

Dark Matter Signatures in Neutron Stars

Dake Zhou

INT WORKSHOP 22-2b Dark Matter in Compact Objects, Stars, and Low-Energy Experiments

Neutron stars are ideal laboratories

Extreme conditions: nurturing ground for exotics (dark?)

- Dense: $\rho \sim 10^{19} \text{ kg/m}^3$ (dense QCD)
- Compact: M/R~0.3 (strong gravity)
- Hot: $T \sim 50$ MeV, opaque to ν 's (supernovae and kilonovae)
- $B \sim 10^{12}$ T (magnetars), high spin (millisecond pulsars), ...

> Multimessenger observations: a window to the unknown (dark?)

How may neutron stars get DM?

>Accretion is inefficient, probably w/o detectable effects

$$M_{\rm accretion} \sim 10^{-16} \left(\frac{\rho_{\chi}}{\rm GeV/cm^3} \right) \left(\frac{\sigma_{\chi n}}{10^{-45} \rm cm^2} \right) \left(\frac{\rm t}{10^8 \rm \ yrs} \right) \ M_{\odot}$$

- Exceptions:
 - Thermalized bosonic DM could induce gravitational collapse

$$M_{\rm crit} \approx M_{\rm pl}^2/m_\chi \sim 10^{-16} \left(\frac{100 \text{ GeV}}{m_\chi}\right) M_{\odot}$$

[Goldman and Nussinov 1989], [Kouvaris and Tinyakov 2010], [Bertoni et al 2013], [Bramante et al 2013], [Jamison 2013]...

• Primordial BHs [Abramowicz et al 2009], [Fuller et al 2017],..., compact dark objects alike, ...

>In situ: produced/converted from SM species in the star and remains trapped

DM production in proto-neutron stars

> Trapping: gravity ($v_{esc} \sim 0.6$), self-interaction, matter effect (B, L, γ ...)

Relevant for other types of stars too (see talks last week)

Dark Lepton Superfluid in Proto-Neutron Stars

[Sanjay Reddy and **DZ**, *PRD* 105 (2022) 2, 023026, arxiv: 2107.06279]

INT WORKSHOP INT-22-2B

Model: ν -portal bosons

 \succ Gauge neutral scalar ϕ carrying lepton number 2:

$$\mathcal{L}_{\text{eff, int}} \supset -\frac{g_{\alpha\beta}}{2} \nu_{\alpha} \nu_{\beta} \phi^* + \text{h.c.} - m_{\phi}^2 \phi \phi^* - \frac{\lambda}{4} (\phi^* \phi)^2$$

Generated from dimension-6 operator after EWSB

$$\frac{f_{\alpha\beta}}{\Lambda^2} (l\widetilde{H})(l\widetilde{H})\phi^* + \text{h. c.} \qquad \text{[Burgess and Cline, 1994], [Berryman et al, 2018], .}$$

➢ Rich phenomenology:

- Many astro and laboratory constraints; Focus on $g\equiv g_{ee}\lesssim 10^{-2}$ in this talk
- Strong (10⁶G_F) neutrino self-interaction + N_{eff} ~4 resolves the Hubble tension(?) [Kreisch et al, 1902.00534], ...

Production, Thermalization, and Condensation

 \succ Rapid ϕ production in abundance $\nu\nu \rightarrow \phi$

•
$$\frac{\mathrm{d}n_{\phi}}{\mathrm{d}t} \sim 10^{61} \,\mathrm{s}^{-1}\mathrm{km}^{-3} \times \left(\frac{g}{10^{-3}}\right)^2 \left(\frac{m_{\phi}}{50 \,\mathrm{MeV}}\right)^2 \left(\frac{\mathrm{T}}{30 \,\mathrm{MeV}}\right)$$

 \succ Trapping and thermalization: $\phi \rightarrow \nu \nu, \nu \phi \rightarrow \nu \phi, ...$

• Mean free path:
$$\lambda_{\phi} \sim 10^{-9} \text{ km} \times \left(\frac{10^{-3}}{g}\right)^2 \left(\frac{50 \text{ MeV}}{m_{\phi}}\right)^2 \left(\frac{E_{\phi}}{20 \text{ MeV}}\right)$$

• Equilibrium characterized by chemical potential $\mu_{\phi} = 2\mu_L = 2\mu_{\nu_e}$

 \blacktriangleright Bosons condense when $\mu_{\phi} \geq m_{\phi}$: spontaneously broken $U(1)_L$

- $V_{\rm eff}(\phi)$ minimized by a finite VEV; Goldstone boson as the flat direction
- The ground state is a lepton number superfluid

 ϕ produced in the ground state

Astrophysical Implications

>Instantaneous L transport by the superfluid:

Suppress Joule heating: lower maximum T attainable

> Alter PNS compositions: change n-to-p ratios

➢ Reduced thermal conductivity

• The Goldstone mode couples strongly to v_e 's; linear dispersion

$$\omega = \sqrt{\frac{\mu_{\phi}^2 - m_{\phi}^2}{3\mu_{\phi}^2 - m_{\phi}^2}} \ k + \mathcal{O}(k^3)$$

• Cherenkov radiation $\nu_e \rightarrow \nu_e J$ shortens ν_e mean-free-path

> Need simulations to identify potential observables

Observable: neutrino signal

> Neutrino decoupling sensitive to new Weak-scale forces

- Insensitive to the condensate, generic to vSI models
- Relates T_v and interaction strength through bulb model & fixed L_v

 \succ "bound": Low T_{ν} (large R_{ν}) in tension with SN1987

• Bayesian analysis favors $T_{\overline{\nu}_{\rho}} \gtrsim 3 \text{ MeV}$ (e.g. [arxiv:0107260])

 \succ Side effect: reduced asymmetry between v_e and \overline{v}_e

lower n/p ratio in v driven winds, bad for r-processes

Self-consistent simulations required to refine these

Feedback; condensate; BNS mergers? ...

Retention of DM

>Can the dark particles remain trapped for longer?

• The dark lepton bosons will evaporate and leave the star as v's over ~20 s

 \succ Couple the (vector) boson V^{μ} to Dirac fermion χ carrying L

$$\mathcal{L}_{\rm eff} \supset \mathcal{L}_{\rm eff, \nu V} + \overline{\chi} (i \gamma^\mu \partial_\mu - g_\chi \gamma^\mu V_\mu - m) \chi$$

 \succ Non-zero net lepton number in the star preferably selects χ over $\overline{\chi}$

$$E_{\bar{\chi}} - E_{\chi} = \frac{2g_{\chi}g_L}{m_V^2} n_L \simeq 10 \text{ MeV } \frac{g_{\chi}g_L}{10^{-4}} \left(\frac{\text{MeV}}{m_V}\right)^2 \frac{n_L}{0.1 \text{ fm}^{-3}}$$

Could also work for other SM charges in the star (e.g., B current in JCAP 07 (2019) 012, arxiv:1803.03266) 8/24/22

A 1D estimate: escape velocities as trapping criterion

0.10

0.08

0.06

0.04

0.02

0.00 + 0

f(p)

 \succ Are there observables associated with these trapped DM?

 $p_{\rm esc}^{\bar{\chi}}$

20

40

60

p (MeV)

80

matter effect

Charge separation and retention

$$E_{\chi,\rm kin}+E_{\chi,\rm matter}+E_{\chi,\rm grav}=0$$

Symmetric production, asymmetric trapping

• Eg: 80% retention rate for χ , 1% for $\overline{\chi}$ (whole star average)

> $m_{\chi} = 50 \text{ MeV}, m_V = 1 \text{ MeV}$ $g_{\chi}g_L = 10^{-4}, T = 20 \text{ MeV}$

• Net dark matter: $\leq 0.01 M_{\odot}$

@ center of a

canonical PNS

 $p_{\rm esc}^{\chi}$

100

120

[Sanjay Reddy and **DZ**, in preparation] [Ann Nelson, Sanjay Reddy, **DZ**, *JCAP* 07 (2019) 012]

and Gravitational Waves

[Ann Nelson, Sanjay Reddy, DZ, JCAP 07 (2019) 012, arxiv:1803.03266]

Dark halo from self-interacting DM

> (strong) DM self-interactions from the vector mediator

Light (sub-GeV) fermions charged under massive U(1) (B,L,B-L,...)

$$\mathcal{L} \supset \bar{\chi}(i\partial \!\!\!/ - g_{\chi} V \!\!\!/ - m_{\chi})\chi + \frac{1}{2}m_V^2 V^{\mu}V_{\mu} - \frac{1}{4}V^{\mu\nu}V_{\mu\nu}, \quad V_{\mu\nu} = (\partial_{\mu}V_{\nu} - \partial_{\nu}V_{\nu})$$

Charged bosons could work too

$$\mathcal{L} \supset \partial^{\mu} \phi^* \partial_{\mu} \phi - m_{\phi}^2 \phi^* \phi - g V^{\mu} (\phi^* \partial_{\mu} \phi - \phi \partial_{\mu} \phi^*)$$

Can form stable halos around NS

> Halo modifies gravitational wave emissions from binary NS inspirals

• Small monopole, but large quadrupole contributions $M_{
m DM} \lesssim 10^{-2} M_{
m NS}$

[A. Nelson, S. Reddy, DZ. JCAP 1907 (2019) 012]

GW emission from compact binary inspirals

➢ Point particle dynamics: leading order Post-Newtonian Expansion

Chirp:

$$\frac{\mathrm{d}f_{\mathrm{GW}}}{\mathrm{d}t} = \frac{96}{5}\pi f_{\mathrm{GW}}^2 \left(\pi G\mathcal{M}\right)^{5/3} \qquad \mathcal{M} = \frac{(M_1 M_2)^{3/5}}{(M_1 + M_2)^{1/5}}$$

\succ Finite size effect: tidal deformability Λ

Dark halos and gravitational waves

- \succ Halos predict large Λ or large variability in Λ
 - Nuclear/QCD uncertainties are subdominant
 - Precise measurements of Λ expected in near future
 - LIGO A+ (in ~5 years): O(100) events, ΔΛ~100
 - 3G (in ~15 years): O(1000) events, ΔΛ~20
- ➢ If found, venue for study interacting dark sector
 - Variability in Λ shend light on couplings to SM (capture/production)
 - Insights on SIDM: intriguing galactic scale implications
 - Velocity-dependent $\sigma_{\chi n}$ & small-scale structure puzzles [Kaplinghat et al 2016],...
 - exception: Fermi pressure alone is sufficient for light fermions (\lesssim 50 MeV)

 $m_{\chi} = 100 \text{ MeV}, \ m_V/g_{\chi} = 10 \text{ MeV}$

[A. Nelson, S. Reddy, DZ. JCAP 1907 (2019) 012]

Post-Newtonian treatment breaks down when halos touch; Need simulations!

Neutron Stars Exclude Light Dark Baryons

[David McKeen, Ann Nelson, Sanjay Reddy, DZ, PRL. 121 (2018) 6, 061802]

INT WORKSHOP INT-22-2B

Dark Neutrons and the Neutron Decay Puzzle $n \rightarrow p + e + \bar{\nu}_e$

[B. Fornal and B. Grinstein, PRL. 120, 191801 (2018)]

...

Neutron Star Constraints

Thermalization even for tiny mixings

• $t_{\rm th} \ll t_{\rm NS} \sim 10^6 - 10^8 {\rm yrs}$

> In equilibrium $\mu_{\chi} = \mu_n$, χ 's dominate:

- Short range nn interactions are repulsive
- n-> χ + \cdots is energetically favorable

 \succ In equilibrium EOS governed by Fermi gas of χ

Significant reductions to maximum NS masses

[McKeen, Nelson, Reddy, **DZ**, PRL. 121, 06180 (2018)]

INT WORKSHOP INT-22-2B

Summary and Outlook

>In situ production/trapping can be a significant source of DM in (neutron) stars

- Matter effects could enhance/suppress production and trapping
- Non-standard accretion scenarios merit further investigations
- Multimessenger observations as new probes of DM through imprints on stellar structure, composition, and transport phenomena
 - Robust constraints on dark baryons from NS observations despite unknown QCD physics
 - Future GW detections may reveal dark halos, unraveling interacting dark sector
 - Simulations account for DM feedback are crucial in validating SNe constraints/observables