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Neutron star mergers are like experiments that probe the properties
of dense matter. People mostly talk about the Equation of State.

Also potentially important: Out-of-equilibrium phenomena
e Flavor equilibration — bulk viscosity
e Thermal equilibration — thermal conductivity
e Shear flow equilibration — shear viscosity
etc
Better than the equation of state for probing phase structure!

Flavor equilibration: is it important in mergers?

° for the proton fraction

e Critical f:qu:/lbrat{on: when rel'flxatlon e
should be included in the dynamics 3" ‘

e physical manifestations: bulk viscosity ‘

and sound attenuation



QCD Phase diagram

TA heavy ion
collider

| N

- - -

nuclear neutron star

superfluid
supercond

=y



Conjectured QCD Phase diagram
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heavy ion collisions: deconfinement crossover and chiral critical point
neutron stars: quark matter core?
neutron star mergers: dynamics of warm and dense matter



Nuclear material in a neutron star merger
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Significant spatial /temporal variation in: so we need to allow for
temperature thermal conductivity
fluid flow velocity shear viscosity

density = flavor content bulk viscosity

1 [kim)]



Density oscillations in mergers

Density vs time for tracers in merger

Flavor equilibration neglected
5FT T T T T ™

Tracers (co-moving fluid
elements) show dramatic
density oscillations,
especially in the first 5 ms.

P [ps]

Amplitude: up to 50%
Period: 1-2ms
Freq: ~ 1kHz

t [ms]

Do density oscillations drive the system out of flavor equilibrium?
Does flavor equilibration affect the oscillations?



The nuclear matter fluid
neutrons: dominant constituent
protons:  small fraction
electrons: maintaining local neutrality

Generic fluid element neutrinos: thermally equilibrated?

Fluid is described by 3-4 parameters:

o . o =N, + 1, baryon density
® / temperature
® o o m =ny,/ng proton fraction
. [ J
[ ( =nr/ng lepton fraction >
® , ® [if neutrinos are trapped|
@ :
® \ Equation of state relates these to relevant

quantities: pressure, energy density etc,

p(nBa T7 xp? l'L)
e(ng,T,x,,xr)



Density oscillations and beta equilibration

Each fluid element to the equilibrium proton fraction x;%(ng,T)
via weak interactions.
x,(np,T) is determined by properties of the strong interaction (nuclear
symmetry energy) and the requirement of electrical neutrality.

IUF T=0, chemical equilibrium
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1 So when you compress
nuclear matter, the proton
{ fraction wants to change.
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But this doesn't happen
instantaneously!

1 2 3 4 5 8
baryon density / nga
Density oscillations can drive the system away from
flavor (“beta”, “chemical”, “isospin”) equilibrium.



Fast and slow equilibration

e Fluid element undergoes density oscillation of angular frequency w
np(t) = n+ dncos(wt)
e Proton fraction relaxes to equilibrium at (np,T)
Oyr, = — (.’I,‘p — 23 (np,T))



Fast and slow equilibration

e Fluid element undergoes density oscillation of angular frequency w
ng(t) = n + dncos(wt)
e Proton fraction relaxes to equilibrium at relaxation rate ~(np,T)
Oy = = (2, — 2%(np,1))

“ Fast equilibration v > w
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Fast and slow equilibration

e Fluid element undergoes density oscillation of angular frequency w
ng(t) = n + dncos(wt)
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Proton fraction stays equilibrated

No need to solve relaxation equation



Fast and slow equilibration

e Fluid element undergoes density oscillation of angular frequency w
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Fast and slow equilibration

e Fluid element undergoes density oscillation of angular frequency w
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Fast and slow equilibration

e Fluid element undergoes density oscillation of angular frequency w
ng(t) = n + dncos(wt)

e Proton fraction relaxes to equilibrium at (ng,T)
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No need to solve relaxation equation No need to solve relaxation equation

What happens if v ~ w ?
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Critical equilibration v = w
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Critical equilibration
Critical equilibration v = w
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» The value of z,(t) depends on its recent history, not just ng(t).

» Should include the relaxation equation in the fluid dynamics



Critical equilibration
Critical equilibration v = w
o
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» The value of z,(t) depends on its recent history, not just ng(t).

» Should include the relaxation equation in the fluid dynamics

Other features of critical equilibration:
e Maximal phase lag between density and proton fraction
e Maximal bulk viscosity = Maximal damping of density oscillations

Is there critical equilibration in mergers?



Critical equilibration (v = w) in mergers?

Frequency for typical density oscillations in a merger: ‘w ~ 21 x 1 kHz‘

(ng,T) for proton fraction: determined by weak
interaction “Urca processes” in which neutrinos play an essential role.

We can calculate the in two limiting cases:

Urca process neutrino-transparent neutrino-trapped
neutron decay n—pt+e +7, Ve+n—p+te”
electron capture p+e” = n+v, p+e  —=n+v1,

At what density and temperature is
(np,T) comparable to the 1 kHz timescale?



Temperature [MeV]

e Thick contour shows critical equilibration , where 7 = 1 ms/27
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Relaxation is faster at higher temperatures, insensitive to density
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neutrino-trapped matter: relaxation is very fast

neutrino-transparent matter: relaxation on merger timescales!
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Dependence on Equation of State

Relaxation time 7 = 1/, for two representative equations of state.
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e Relaxation is slow at low temperatures, fast at high temperatures
e Relaxation is not sensitive to density (except at dUrca threshold)
e Thick contour shows critical equilibration, where 7 = 1 ms/2m

Critical equilibration occurs at T ~ 5 MeV



Conclusions so far

» Neutrino-trapped matter:
proton fraction quickly, 7 <103 ms at T > 1 MeV.
Merger simulations with very short timesteps will need to include
this process.

» Neutrino-transparent matter:
at 7'~ 2 to 5 MeV, proton fraction on the same timescale
as the merger dynamics.
Proton fraction equilibration is part of the dynamics.

» In reality, neutrinos in mergers have some non-thermal distribution
with an energy-dependent mean free path.
Need to develop tools to deal with this.

If critical equilibration ( 2 oscillation period)
occurs in mergers, are there physical consequences?




Bulk viscosity for 1 kHz oscillations
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» Non-monotonic T-dependence: bulk viscosity reaches a maximum
at T'~ 5MeV

» Not very sensitive to density

Does this sound familiar?



Bulk viscosity: phase lag in system response

Some property of the material (proton fraction) takes time to

equilibrate.

Baryon density n and hence fluid element volume V' go out of phase

with applied pressure P:

Dissipation = — / PdV = — / P ﬂdt

No phase lag.
Dissipation = 0
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Some phase lag.
Dissipation > 0
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Bulk viscosity: a resonant phenomenon

Bulk viscosity is maximum at critical equilibration, when
(flavor relaxation rate) _ (freq of density oscillation)

¢(=C

2_|_w2

» Fast equilibration: v - o0 = (¢ — 0

System is always in equilibrium. No pressure-density phase lag.
» Slow equilibration: v -0 = ( — 0.

System does not try to equilibrate: Proton fraction fixed.

No pressure-density phase lag.

» Critical equilibration: w =~ = maximum phase lag between
pressure and density = maximum dissipation



Temperature [MeV]

Critical equilibration and bulk viscosity
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Bulk viscosity for 1 kHz oscillation
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» Relaxation time (1/7) drops rapidly as temperature rises
» Bulk viscosity for an oscillation of frequency w has a resonant
maximum at critical equilibration, i.e. when v = w



Density oscillation damping time 7y,

Different from proton fraction

Density oscillation of amplitude An at angular freq w:
n(t) = 7 + Ancos(wt) e 1/#aam

Energy of density oscillation: K _ (%)2

(K = nuclear incompressibility) comp = oM 7

Compression dissipation rate: W B Cw_Q & 2

(¢ = bulk viscosity) comp S o\
Eeomp K7

Damping Time:  7gamp = W =3 2¢
comp W

Damping (sound attenuation) due to flavor equilibration

is important in mergers if Ty,mp S 20 ms



Dam pll’lg time (v-transparent)

1 kHz damping time (IUF)
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» Damping gets slower at higher density.
Baryon density 7 and incompressibility K are both increasing.
Oscillations carry more energy = slower to damp

» Non-monotonic T-dependence: damping is fastest at T ~ 5 MeV
because bulk viscosity peaks there.



Resonant peak in bulk viscosity

Critical equilibration (7 = w) means
» Maximum bulk viscosity
» Fastest damping of density oscillations
» In v-transparent matter this occurs at 7' ~ 5 MeV

1 kHz damping time (IUF)
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Two different EoSes

IUF equation of state QMC-RMF3 equation of state
1 kHz damping time (IUF) 1 kHz damping time (QMC-RMF3)
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The damping time for density oscillations is shortest around
T ~ 5,MeV, independent of the EoS.

In neutrino-transparent matter, damping time is short enough

to be relevant for mergers, especially at low density.



Bulk viscosity in neutrino-trapped regime

~ Relaxation is much faster

¢= Cm Susceptibility C' is smaller

' T @] "© Plot shows bulk viscosity,
/\ f=1kHz | f=10kHz |

T < 5MeV:
neutrino-transparent
n —-pe 1,
pe” —nir,

T > 10 MeV:
neutrino-trapped
Ve N4> pe”

Bulk viscosity is lower in hot matter (1" 2 5 MeV)
=> damping time is much longer.



Summary

» Neutron star mergers probe the dynamical response of high-density

matter on the millisecond timescale.

» In neutrino-transparent nuclear matter at
T ~ 2 to 5MeV: critical equilibration.

Proton fraction in milliseconds.
Include relaxation in simulations?

» Resultant bulk viscosity damps density
oscillations in 20 to 100 ms
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Next steps

Beyond neutrino transparent/trapped:

Flavor equilibration rates for arbitrary neutrino distributions
Beyond npe:

Flavor equilibration rates for other forms of matter .

e Hyperonic: fast relaxation (Alford and Haber, arXiv:2009.05181)
e Pion condensed, nuclear pasta, quark matter, etc

Beyond bulk viscous damping:

Other manifestations of flavor equilibration:
e Heating

® neutrino emission

Beyond flavor equilibration:
Thermal conductivity and shear viscosity may become significant in
the neutrino-trapped regime if there are gradients of scale < 100 m.

Beyond Standard Model physics?



Cooling by axion emission
Time for a hot region to cool to half its original temperature:

107 Radiative cooling time (1ny)
S ! ! J T T ! \ {

T T
Axions not free-streamin,

1070 ———— \ . Harris, Fortin, Sinha, Alford
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