Nuclear matter in mergers: the quest for equilibrium

Prof. Mark Alford Washington University in St. Louis

Alford, Bovard, Hanauske, Rezzolla, Schwenzer arXiv:1707.09475

Alford and Harris, arXiv:1907.03795

Alford, Harutyunyan, Sedrakian, 2209.04717, 2306.13591

Alford, Haber, Zhang, arXiv:2306.06180

Outline

- Neutron star mergers are like experiments that probe the properties of dense matter. People mostly talk about the *Equation of State*.
- > Also potentially important: Out-of-equilibrium phenomena
 - Flavor equilibration bulk viscosity
 - Thermal equilibration thermal conductivity
 - Shear flow equilibration shear viscosity etc

Better than the equation of state for probing phase structure!

- Flavor equilibration: is it important in mergers?
 - relaxation time for the proton fraction
 - *Critical equilibration*: when relaxation should be included in the dynamics
 - physical manifestations: bulk viscosity and sound attenuation

QCD Phase diagram

Conjectured QCD Phase diagram

heavy ion collisions: deconfinement crossover and chiral critical point neutron stars: quark matter core? neutron star mergers: dynamics of warm and dense matter

Nuclear material in a neutron star merger

Significant spatial/temporal variation in: temperature fluid flow velocity density \Rightarrow flavor content

so we need to allow for thermal conductivity shear viscositv bulk viscosity

Density oscillations in mergers

Do density oscillations drive the system out of flavor equilibrium? Does flavor equilibration affect the oscillations?

The nuclear matter fluid

Generic fluid element

neutrons: dominant constituent protons: small fraction electrons: maintaining local neutrality neutrinos: thermally equilibrated?

Equation of state relates these to relevant quantities: pressure, energy density etc,

 $p(n_B, T, x_p, x_L) \\ \varepsilon(n_B, T, x_p, x_L)$

Density oscillations and beta equilibration

Each fluid element relaxes to the equilibrium proton fraction $x_p^{eq}(n_B,T)$ via weak interactions.

 $x_p^{\text{eq}}(n_B,T)$ is determined by properties of the strong interaction (nuclear symmetry energy) and the requirement of electrical neutrality.

 \bullet Fluid element undergoes density oscillation of angular frequency ω

 $n_B(t) = \bar{n} + \delta n \cos(\omega t)$

• Proton fraction relaxes to equilibrium at *relaxation rate* $\gamma(n_B,T)$ $\partial_t x_p = -\gamma \left(x_p - x_p^{eq}(n_B,T)\right)$

- Fluid element undergoes density oscillation of angular frequency ω $n_B(t) = \bar{n} + \delta n \cos(\omega t)$
- Proton fraction relaxes to equilibrium at relaxation rate $\gamma(n_B,T)$ $\partial_t x_p = -\gamma \left(x_p - x_p^{eq}(n_B,T) \right)$

- Fluid element undergoes density oscillation of angular frequency ω $n_B(t) = \bar{n} + \delta n \cos(\omega t)$
- Proton fraction relaxes to equilibrium at relaxation rate $\gamma(n_B,T)$ $\partial_t x_p = -\gamma \left(x_p - x_p^{eq}(n_B,T) \right)$

- Fluid element undergoes density oscillation of angular frequency ω $n_B(t)=\bar{n}+\delta n\cos(\omega t)$
- Proton fraction relaxes to equilibrium at *relaxation rate* $\gamma(n_B,T)$ $\partial_t x_p = -\gamma \left(x_p - x_p^{eq}(n_B,T) \right)$

- Fluid element undergoes density oscillation of angular frequency ω $n_B(t) = \bar{n} + \delta n \cos(\omega t)$
- Proton fraction relaxes to equilibrium at *relaxation rate* $\gamma(n_B,T)$ $\partial_t x_p = -\gamma \left(x_p - x_p^{eq}(n_B,T) \right)$

- Fluid element undergoes density oscillation of angular frequency ω $n_B(t) = \bar{n} + \delta n \cos(\omega t)$
- Proton fraction relaxes to equilibrium at *relaxation rate* $\gamma(n_B,T)$ $\partial_t x_p = -\gamma \left(x_p - x_p^{eq}(n_B,T) \right)$

What happens if $\gamma \sim \omega$?

The value of x_p(t) depends on its *recent history*, not just n_B(t).
 Should include the relaxation equation in the fluid dynamics

• The value of $x_p(t)$ depends on its *recent history*, not just $n_B(t)$.

Should include the relaxation equation in the fluid dynamics

Other features of critical equilibration:

- Maximal phase lag between density and proton fraction
- \bullet Maximal bulk viscosity \Rightarrow Maximal damping of density oscillations

Is there critical equilibration in mergers?

Critical equilibration $(\gamma = \omega)$ in mergers?

Frequency for typical density oscillations in a merger: $\omega \approx 2\pi \times 1 \,\mathrm{kHz}$

Relaxation rate $\gamma(n_B,T)$ for proton fraction: determined by weak interaction "Urca processes" in which neutrinos play an essential role.

We can calculate the relaxation rate in two limiting cases:

Urca process	neutrino-transparent	neutrino-trapped
neutron decay	${\sf n} ightarrow {\sf p} + {\sf e}^- + ar{ u}_e$	$ u_e + \mathbf{n} ightarrow \mathbf{p} + \mathbf{e}^-$
electron capture	$p + e^- \rightarrow n + \nu_e$	$p + e^- \rightarrow n + \nu_e$

At what density and temperature is $\gamma(n_B,T)$ comparable to the 1 kHz timescale?

Proton fraction relaxation time $\tau = 1/\gamma$,

- Relaxation is faster at higher temperatures, insensitive to density
- neutrino-trapped matter: relaxation is very fast
- neutrino-transparent matter: relaxation on merger timescales!
- Thick contour shows critical equilibration, where $\tau = 1 \text{ ms}/2\pi$

Dependence on Equation of State

Relaxation time $au=1/\gamma$, for two representative equations of state.

- Relaxation is slow at low temperatures, fast at high temperatures
- Relaxation is not sensitive to density (except at dUrca threshold)
- \bullet Thick contour shows critical equilibration, where $\tau=1\ {\rm ms}/2\pi$

Critical equilibration occurs at $T\sim 5\,{\rm MeV}$

Conclusions so far

Neutrino-trapped matter:

proton fraction relaxes quickly, $\tau \lesssim 10^{-3}$ ms at $T \ge 1$ MeV. Merger simulations with very short timesteps will need to include this process.

Neutrino-transparent matter:

at $T\sim 2$ to $5\,{\rm MeV},$ proton fraction relaxes on the same timescale as the merger dynamics.

Proton fraction equilibration is part of the dynamics.

In reality, neutrinos in mergers have some non-thermal distribution with an energy-dependent mean free path. Need to develop tools to deal with this.

If critical equilibration (relaxation time \approx oscillation period) occurs in mergers, are there physical consequences?

Bulk viscosity for 1 kHz oscillations

(neutrino-transparent)

Non-monotonic T-dependence: bulk viscosity reaches a maximum at $T \sim 5 \,\mathrm{MeV}$

Not very sensitive to density

Does this sound familiar?

Bulk viscosity: phase lag in system response

Some property of the material (proton fraction) takes time to equilibrate.

Baryon density n and hence fluid element volume V go out of phase with applied pressure P:

Bulk viscosity: a resonant phenomenon

Bulk viscosity is **maximum** at critical equilibration, when (flavor relaxation rate) = (freq of density oscillation) γ ω

- Fast equilibration: γ → ∞ ⇒ ζ → 0 System is always in equilibrium. No pressure-density phase lag.
- Slow equilibration: γ → 0 ⇒ ζ → 0.
 System does not try to equilibrate: Proton fraction fixed.
 No pressure-density phase lag.
- Critical equilibration: $\omega = \gamma \Rightarrow$ maximum phase lag between pressure and density \Rightarrow maximum dissipation

Critical equilibration and bulk viscosity (neutrino-transparent)

Built viscosity for an oscillation of frequency ω has a resonant maximum at critical equilibration, i.e. when $\gamma = \omega$

Density oscillation damping time τ_{damp}

Different from proton fraction relaxation time τ Density oscillation of amplitude Δn at angular freq ω :

$$n(t) = \bar{n} + \Delta n \cos(\omega t) e^{-t/2\tau_{damp}}$$

Energy of density oscillation: (K = nuclear incompressibility)

$$E_{\rm comp} = \frac{K}{18} \bar{n} \left(\frac{\Delta n}{\bar{n}}\right)^2$$

Compression dissipation rate: $(\zeta = \text{bulk viscosity})$

$$W_{\rm comp} = \zeta \frac{\omega^2}{2} \left(\frac{\Delta n}{\bar{n}}\right)^2$$

Damping Time:
$$\tau_{damp} = \frac{E_{comp}}{W_{comp}} = \frac{K\bar{n}}{9\omega^2 \zeta}$$

Damping (sound attenuation) due to flavor equilibration is important in mergers if $\tau_{\text{damp}} \lesssim 20 \text{ ms}$

Damping time (*v*-transparent)

▶ Damping gets slower at higher density. Baryon density n
 and incompressibility K are both increasing. Oscillations carry more energy ⇒ slower to damp

 Non-monotonic T-dependence: damping is fastest at T ~ 5 MeV because bulk viscosity peaks there.

Resonant peak in bulk viscosity

Critical equilibration ($\gamma = \omega$) means

- Maximum bulk viscosity
- Fastest damping of density oscillations
- In ν -transparent matter this occurs at $T\sim 5\,{\rm MeV}$

Two different EoSes

The damping time for density oscillations is shortest around $T \sim 5$, MeV, independent of the EoS.

In neutrino-transparent matter, damping time is short enough to be relevant for mergers, especially at low density.

Bulk viscosity in neutrino-trapped regime

Relaxation is much faster Susceptibility C is smaller

 $\zeta = C \frac{I}{\gamma^2 + \omega^2}$

Bulk viscosity is *lower* in hot matter $(T \gtrsim 5 \text{ MeV})$ \Rightarrow damping time is much longer.

Summary

- Neutron star mergers probe the dynamical response of high-density matter on the millisecond timescale.
- ► In neutrino-transparent nuclear matter at T ~ 2 to 5 MeV: critical equilibration.

Proton fraction relaxes in milliseconds. Include relaxation in simulations?

 Resultant bulk viscosity damps density oscillations in 20 to 100 ms

Next steps

- Beyond neutrino transparent/trapped:
 Flavor equilibration rates for arbitrary neutrino distributions
- Beyond *npe*:

Flavor equilibration rates for other forms of matter .

- Hyperonic: fast relaxation (Alford and Haber, arXiv:2009.05181)
- Pion condensed, nuclear pasta, quark matter, etc
- Beyond bulk viscous damping: Other manifestations of flavor equilibration:
 - Heating
 - neutrino emission
- Beyond flavor equilibration:

Thermal conductivity and shear viscosity may become significant in the neutrino-trapped regime if there are gradients of scale $\lesssim 100$ m.

Beyond Standard Model physics?

Cooling by axion emission

Time for a hot region to cool to half its original temperature:

