Toward a measurement of nuclear Magnetic Quadrupole Moment (nMQM) using quantum logically controlled molecular ions

Yan Zhou University of Nevada, Las Vegas 2024.4.5



# **UNLV and Zhou lab**





#### Molecules – quantum control and spectroscopy

- Molecular ions eEDM & nMQM
- Rydberg molecules BaF and RaF
- OFC spectroscopy
- Ion-radical collisions

#### Students

- Rodrigo Fernandez
- Jose Mosquera Ojeda
- Govinda Bhandari
- Bernardo Gutierrez
- Trevor Taylor
- Stephanie Letourneau
- Xuanyi Wu

#### Collaborators

- Ion storage group, NIST, Boulder
- Prof. Garcia-Ruiz and Prof. Field at MIT
- Prof. McGuire at MIT and Prof. Liu at UofL

# **Working at JILA**

#### PIs

- Eric Cornell
- Jun Ye

#### **Students & Postdoc**

- <u>Kia Boon Ng</u>
- Will Cairncross
- Tanya Roussy
- Tanner Grogen
- Yuval Shagam
- Matt Grau
- Kevin Cossel
- Dan Gresh

#### Collaborators

- Robert Field
- Lan Cheng
- Tanya Zelevinsky
- Victor FlambaumFunding

Marisco Foundation





#### JILA eEDM team (2017)



# **Outline**

- eEDM measurements
- Quantum logic spectroscopy
- New method in a ring trap
- From eEDM to nMQM

# eEDM roadmap

#### □ In the past decade

- 250 times improvement
- YbF, ThO, HfF<sup>+</sup>
- 10 TeV energy scale

#### JILA 2023



# eEDM roadmap

- $\hfill \Box$  In the past decade
  - 250 times improvement
  - YbF, ThO, HfF<sup>+</sup>
  - 10 TeV energy scale
- □ In the next decade
  - Another 2-order of magnitude
  - Toward PeV energy scale
  - Far beyond LHC energy
  - Cross-verifications
    - Species
    - Platforms



# eEDM roadmap

 $\hfill \Box$  In the past decade

- 250 times improvement
- YbF, ThO,  $HfF^+$
- 10 TeV energy scale
- $\hfill\square$  In the next decade
  - Another 2-order of magnitude
  - Toward PeV energy scale
  - Far beyond LHC energy
  - Cross-verifications
    - Species
    - Platforms
- Hadronic sector of the Standard Model













# Polar molecules, ${}^{3}\Delta_{1}$ state

- $\delta$  electron orientates molecules
- $\sigma$  electron senses a large electric field
- $\mu_S \sim -\mu_L$ , small magnetic g-factor



# Polar molecules, ${}^{3}\Delta_{1}$ state

- Electric field orientates molecules
- Magnetic field orientates electron spin



# Polar molecules, ${}^{3}\Delta_{1}$ state

- Electric field orientates molecules
- Magnetic field orientates electron spin



# **JILA eEDM measurements**



# **JILA eEDM measurements**



- 3 s coherence time
- 23 GV/cm effective electric field
- $N \sim 120$  ions/shot
- 620 hours data

• 
$$f = -14.6 \pm 22.8_{\text{stat}} \pm 6.9_{\text{syst}} \,\mu\text{Hz}$$

• 
$$d_e = (-1.3 \pm 2.0_{\text{stat}} \pm 0.6_{\text{syst}}) \times 10^{-30} \text{ e.cm}$$

•  $|d_e| < 4.1 \times 10^{-30}$  e.cm (90% confidence)

# <u>What I have learnt – JILA eEDM I</u>

- Deliberately "bad" measurement
  - $\circ$  Ion position in the trap
  - $\circ$  Ion slosh
  - External magnetic fields
  - Electric field magnitude
  - Rotation frequency
  - $\circ$  Ion density
  - $\circ \pi/2$  pulse duration
  - 0 ....
- Perturbation method
- □ Numerical modeling



# <u>What I have learnt – JILA eEDM II</u>

#### **Quantum control and readout**



#### What I have learnt – JILA eEDM III □ Spectroscopy of ThF and ThF<sup>+</sup> $Th^+ + F$ <u>Ω</u>=2 $\Omega = 0^{-1}$ <u>**Ω**=</u>0<sup>+</sup> **Rydberg state 1**Σ+ $^{3}\Delta_{1}, \nu^{+}=0,$ *J*<sup>+</sup>=1-4 J+=1 [32.9] **Ω**=3/2, *J*=3/2 *F*=1/2 EΒ **Ω**=-1 *F*=3/2 *Ω*=+1 -3/2 -1/2 1/2 3/2 $^{2}\Delta_{3/2}, v=0$

# <u>What I have learnt – JILA eEDM III</u>

Spectroscopy of ThF and ThF<sup>+</sup>
 Infinitely long lifetime of <sup>3</sup>Δ<sub>1</sub>



|                                               |                      | 300 K | 200 K |
|-----------------------------------------------|----------------------|-------|-------|
| $\tau_{exc} = \frac{\tau_{decay}}{n_{black}}$ | <b>BBR</b> vibration | 4 s   | 20 s  |
|                                               | BBR $^{1}\Sigma^{+}$ | 20 s  | 45 s  |
|                                               | <b>BBR</b> rotation  | 190 s | 280 s |

# What I have learnt – JILA eEDM III

Spectroscopy of ThF and ThF<sup>+</sup>
 Infinitely long lifetime of <sup>3</sup>Δ<sub>1</sub>
 Multiplex measurements





Precision metrology
Quantum control/readout
Multiplexing measurements



#### **QLS** at NIST





#### □ Molecular spectroscopy



#### □ Heavy elements



#### □ AMO – Standard Model



# What is next?

- JILA larger ion trap
  - Trap more than 10,000 ions, but about 100 ions are detected
  - If nMQM measurements with large nuclear spin, 1 ion is detected

# What is next?

- JILA larger ion trap
  - Trap more than 10,000 ions, but about 100 ions are detected
  - If nMQM measurements with large nuclear spin, 1 ion is detected
- ACME longer and more intense beam
  - Coherent time is still in millisecond scale
  - Large sample consumption (expensive with Th-229 or others)

# What is next?

- JILA larger ion trap
  - Trap more than 10,000 ions, but about 100 ions are detected
  - If nMQM measurements with large nuclear spin, 1 ion is detected
- ACME longer and more intense beam
  - Coherent time is still in millisecond scale
  - Large sample consumption (expensive with Th-229 or others)
- Laser cooling and trapping
  - Very exciting prospective



- Concentrate 100% population to a single quantum state from hundreds of initial states
- An efficient state readout with 100% fidelity

- Concentrate 100% population to a single quantum state from hundreds of initial states
- An efficient state readout with 100% fidelity
- Extremely long coherence time beyond a minute

- Concentrate 100% population to a single quantum state from hundreds of initial states
- An efficient state readout with 100% fidelity
- Extremely long coherence time beyond a minute
- Universal platform for different molecular species
- Rare isotopes minimum amount of sample
- Repeat measurements of a single ion

- Concentrate 100% population to a single quantum state from hundreds of initial states
- An efficient state readout with 100% fidelity
- Extremely long coherence time beyond a minute
- Universal platform for different molecular species
- Rare isotopes minimum amount of sample
- Repeat measurements of a single ion
- Chip-scale of the experimental device microfabricated ion trap
- Scalability highly parallel measurements

- Concentrate 100% population to a single quantum state from hundreds of initial states
- An efficient state readout with 100% fidelity
- Extremely long coherence time beyond a minute
- Universal platform for different molecular species
- Rare isotopes minimum amount of sample
- Repeat measurements of a single ion
- Chip-scale of the experimental device microfabricated ion trap
- Scalability highly parallel measurements
- Minimum systematics inherit reference, quantum sensors

 $^{232}$ ThF<sup>+</sup>



 $^{232}$ ThF<sup>+</sup>















- We have a harmonic ion trap
- Load one **Yb**<sup>+</sup> and one **ThF**<sup>+</sup> in the trap
- Two ion species are linked by the Coulomb force



- We have a harmonic ion trap
- Load one **Yb**<sup>+</sup> and one **ThF**<sup>+</sup> in the trap
- Two ion species are linked by the Coulomb force
- Laser cools **Yb**<sup>+</sup> to the ground motional state
- **ThF**<sup>+</sup> is sympathetically cooled to the ground motional state



- We have a harmonic ion trap
- Load one **Yb**<sup>+</sup> and one **ThF**<sup>+</sup> in the trap
- Two ion species are linked by the Coulomb force
- Laser cools **Yb**<sup>+</sup> to the ground motional state
- **ThF**<sup>+</sup> is sympathetically cooled to the ground motional state
- If **ThF**<sup>+</sup> is excited to the motional excited state, **Yb**<sup>+</sup> is in the motional excited state as well



- We have a harmonic ion trap
- Load one **Yb**<sup>+</sup> and one **ThF**<sup>+</sup> in the trap
- Two ion species are linked by the Coulomb force
- Laser cools **Yb**<sup>+</sup> to the ground motional state
- **ThF**<sup>+</sup> is sympathetically cooled to the ground motional state
- If **ThF**<sup>+</sup> is excited to the motional excited state, **Yb**<sup>+</sup> is in the motional excited state as well
- This state does not exist

















#### **Electric and magnetic fields**

- No biased electric field, no eEDM sensitivity
- We need to apply  $\sim 10$  V/cm rotating external field to polarize molecules

#### **Electric and magnetic fields**

- No biased electric field, no eEDM sensitivity
- We need to apply  $\sim 10$  V/cm rotating external field to polarize molecules
- Rotating E-field is incompatible with QLS
  - Send laser beams into a rotating frame
  - Excess heating

#### **Electric and magnetic fields**

- No biased electric field, no eEDM sensitivity
- We need to apply  $\sim 10$  V/cm rotating external field to polarize molecules
- Rotating E-field is incompatible with QLS
  - Send laser beams into a rotating frame
  - Excess heating
- Solution
  - Separate QLS (static frame) and spin-precession (rotating frame)
  - A smooth transition between these frames

#### **Ring ion trap**



#### **Ring ion trap**



| Property        | Value     |  |
|-----------------|-----------|--|
| Radial Freq     | 2.5 MHz   |  |
| Axial Freq      | 1 MHz     |  |
| Rotation Freq   | 0-100 kHz |  |
| Rotation radius | 3 mm      |  |
| E-field         | 0-32 V/cm |  |

QLS in the static frame
 Precision measurement in the rotating frame



- □ What happens when the ions are rotating faster and faster?
  - Rotating E-field repel A and B, C and D
  - Rotating coupling interacts  $\Delta m_F = \pm 1$
  - Rotating B-field is constant Zeeman shifts do not change



- □ What happens when the ions are rotating faster and faster?
  - Rotating E-field repel A and B, C and D
  - Rotating coupling interacts  $\Delta m_F = \pm 1$
  - Rotating B-field is constant Zeeman shifts do not change



- □ What happens when the ions are rotating faster and faster?
  - Rotating E-field repel A and B, C and D
  - Rotating coupling interacts  $\Delta m_F = \pm 1$
  - Rotating B-field is constant Zeeman shifts do not change



□ Solution 1: increase the ramp rate



- □ Solution 1: increase the ramp rate
- □ Solution 2: adiabatic population transfer



#### **Experimental sequence**



□ State preparation and detection is performed for each ions one-by-one

- □ Spin-precession is for all ions
- □ State readout of one measurement is the state preparation of the next measurement

#### nuclear MQM



□ More hyperfine states

□ Rotation-induced couplings are more complicated

#### nuclear MQM

#### Degenerate QLS



#### **Current status**

- QLS and degenerate QLS for heavy molecular ions
- □ High-precision simulations
- □ Ring trap fabrication and tests
  - 3D trap using the laser cutting method
  - Surface trap using microfabrication method

# Thank you!

