

Parton structure and fluctuations in inclusive & exclusive reactions

Imaging the visible matter that binds us

Kong Tu BNL

Last day of a 5-week workshop...

Never underestimate the joy people derive from hearing something they already know.

Enrico Fermi

Seeing is believing

38 billion km (~10¹²m)

a few centimeter (~10⁻² m)

10-100 nanometer (~10⁻⁹ m)

First-ever image of a black hole - *Event Horizon Telescope*

CT scan sequence of a patient with a *glioblastoma*.

3D images of myelin - the insulation coating our nerve fibres

Astronomical scale

microscopic scale

One of the most convincing scientific methods to understand our nature!

How to SEE the partons

Speed or momentum

How to SEE the partons

How to SEE the partons

HERA's precise data on free proton What about nuclei?

Parton Distribution Functions (PDFs)

7

Neutron structure is difficult to measure

How to study partonic structure of neutron?

Deuteron ~ **proton + neutron**

Deuteron 1.8756 GeV/c²

What about proton-neutron interaction?

Deuteron ~ proton + neutron

Game changer – EIC provides forward tagging

Measuring free neutron structure at EIC ePit

Measuring free neutron structure at EIC epice

Measuring free neutron structure at EIC epice

General-purpose eA DIS MC generator https://eic.github.io/software/beagle.html

Two sides of the same coin: Strong NN interaction

Does nucleon internal momentum correlate with the quark modification?

Universality?

Universality

EIC may solve the 40-year EMC puzzle via **forward tagging**

Deuteron (high *p-n* momentum) Heavy nuclei (higher nuclear density)

A reminder – the EMC effect

Terminology:

The so-called "EMC slope" parameter gets larger when **A** increases

Hypothesis: nucleon virtuality effect

- dR_{EMC}/dx_{bj} is the EMC slope;
- −t' ~ v_{NR} is the active nucleon virtuality based on model calculations (*Phys.Rev.C76 055206,2007*)
- If the virtuality is indeed the cause, can the EMC effect be reproducible without changing the system, but rather only varying -t'?

Minimal parametrization (linear) Linear offshell dependence on the EMC effect. (Frankfurt, Strikman, Weiss)

Virtuality or off-shellness in deuteron

 $-t^2 = M_N^2 - (p_d - p_p)^2$ virtuality/off-shellness in deuteron

BeAGLE – implementing EMC effect

Strong nuclear suppression seen in deuteron with high p_{Tec} breakup

Far-Forward Detectors at EIC is indispensable (GeV2)

- > Only apply to $0.3 < x_{bj} < 0.7$
- ➢ Q² independent
- > Weight = F_2 (bound)/ F_2 (free)

A. Jentsch, M. Strikman, ZT, C. Weiss (In preparation)

Parton 3D structure at the EIC

Vector Meson (J/ ψ) exclusive production

$$\sigma_{{\rm J}/\psi} \sim [xg({\rm x},{\rm Q}^2)]^2$$

Coherent (target stays intact)	Incoherent (target breaks up)
Average nuclear parton density	Event-by-Event parton density fluctuations
Momentum transfer (t) and transverse spatial position (b) are Fourier transform to each other;	

A sensitive probe to the gluon density, spatial distributions, and their fluctuations.

Strong NN interaction at low-x

New EIC tagging program established

3D gluon structure of heavy nuclei

Momentum conservation: $\vec{p}_{gluon} = \vec{p}_{\gamma*} - \vec{p}_{J/\Psi}$

Momentum to Position: (Fourier Transform)

$$\vec{p}_{gluon} \leftrightarrow \vec{b}_{T,gluon}$$

"It's a **Golden** Channel" - EIC white paper

Gluon spatial distribution at the EIC

Gluon spatial distribution at the EIC

Nuclear breakups

(Phys. Rev. D 104 (2021) 11, 114030)

EIC full simulation in ePIC

Measurement of |t| precisely requires excellent det. resolution

What can we learn about **Parton structure & fluctuation** before the EIC ?

QCD Machines

Complementarity: UPC and EIC

UPC RHIC & LHC

Photoproduction only (real photons) Mass or p_T – hard scales CM energy, W ~ [4, 400-1000] GeV, x ~ 10⁻⁵ -10⁻¹ mostly Pb²⁰⁸, Au¹⁹⁷.

Limited far-forward coverage for breakup products

<u>EIC</u>

Electroproduction (virtual photons) Q² – an independent hard scale CM energy, W ~ [9, 86] GeV, x ~ 10⁻⁴ -10⁻² Deuterium to Uranium

Large far-forward coverage, esp. for nuclear breakup.

Can we preview EIC physics via UPCs?

By replacing the photon provider!

STAR UPCs at RHIC-STAR

A versatile program with different species, energy, and polarization. Sensitive to a wide range of **EIC physics**

Au¹⁹⁷

First deuteron-gold UPC J/ ψ & tagging

Supporting gluon density fluctuation

PRL 128 (2022) 12, 122303

Shadowing model revisited

If nucleon dissociation is off, LTA can describe STAR data well

Remark on dAu UPC data

Deuteron is a model calibrator:

At x ~ 0.01, neither **saturation** nor **shadowing** is strong.

Deuteron incoherent breakup:

- a) Saturation model suggests strong sub-nucleonic shape or density fluctuation driven by nucleon dissociation.
- b) Shadowing model suggests to have NO nucleon dissociation.

These two explanations can't be right at the same time

AuAu UPCs

(a) Coherent with nucleus stays intact (b) Incoherent with elastic nucleon (c) Incoherent with nucleon dissociative

As expected, incoherent events dominate high momentum regime

Remark: fluctuation plays an important role

Density fluctuation was a big step forward in understanding the HI flow data

Many more new data from STAR, but wait for DIS 2023

- Shine new lights to parton structure in heavy nuclei;
- Comparisons with many models and NLO;
- and more...

Climbing the same mountain from different sides

A different route to the top? Entanglement in proton

Proton is an entangled system – in fact, this might be the best example of an entangled system in nature due to QCD **confinement**.

 $|p\rangle = |qqq\rangle \otimes |ggg\rangle \otimes |qgqq..\rangle \otimes ...$

Maximally entangled \cong Saturation?

Entanglement implications:

- i) Thermalization in pp collisions. [Baker & Kharzeev];
- ii) Proton is in a *maximally entangled* state at low-x. Entanglement Entropy (EE) is related to $xg(x,Q^2)$. [Kharzeev & Levin]
- iii) At low-Q², EE applies to non-perturbative regime unlike PDFs.

 \simeq

Observation of maximally entangled proton

H1 @HERA ep 27x920 GeV DIS

I joined H1 experiment 12 years after it was shutdown

ep Deep Inelastic Scattering data at ~ 320 GeV showed indication of maximally entangled proton

Observation of maximally entangled proton

ep Deep Inelastic Scattering data at ~ 320 GeV showed indication of maximally entangled proton

Observation of maximally entangled proton

ep Deep Inelastic Scattering data at ~ 320 GeV showed indication of maximally entangled proton

Summary – parton structure & fluctuation

- Unique measurement of "two sides of the same coin"- free vs bound nucleon;
- Gluon tomography of nucleon.

Established experimental program to realize the EIC **Golden Channel**.

UPC in heavy-ion program (dAu, AuAu, ...) – a complementary program to EIC science

DIS at HERA – entanglement entropy

- A new way to describe parton structure

Backup

56

A reminder – Saturation vs (nuclear) Shadowing

1. Saturation model (CGC)

First-principle tells us gluon density $xg(x,Q^2)$ cannot be infinite!

2. Shadowing model (LTA)

xg(x,Q²) is not changed, but effectively suppressed in nuclei from interference.

In nuclei, saturation effect is stronger; in proton, no shadowing effect

Reconstruction method of -t

- Method Exact (E):
- Method Approximate (A) (UPCs)
- Improved Method E: Method L

$$-t = -(p_{e}-p_{e}, -p_{VM})^{2} = -(p_{A}, -p_{A})^{2}$$

$$-t = (\vec{p}_{T,e}, +\vec{p}_{T,VM})^{2}$$

$$-t = -(p_{A',corr} - p_{A})^{2},$$

where $p_{A',corr}$ is constrained by exclusive reaction.

Best method concluded from the EIC Yellow Report – Method L

- Insensitive to beam effects, e.g., angular divergence and momentum spread.
- More precise than Method A for electroproduction

Incoherent background

> Incoherent itself is a great interest, but it is the major background to the coherent case.

- > Far-forward region is busy! Many breakup particles, e.g., protons, neutrons, photons, and nuclei
- BeAGLE general-purpose eA MC, see <u>https://eic.github.io/software/beagle.html</u>

Performance of background suppressions

- No neutrons in ZDC (veto 2)
- No proton in any forward detectors (veto 3-5)
- No photon > 50 MeV in B0 or ZDC (veto 6-7)
- Minima (1st min. 2nd min. 3rd min.) are from Sartre MC generator (slide 4-5). Only 5% resolution assumed.
- Vetoing all of them is impossible. The question is how much is needed.
- This result was used in ATHENA proposal

Result – ATHENA Tracker only

> Challenge 1: Incoherent background, but it only becomes an issue at high -t;

> Challenge 2: Momentum resolution is not enough. Bottleneck - p_T resolution of the scattered electron.