Overview of nuclear deformation and shape coexistence around ${ }^{96} \mathrm{Zr}$ and ${ }^{96} \mathrm{Ru}$

- overall quadrupole deformation and shape coexistence
- triaxiality
- octupole collectivity

What observables are related to nuclear shapes?

- differences in root mean square charge radii (determined via laser spectroscopy for ground and isomeric states)
- level energies
- energy of the first 2^{+}state: the simplest measure of collectivity
- transition probabilities: $\mathrm{B}\left(\mathrm{E} 2 ; 0^{+} \rightarrow 2^{+}\right)=\left((3 / 4 \pi) \mathrm{eZR} \mathrm{R}_{0}^{2}\right)^{2} \beta_{2}{ }^{2}$
- quadrupole moments: measure of the charge distribution in a given state (always zero for spin 0 and $1 / 2$, even if there is non-zero intrinsic deformation)
- laser spectroscopy for long-lived states
- reorientation effect in Coulomb excitation for short-lived states: influence of the quadrupole moment of an excited state on its excitation cross section
- deformation lengths from inelastic scattering: need for accurate potentials to describe the nuclear interaction between collision partners
- complete sets of E2 matrix elements: possibility to determine quadrupole invariants and level mixing
- monopole transition strengths: enhancements observed for shape coexistence with strong mixing

Coulomb excitation cross sections

Dependence on:

- strength of the electromagnetic field: atomic number of the collision partner
- beam energy
- difference in excitation energy between the initial and final levels
- scattering angle
- transition probabilities
- transition multipolarities
- E2 excitation dominates, followed by E3; other multipolarities (including magnetic transitions)
 usually negligible in low-energy Coulomb-excitation process
first perturbation: $\sigma=\left(\frac{\mathrm{Z}_{\mathrm{e}}}{\hbar \mathrm{V}}\right)^{2} \mathrm{a}^{-2(\lambda+1)} \mathrm{B}(\mathrm{E} \lambda) \cdot \mathrm{f}_{\mathrm{E} \lambda}(\xi)$
with adiabacity parameter $\xi=\frac{\Delta \mathrm{Ea}}{\hbar \mathrm{v}}$

Measuring quadrupole moments of excited states

- reorientation effect: influence of the quadrupole moment on the excitation cross section
${ }^{76} \mathrm{Zn}, \mathrm{HIE}-I S O L D E$ data from: A. Illana, MZ et al., submitted to PRC

- χ^{2} comparison of measured cross sections with calculated ones
- independent lifetime measurements increase precision of extracted quadrupole moments

Quadrupole sum rules
 D. Cline, Ann. Rev. Nucl. Part. Sci. 36 (1986) 683
 K. Kumar, PRL 28 (1972) 249

- electromagnetic multipole operators are spherical tensors - products of such operators coupled to angular momentum 0 are rotationally invariant
- in the intrinsic frame of the nucleus,

$$
\begin{aligned}
\mathrm{E}(2,0) & =\mathrm{Q} \cos \delta \\
\mathrm{E}(2,2)=\mathrm{E}(2,-2) & =\frac{\mathrm{Q}}{\sqrt{2}} \sin \delta \\
\mathrm{E}(2,1)=\mathrm{E}(2,-1) & =0
\end{aligned}
$$ related to charge distribution: the E2 operator may be expressed using two parameters Q and δ

$$
\begin{aligned}
& \frac{\left\langle Q^{2}\right\rangle}{\sqrt{5}}=\langle i|[E 2 \times E 2]^{0}|i\rangle=\frac{1}{\sqrt{\left(2 I_{i}+1\right)}} \sum_{t}\langle i\|E 2\| t\rangle\langle t||E 2||i\rangle\left\{\begin{array}{ccc}
2 & 2 & 0 \\
I_{i} & I_{i} & I_{t}
\end{array}\right\} \\
& 0_{1}^{+}
\end{aligned}
$$

$\left\langle Q^{2}\right\rangle$: measure of the overall deformation;
for the ground state - extension of $\mathrm{B}\left(\mathrm{E} 2 ; 0^{+} \rightarrow 2^{+}\right)=\left((3 / 4 \pi) e Z R_{0}^{2}\right)^{2} \beta_{2}{ }^{2}$
Contributions to $\left\langle Q^{2}\right\rangle$ in ${ }^{100}$ Mo: K. Wrzosek-Lipska et al., PRC 86 (2012) 064305

$\left\langle Q^{2}\right\rangle$ for ${ }^{96} \mathrm{Zr}$ and ${ }^{96} \mathrm{Ru}$ ground states

- Extensive lifetime measurements for low-spin states in ${ }^{96} \mathrm{Zr}$ and ${ }^{96} \mathrm{Ru}$:
- ${ }^{96} Z \mathrm{r}$: $(\mathrm{n}, \mathrm{n} \boldsymbol{\gamma} \gamma)+\left(\mathrm{e}, \mathrm{e}^{\prime}\right)$ for 2_{2}^{+}; ${ }^{96} \mathrm{Ru}:\left(\mathrm{p}, \mathrm{p}{ }^{\prime} \gamma\right),\left({ }^{3} \mathrm{He}, 2 \mathrm{n} \gamma\right)$
- ${ }^{96} \mathrm{Zr}$:
- B(E2; $\left.2_{1}^{+} \rightarrow 0_{1}^{+}\right)=2.3(3)$ W.u. $\rightarrow\left\langle 2_{1}^{+}\|\mathrm{E} 2\| 0_{1}^{+}\right\rangle=0.173(11)$ eb
- B(E2; $\left.2_{2}^{+} \rightarrow 0_{1}^{+}\right)=0.26(8)$ W.u. $\rightarrow\left\langle 2_{2}^{+}\|\mathrm{E} 2\| 0_{1}^{+}\right\rangle=0.058(9) \mathrm{eb}$
- $\left\langle Q^{2}\right\rangle=0.033(5) e^{2} b^{2}, \beta=0.06(1)$
${ }^{96}$ Ru:
- B(E2; $\left.2_{1}^{+} \rightarrow 0_{1}^{+}\right)=18.4(4)$ W.u. $\rightarrow\left\langle 2_{1}^{+}\|\mathrm{E} 2\| 0_{1}^{+}\right\rangle=0.490(5) \mathrm{eb}$
- B(E2; $\left.2_{2}^{+} \rightarrow 0_{1}^{+}\right)=0.16(4)$ W.u. $\rightarrow\left\langle 2_{2}^{+}\|E 2\| 0_{1}^{+}\right\rangle=0.050(6) \mathrm{eb}$
- $\left\langle Q^{2}\right\rangle=0.243(6) e^{2} b^{2}, \beta=0.155(4)$
- $\left\langle\mathrm{Q}^{2}\right\rangle=\mathrm{q}_{0}^{2}\left\langle\beta_{2}^{2}\right\rangle ; \mathrm{q}_{0}=\frac{3}{4 \pi} \mathrm{ZeR}_{0}^{2}$ and $\mathrm{R}_{0}=1.2 \mathrm{~A}^{1 / 3} \mathrm{fm}$
- includes both dynamic and static deformation and assumes that mass and charge distributions are the same
- errors in ENSDF for ${ }^{96} \mathrm{Ru}$: wrong $\mathrm{B}\left(\mathrm{E} 2 ; 2_{2}^{+} \rightarrow 0_{1}^{+}\right)=35 \mathrm{~W} . u, 2_{4}^{+}$lifetime $0.15 \mathrm{fs}, 15 \mathrm{fs}$ (it is 0.15 ps)

Shape coexistence: experimental information for $A \approx 100$

- dramatic increase of ground-state deformation at $\mathrm{N}=60$
- multitude of coexisting shapes predicted by theory

${ }^{95} \mathrm{R}$ (${ }^{96} \mathrm{Ru}$	$)^{97} \mathrm{Ru}$	${ }^{98} \mathrm{Ru}$	${ }^{99} \mathrm{Ru}$	${ }^{100} \mathrm{Ru}$	${ }^{101} \mathrm{Ru}$	${ }^{102} \mathrm{Ru}$,	${ }^{103} \mathrm{Ru}$	${ }^{104} \mathrm{Ru}$,	${ }^{105} \mathrm{Ru}$	\square level energies
${ }^{94}$ Tc	${ }^{5}$ Tc	${ }^{96}$ Tc	${ }^{97}$ Tc	${ }^{98} \mathrm{Tc}$	${ }^{99} \mathrm{Tc}$	${ }^{100} \mathrm{Tc}$	${ }^{101} \mathrm{Tc}$	${ }^{102}$ Tc	${ }^{133} \mathrm{Tc}$	${ }^{104} \mathrm{Tc}$	E0 strengths
${ }^{93} \mathrm{Mo}$	${ }^{94} \mathrm{Mo}$	${ }^{\text {95 mo }}$	${ }^{9} \mathrm{Mo}$	${ }^{97} \mathrm{Mo}$	${ }^{98} \mathrm{Mo}$	${ }^{99} \mathrm{Mo}$	${ }^{109} \mathrm{Mo}$	${ }^{01} \mathrm{Mo}$	${ }^{102} \mathrm{Mo}$	${ }^{103} \mathrm{Mo}$	\square transer cross sections
${ }^{92} \mathrm{Nb}$	${ }^{33} \mathrm{Nb}$	${ }^{94} \mathrm{Nb}$	${ }^{95} \mathrm{Nb}$	${ }^{96} \mathrm{Nb}$	${ }^{97} \mathrm{Nb}$	${ }^{98} \mathrm{Nb}$	${ }^{99} \mathrm{Nb}$	${ }^{100} \mathrm{Nb}$	${ }^{101} \mathrm{Nb}$	${ }^{102} \mathrm{Nb}$	\square quadrupole invariants
${ }^{91} \mathrm{Zr}$	${ }^{92} \mathrm{zr}$	${ }^{93} \mathrm{Zr}$	${ }^{98} \mathrm{zr}$	2 r	${ }^{96} \mathrm{zr}$	$\mathrm{P}^{7} \mathrm{zr}$	${ }^{98} \mathrm{Zr}$	${ }^{99} \mathrm{zr}$	${ }^{100} \mathrm{zr}$	${ }^{101} \mathrm{zr}$	
${ }^{90} \mathrm{Y}$	${ }^{91} \mathrm{Y}$	${ }^{92} \mathrm{r}$	${ }^{93} \mathrm{r}$	${ }^{94} \mathrm{Y}$	${ }^{55} \mathrm{Y}$	${ }^{96} \mathrm{Y}$	${ }^{97} \mathrm{Y}$	${ }^{98} \mathrm{r}$	${ }^{99} \mathrm{Y}$	${ }^{100} \mathrm{Y}$	
${ }^{89} \mathrm{Sr}$	${ }^{90} \mathrm{Sr}$	${ }^{91} \mathrm{Sr}$	${ }^{92} \mathrm{Sr}$	${ }^{33} \mathrm{Sr}$	${ }^{94} \mathrm{Sr}$	${ }^{5} \mathrm{Sr}$	${ }^{96} \mathrm{Sr}$	${ }^{97} \mathrm{Sr}$	r	${ }^{99} \mathrm{Sr}$	

Shape coexistence in ${ }^{96} \mathrm{Zr}$ - experimental information

- $\mathrm{B}\left(\mathrm{E} 2 ; 2_{2}^{+} \rightarrow 0_{1}^{+}\right)$measured using electron scattering, combined with known branching and mixing ratios:
\rightarrow transition strengths from the 2_{2}^{+}state
- $\mathrm{B}\left(\mathrm{E} 2 ; 2_{1}^{+} \rightarrow \mathrm{O}_{1}^{+}\right)=2.3(3) \mathrm{Wu}$ vs $\mathrm{B}\left(\mathrm{E} 2 ; 2_{2}^{+} \rightarrow 0_{2}^{+}\right)=36(11)$ Wu: nearly spherical and a well-deformed structure ($\beta \approx 0.24$)
- very low mixing of coexisting structures: $\cos ^{2} \theta_{0}=99.8 \%, \cos ^{2} \theta_{2}=97.5 \%$,

Two-state mixing model

- we assume that physical states are linear combinations of pure spherical and deformed configurations:

$$
\begin{aligned}
& \left|I_{1}^{+}\right\rangle=+\cos \theta_{I} \times\left|I_{d}^{+}\right\rangle+\sin \theta_{I} \times\left|I_{s}^{+}\right\rangle \\
& \left|I_{2}^{+}\right\rangle=-\sin \theta_{I} \times\left|I_{d}^{+}\right\rangle+\cos \theta_{I} \times\left|I_{s}^{+}\right\rangle
\end{aligned}
$$

with transitions between the pure spherical and deformed states forbidden:

$$
\left\langle 2_{d}^{+}\|E 2\| 0_{s}^{+}\right\rangle=\left\langle 2_{d}^{+}\|E 2\| 2_{s}^{+}\right\rangle=\left\langle 2_{s}^{+}\|E 2\| 0_{d}^{+}\right\rangle=0
$$

- the measured matrix elements can be expressed
 in terms of the "pure" matrix elements and the mixing angles:
$\left\langle 2_{1}^{+}\|E 2\| 0_{1}^{+}\right\rangle=$
$\sin \theta_{0} \sin \theta_{2}\left\langle 2_{s}^{+}\|E 2\| 0_{s}^{+}\right\rangle+\cos \theta_{0} \cos \theta_{2}\left\langle 2_{d}^{+}\|E 2\| 0_{d}^{+}\right\rangle$

$$
\left\langle 2_{1}^{+}\|E 2\| 0_{2}^{+}\right\rangle=
$$

$$
\cos \theta_{0} \sin \theta_{2}\left\langle 2_{s}^{+}\|E 2\| 0_{s}^{+}\right\rangle-\sin \theta_{0} \cos \theta_{2}\left\langle 2_{d}^{+}\|E 2\| 0_{d}^{+}\right\rangle
$$

$$
\left\langle 2_{2}^{+}\|E 2\| 0_{1}^{+}\right\rangle=
$$

$$
\sin \theta_{0} \cos \theta_{2}\left\langle 2_{s}^{+}\|E 2\| 0_{s}^{+}\right\rangle-\cos \theta_{0} \sin \theta_{2}\left\langle 2_{d}^{+}\|E 2\| 0_{d}^{+}\right\rangle
$$

$$
\left\langle 2_{2}^{+}\|E 2\| 0_{2}^{+}\right\rangle=
$$

$$
\cos \theta_{0} \cos \theta_{2}\left\langle 2_{s}^{+}\|E 2\| 0_{s}^{+}\right\rangle+\sin \theta_{0} \sin \theta_{2}\left\langle 2_{d}^{+}\|E 2\| 0_{d}^{+}\right\rangle
$$

E0 strengths, shape coexistence and mixing

- E0 transitions are sensitive to the changes in the nuclear charge-squared radii
- their strengths depends on the mixing of configurations that have different mean-square charge radii:

$$
\begin{aligned}
& \rho^{2}(E 0)=\frac{Z^{2}}{R^{4}} \cos ^{2} \theta_{0} \sin ^{2} \theta_{0}\left(\left\langle r^{2}\right\rangle_{A}-\left\langle r^{2}\right\rangle_{B}\right)^{2} \\
& =\left(\frac{3 Z}{4 \pi}\right)^{2} \cos ^{2}\left(\theta_{0}\right) \sin ^{2}\left(\theta_{0}\right) \cdot\left[\left(\beta_{1}^{2}-\beta_{2}^{2}\right)+\frac{5 \sqrt{5}}{21 \sqrt{\pi}}\left(\beta_{1}^{3} \cos \gamma_{1}-\beta_{2}^{3} \cos \gamma_{2}\right)\right]^{2} \\
& \quad \text { J.L. Wood et al., NPA 651, 323 (1999) }
\end{aligned}
$$

Example of ${ }^{42} \mathrm{Ca}$: K. Hadyńska-Klęk et al., PRC 97 (2018) 024326 (Coulomb excitation), J.L. Wood et al., NPA 651, 323 (1999) (E0)

	from E2 matrix elements $[\mathrm{KHK}]$	from $\rho^{2}(E 0)[\mathrm{JLW}]$ +sum rules results [KHK]
$\cos ^{2}\left(\theta_{0}\right)$	$0.88(4)$	$0.84(4)$
$\cos ^{2}\left(\theta_{2}\right)$	$0.39(8)$	-

- good agreement of the $\cos ^{2}\left(\theta_{0}\right)$ values obtained with the two methods
- $\cos ^{2}\left(\theta_{2}\right)<0.5$: two-state mixing model cannot be applied to 2^{+}states in ${ }^{42} \mathrm{Ca}$

E0 strengths in Zr and Ru isotopes

T. Kibedi et al., Prog. Part. Nucl. Phys. 120 (2021)

- ${ }^{100} \mathrm{Ru}: 11(2) 10^{-3}$ between O_{2}^{+}and O_{2}^{+}, no data for lighter Ru isotopes

Shape coexistence in ${ }^{94} \mathrm{Zr}$

A. Chakraborty et al, PRL 110, 022504 (2013)

T. Togashi et al, PRL 117, 172502 (2016)

- observation of a strong $2_{2}^{+} \rightarrow 0_{2}^{+}$transition (19 W.u.) - deformed band built on O_{2}^{+}
- shell model calculations suggest an oblate shape

Coulomb excitation of ${ }^{94} \mathbf{Z r}$

- experiment performed at LNL Legnaro (March 2018)
- GALILEO + SPIDER
- ${ }^{94} \mathrm{Zr}$ beam on ${ }^{208} \mathrm{~Pb}$ target
- analysis: Naomi Marchini, INFN Firenze

Lifetime measurements in ${ }^{98} \mathbf{Z r}$

- Lifetimes measured in ${ }^{9} \mathrm{Be}$ induced fission of ${ }^{238} \mathrm{U}$, and ${ }^{96} \mathrm{Zr}+{ }^{18} \mathrm{O} 2 p$ transfer
P. Singh et al., PRL 121, 192501 (2018) V. Karayonchev et al., PRC 102, 064314 (2020)

- substantial differences in measured lifetimes and interpretations
- $2_{2}^{+} \rightarrow 0_{3}^{+}$is expected to be either enhanced in-band transition, or a forbidden three- to two-phonon transition
- combination of 2_{2}^{+}lifetime and branching ratio points to an unphysical value of 500 W.u.
- β-decay data from TRIUMF (under analysis) expected to resolve this issue

Coulomb excitation with the Q3D spectrometer

- Coulomb-excitation measurements with magnetic spectrometers common in 1970s, but completely abandoned in favour of γ-ray spectroscopy
- still a very attractive option, especially to populate higher-lying low-spin states: very high beam intensities (100 pmA) can compensate for low cross sections
- campaigns with ${ }^{12} \mathrm{C},{ }^{16} \mathrm{O}$ beams: direct measurement of 2^{+}and 3^{-}population \rightarrow precise $\mathrm{B}\left(\mathrm{E} 2 ; 2_{\mathrm{i}}^{+} \rightarrow 0_{1}^{+}\right)$and $\mathrm{B}\left(\mathrm{E} 3 ; 3_{\mathrm{i}}^{-} \rightarrow 0_{1}^{+}\right)$values

Q3D magnetic spectrometer, MLL

Results: shape coexistence in ${ }^{102} \mathrm{Ru}$

P. Garrett, MZ et al, PRC 106, 064307 (2022)

- first measurement of the $\mathrm{B}\left(\mathrm{E} 2 ; 2_{3}^{+} \rightarrow 0_{1}^{+}\right)$value
- combined with known branching ratios yields B(E2) values in the two bands differing by a factor of 2
- coexistence of two structures with different overall deformation $(\beta \approx 0.24$ and $\beta \approx 0.18)$

${ }^{98}$ Ru level scheme a few years ago

- highly unlikely that there are three closely-lying 3^{+}states
- level scheme incomplete with missing decays and spin assignments

Reevaluation of ${ }^{98} \mathrm{Ru}$ level scheme

P. Garrett et al., PLB 809, 135762 (2020)

- combined β-decay study (iTHEMBA Labs) and (p,t) transfer (MLL)
- resulting level scheme suggestive of shape coexistence and triaxiality

Quadrupole sum rules: triaxiality

D. Cline, Ann. Rev. Nucl. Part. Sci. 36 (1986) 683
K. Kumar, PRL 28 (1972) 249

$$
\begin{gathered}
\sqrt{\frac{2}{35}}\left\langle Q^{3} \cos 3 \delta\right\rangle=\langle i|\left\{[\mathrm{E} 2 \times \mathrm{E} 2]^{2} \times \mathrm{E} 2\right\}^{0}|i\rangle \\
=\frac{1}{\left(2 I_{i}+1\right)} \sum_{\mathrm{t}, \mathrm{u}}\langle i\|\mathrm{E} 2\| u\rangle\langle u\|\mathrm{E} 2\| \mathrm{t}\rangle\langle\mathrm{t}\|\mathrm{E} 2\| \mid i\rangle\left\{\begin{array}{ccc}
2 & 2 & 2 \\
\mathrm{I}_{\mathrm{i}} & \mathrm{I}_{\mathrm{t}} & \mathrm{I}_{\mathrm{u}}
\end{array}\right\}
\end{gathered}
$$

$\langle\cos 3 \delta\rangle$: measure of triaxiality

- relative signs of E2 matrix elements are needed: can we get them experimentally?

Contributions to $\left\langle Q^{3} \cos 3 \delta\right\rangle$ in ${ }^{100} \mathrm{Mo}$: K. Wrzosek-Lipska et al., PRC 86 (2012) 064305

Relative signs of E2 matrix elements

- Coulomb-excitation cross section are sensitive to relative signs of MEs: result of interference between single-step and multi-step amplitudes
- excitation amplitude of state $\mathrm{A}: \mathrm{a}_{\mathrm{A}} \sim\langle\mathrm{A}\|\mathrm{E} 2\|$ g.s. $\rangle+\langle\mathrm{B}\|\mathrm{E} 2\|$ g.s. $\rangle\langle\mathrm{A}\|\mathrm{E} 2\| \mathrm{B}\rangle$
- excitation probability ($\sim a_{A}^{2}$) contains interference terms

$$
\langle\mathrm{A}\|\mathrm{E} 2\| \text { g.s. }\rangle\langle\mathrm{B}\|\mathrm{E} 2\| \text { g.s. }\rangle\langle\mathrm{A}\|\mathrm{E} 2\| \mathrm{B}\rangle
$$

- negative $\left\langle 2_{1}^{+}\|E 2\| 2_{2}^{+}\right\rangle$(solid lines): much higher population of 2_{2}^{+}at high CM angles
- sign of a product of matrix elements is an observable

Quadrupole sum rules: triaxiality

A. Andrejtscheff et al, Phys. Lett. B 329 (1994) 1

For the ground state, two terms dominate the sum:

$$
\begin{array}{r}
\langle\cos 3 \delta\rangle \approx-\sqrt{\frac{7}{10}}\left\langle Q_{0_{1}^{+}}^{2}\right\rangle^{-3 / 2}\left(\left|\left\langle 0_{1}^{+}\|E 2\| 2_{1}^{+}\right\rangle\right|^{2}\left\langle 2_{1}^{+}\|E 2\| 2_{1}^{+}\right\rangle\right. \\
\left.+2\left\langle 0_{1}^{+}\|E 2\| 2_{1}^{+}\right\rangle\left\langle 2_{1}^{+}\|E 2\| 2_{2}^{+}\right\rangle\left\langle 2_{2}^{+}\|E 2\| 0_{1}^{+}\right\rangle\right)
\end{array}
$$

still, sign of the $\left\langle 0_{1}^{+}\|E 2\| 2_{1}^{+}\right\rangle\left\langle 2_{1}^{+}\|E 2\| 2_{2}^{+}\right\rangle\left\langle 2_{2}^{+}\|E 2\| 0_{1}^{+}\right\rangle$product is necessary

Do we know all states that should enter the sum?

- especially for the (E2 x E2 x E2), where terms can cancel out - can we say that terms involving higher lying levels (the 2_{4}^{+}state etc) do not significantly influence the rotational invariant?
- if such state were coupled to the state in question via a large E2 matrix element, it would be populated in the experiment
- comparison with GBH calculations for ${ }^{100} \mathrm{Mo}:\left\langle\mathrm{Q}^{2}\right\rangle,\left\langle\mathrm{Q}^{3} \cos (3 \delta)\right\rangle$ calculated by acting with an operator on calculated wave functions and from theoretical values of matrix elements, limited to the same three intermediate states
\Rightarrow difference below 3% for both 0^{+}states

	GBH		\exp
$\mathrm{O}_{1}^{+}: \bar{\beta}$	0.20	0.20	0.22 ± 0.01
$\mathrm{O}_{1}^{+}: \bar{\gamma}$	27°	27°	$29^{\circ} \pm 3^{\circ}$
$\mathrm{O}_{2}^{+}: \bar{\beta}$	0.24	0.24	0.25 ± 0.01
$\mathrm{O}_{2}^{+}: \bar{\gamma}$	18°	17°	$10^{\circ} \pm 3^{\circ}$

K. Wrzosek-Lipska, PRC 86 (2012) 064305

Triaxiality in ${ }^{98} \mathrm{Sr}$

- gamma $\approx 25^{\circ}$ would explain the reduction of $Q_{s}\left(2_{1}^{+}\right)$in ${ }^{98} \mathrm{Sr}$
- but where is the gamma band?

J. Xiang et al., PRC 93, 054324 (2016), 5DCH with PC-PK1 interaction

Gamma and 'triaxial' structures in ${ }^{100} \mathrm{Zr}$

- "gamma" band proposed (related to the softness in the γ degree of freedom) and "triaxial" band (related to a rotation of an non-axial shape)
- transitions to low-spin states missing, or even candidates missing
W. Urban et al, PRC 100, 014319 (2019)

Shape evolution of ${ }^{96-100} \mathbf{M o}$

MZ et al., Nucl. Phys. A 712 (2002) 3
K. Wrzosek-Lipska et al., PRC 86 (2012) 064305

- ${ }^{96} \mathrm{Mo}$: coexistence of the deformed ground state with a spherical O_{2}^{+}
- ground states of the Mo isotopes triaxial (average shape, may result from dynamic effects), deformation of O_{2}^{+}increasing with N
- shape coexistence in ${ }^{98} \mathrm{Mo}$ manifested in a different triaxiality of O_{1}^{+}and O_{2}^{+}

Energy systematics in Ru isotopes

- transition from potentially γ-rigid ${ }^{110,112} \mathrm{Ru}$ (D. Doherty et al, PLB 776, 334 (2017)) to γ-soft nuclei
- parabolic intrusion of potentially shape-coexisting shapes
- experimental data on shape coexistence less detailed than in the Zr , Mo isotopic chains

Higher-order quadrupole invariants - example of ${ }^{72,76} \mathrm{Ge}$

A.D. Ayangeakaa et al.,

PRL 123, 102501 (2019)
PLB 754, 254 (2016)

- ${ }^{76} \mathrm{Ge}$: unique example of determination of softness in γ from experimental data

- ${ }^{72}$ Ge: much higher number of transitions observed in a new measurement \rightarrow slight change of the deduced invariants due to extra states entering the sum

Experimental information on octupole collectivity in even-even nuclei

- energy of the first 3^{-}state (first hint)
- $\mathrm{B}\left(\mathrm{E} 3 ; 3_{1}^{-} \rightarrow 0_{1}^{+}\right)$value; $\mathrm{B}\left(E 3 ; \mathrm{I}_{\mathrm{i}} \rightarrow \mathrm{I}_{\mathrm{f}}\right)=\frac{7}{16 \pi}\left(\mathrm{I}_{\mathrm{f}} 030 \mid \mathrm{I}_{\mathrm{i}} 0\right)^{2} \mathrm{Q}_{3}^{2}$ $\mathrm{Q}_{3}=\frac{3}{\sqrt{7 \pi}} Z$ e $\mathrm{R}_{0}^{3} \beta_{3}$
- negative-parity states decay predominantly by fast E 1 transitions; large $\mathrm{B}(\mathrm{E} 1)$ values usually correlate with octupole collectivity, but the inverse is not true
- lifetime of a negative-parity state is a very poor indicator of octupole collectivity
- direct E3 decay is rarely observed
- Coulomb excitation and inelastic scattering are the methods of choice to determine E3 strength

Rigid octupole deformation versus octupole vibration

- apart from actinides, E3 collectivity is usually attributed to surface vibrations
- rigid octupole deformation can be claimed on the basis of $\mathrm{B}(\mathrm{E} 3)$ values between the ground-state band and the negative-parity band, or identical rotational alignments in these bands (\rightarrow interleaving of positive and negative-parity states)
J.F.C. Cocks et al./Nuclear Physics A 645 (1999) 61-91

R. Ibbotson et al, PRL 71, 27 (1993)

More info: P. A. Butler and W. Nazarewicz Rev. Mod. Phys. 68, 349 (1996); P. Butler, Proc. R. Soc. A 476, 202 (2020)

Octupole collectivity in Zr isotopes: anomalous value for ${ }^{96} \mathrm{Zr}$

- evaluated $B\left(E 3 ; 3_{1}^{-} \rightarrow 0_{1}^{+}\right)$strength for ${ }^{96} \mathrm{Zr}$ strikingly high (53(6) W.u.), comparable with those known for nuclei with rigid pear shapes
- observed trend of $\mathrm{B}\left(\mathrm{E} 3 ; 3_{1}^{-} \rightarrow 0_{1}^{+}\right.$) values in Zr isotopes inconsistent with 3_{1}^{-}energies and hard to explain

T. Kibédi and R.H. Spear, At. Data

Nucl. Data Tables 80, 35 (2002)

Revision of the E3 strength in ${ }^{96} \mathrm{Zr}$

- determination of E3 strength in ${ }^{96} \mathrm{Zr}$ using gamma-ray spectroscopy requires two measurements:
- lifetime (≈ 70 ps - plunger measurements)
- branching ratio E3/E1
- if the 147 keV / 1897 keV intensity ratio is directly measured, the efficiency must be known precisely
- walk effect, conversion at 147 keV

- new measurement - gating from above and comparison of 1750 keV and 1897 keV intensities

Ł. Iskra et al, Phys. Lett. B 788 (2019) 396

Octupole collectivity in Zr isotopes: new BR measurement for ${ }^{96} \mathrm{Zr}$

- new measurement of E1/E3 branching ratio in ${ }^{96} \mathrm{Zr}$ (\not. Iskra et al, Phys. Lett. B 788 (2019) 396) points to lower octupole collectivity, but the overall trend remains puzzling

\rightarrow new systematic study of quadrupole and octupole collectivity in stable Zr isotopes at MLL

Octupole collectivity in Ru isotopes

- no $B(E 3)$ values for Ru isotopes lighter than ${ }^{100} \mathrm{Ru}$
- smooth evolution of 3^{-}energies
- conflicting B(E3) results in Ru and Mo nuclei

${ }^{96} \mathrm{Ru}{ }^{98} \mathrm{Ru}{ }^{100} \mathrm{Ru}{ }^{102} \mathrm{Ru}$
P. Garrett, MZ et al, PRC 106, 064307 (2022)

Coulomb excitation of ${ }^{100} \mathrm{Ru}$

- low-energy Coulomb excitation of ${ }^{100} \mathrm{Ru}$ with a ${ }^{32} \mathrm{~S}$ beam performed at HIL Warsaw in April 2022 (PI P. Garrett, K. Wrzosek-Lipska, MZ)
- in order to better constrain the properties of the 2_{2}^{+}state, data will be completed by a second measurement with a ${ }^{14} \mathrm{~N}$ beam
- additional lines in the spectrum due to target oxidation
- decay of the 3_{1}^{-}state at the observation limit

Outlook: challenges for future Coulomb-excitation studies

- abundance: $5.54 \%{ }^{96} \mathrm{Ru}, 2.80 \%{ }^{96} \mathrm{Zr}$
- difficult to get material with high enrichment (even more since the war has started); to my knowledge, no suppliers offer ${ }^{96,98} \mathrm{Ru}$
- difficult to produce Ru and Zr targets (material often available in oxide form, Ru targets produced by electrodeposition proven very fragile)
- high excitation energies in ${ }^{96} \mathrm{Zr}$ and ${ }^{96} \mathrm{Ru}$ with respect to other isotopes make it more difficult to populate levels of interest

Hexadecapole strength in $A \approx 100$ nuclei

M. Pignanelli et al, NPA 540, 27 (1992)

