for ¹⁰Be

Assume $\langle 0\hbar\omega | \mathcal{M}(E2) | 2\hbar\omega \rangle$ vanishes for "pure" (unmixed) 4⁺ states. Deduce mixing from matrix elements for NCCI calculated (mixed) states.



The E2 strength to the first 2^+ state(s) in 14 C?

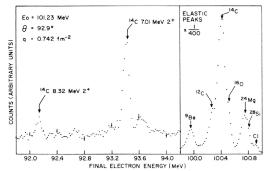


Electron Scattering from L & Lying 2⁺ States in ¹⁴C*

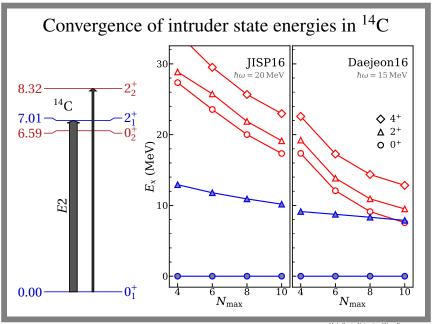
Hall Crannell, P.L. Hallowell, J.T. O'Brien,
J.M. Finn and F.J. Kline⁺

The Catholic University of America, Washington, D.C.

S. Penner, J.W. Lightbody, Jr., and S.P. Fivozinsky National Bureau of Standards, Washington, D.C.



H. Crannell *et al.*, Proc. Int. Conf. Nucl. Struct. Studies Using Electron Scattering and Photoreaction, Sendai, Japan (1972).

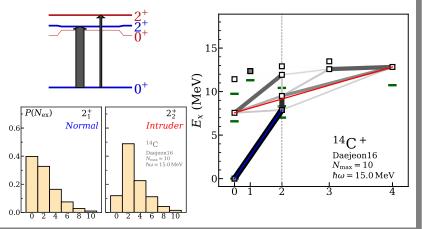


Low-lying intruder structure in ¹⁴C

Coexisting 0^+ - 2^+ sequences: $0\hbar\omega$ and $2\hbar\omega$

Very different "moments of inertia" $\Rightarrow 2^+$ states approach and mix

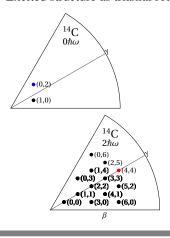
Excited structure as triaxial rotor? Elliott SU(3)

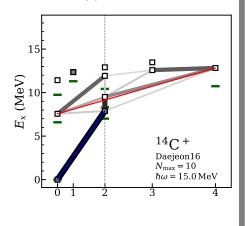


Low-lying intruder structure in ¹⁴C

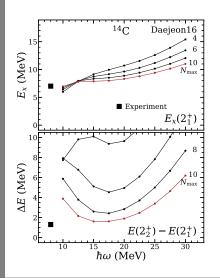
Coexisting 0^+ - 2^+ sequences: $0\hbar\omega$ and $2\hbar\omega$

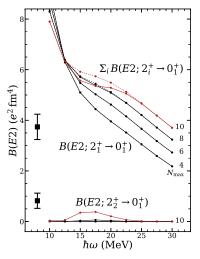
Very different "moments of inertia" \Rightarrow 2⁺ states approach and mix Excited structure as triaxial rotor? *Elliott* SU(3)





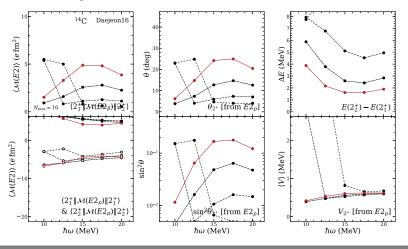
The E2 strength to the first 2^+ state(s) in 14 C?





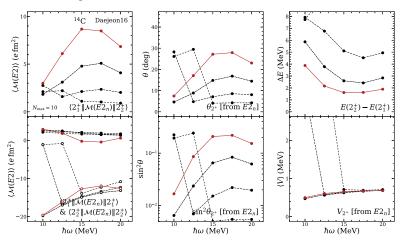
Mixing analysis of ab initio calculations for ¹⁴C

Assume $\langle 0\hbar\omega | \mathcal{M}(E2) | 2\hbar\omega \rangle$ vanishes for "pure" (unmixed) 2^+ states. Deduce mixing from matrix elements for NCCI calculated (mixed) states.



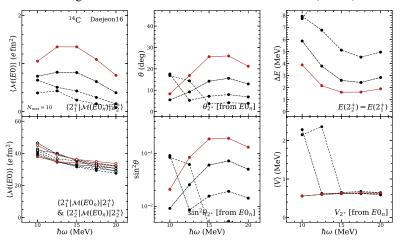
Mixing analysis of ab initio calculations for ¹⁴C

Assume $\langle 0\hbar\omega | \mathcal{M}(E2) | 2\hbar\omega \rangle$ vanishes for "pure" (unmixed) 2^+ states. Deduce mixing from matrix elements for NCCI calculated (mixed) states.



Mixing analysis of ab initio calculations for ¹⁴C

Assume $\langle 0\hbar\omega | \mathcal{M}(E0) | 2\hbar\omega \rangle$ vanishes for "pure" (unmixed) 2⁺ states. Deduce mixing from matrix elements for NCCI calculated (mixed) states.



Notes on emergent mixing in ¹⁰Be & ¹⁴C

Three related but distinct questions...

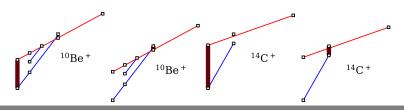
Are *truncated ab initio* calculations well-described by mixing? *If so, how "constant" is the mixing matrix element?*

Is the solution to the *untruncated* problem well-described by mixing? Predicted structure depends (at least in detail) on interaction

What is the actual structure (and mixing) in the *physical nucleus*?

For $0^+ \to 0^+$ ground-state transition (weak mixing)... Slowly converging "emergent" shape mixing matrix element ($\approx 1 \,\text{MeV}$).

For $J^+ \to J^+$ excited-state transition (strong mixing)... Robust convergence of "emergent" shape mixing matrix element ($\lesssim 0.5 \,\text{MeV}$).



Summary

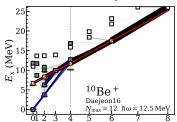
Different states in low-lying spectrum have different...

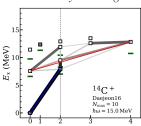
- Rotational moments of inertia Energy spacing within band
- Shell model character Normal $(0\hbar\omega)$ vs. intruder $(2\hbar\omega)$
- Shape/deformation & Elliott SU(3) symmetry

Intruders hard to converge, but tractable with soft interaction Daejeon16

Two-state mixing emerges in ab initio NCCI results...

- Can be transient (as energies cross) or persistent (at physical energies)
- Mixing matrix element extracted from normal-intruder transition
- $-B(E0;0^+ \rightarrow 0^+)$ depends on intruder radius Slowly convergent





Island of inversion at N = 8 (ab initio)

The intruder becomes the ground state...

- Parity inversion ¹¹Be
 J. Chen et al., Phys. Rev. C 100, 064314 (2019).
- Predominantly 2ħω (or strongly mixed) ground state
 ¹¹Li, ¹²Be
 Anna E. McCoy et al., Intruder band mixing in an ab initio description of ¹²Be, arXiv: 2402.12606.

08			¹³ O	¹⁴ O ⁰⁺	15 ^{1/2-}	¹⁶ O ⁰⁺
N 7			$^{12}N^{1+}$	$^{13}N^{1/2-}$	¹⁴ N	$^{15}N^{1/2-}$
C 6	⁹ C	¹⁰ C	¹¹ C	¹² C	13 ^{1/2-} C	¹⁴ C
B 5	⁸ B ²⁺	[⁹ B]	¹⁰ B ³⁺	¹¹ B	¹² B ¹⁺	13 ^{3/2-} B
Be 4	⁷ Be	[8Be]	⁹ Be	¹⁰ Be	11 Be	12Be
Li 3	⁶ Li	⁷ Li	⁸ Li ²⁺	^{3/2-} ⁹ Li		3/2- 11 Li
•	3	4	5	6	7	8