Precise Measurement of the Neutron Skin Thicknesses of ²⁰⁸Pb and ⁴⁸Ca

The PREX-II and CREX Experiments

Weibin Zhang for the PREX/CREX collaboration

Stony Brook University UC Riverside

February 7, 2023

Outline

Introduction

Experimental Setup

Data Analysis

Result and Discussion

Transverse Asymmetry

Introduction

Questions

- What is the size of a heavy nucleus?
- What is the nuclear saturation density (ρ₀)?
- What is the symmetry energy (S_0) and its density dependence (L) at ρ_0 ?

Questions

- What is the size of a heavy nucleus?
- What is the nuclear saturation density (ρ₀)?
- What is the symmetry energy (S_0) and its density dependence (L) at ρ_0 ?

How ae neutrons arranged in atomic nuclei?

Neutron Skin Thickness

$$E = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(N-Z)^2}{A} + \frac{\delta a_P}{A^{3/4}}$$

$$E = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(N-Z)^2}{A} + \frac{\delta a_P}{A^{3/4}}$$

$$E = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(N-Z)^2}{A} + \frac{\delta a_P}{A^{3/4}}$$

$$E = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(N-Z)^2}{A} + \frac{\delta a_P}{A^{3/4}}$$

Bethe-Weisäcker semi-empirical mass formula (liquid-drop model):

$$E = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(N-Z)^2}{A} + \frac{\delta a_P}{A^{3/4}}$$

For infinite nuclear matter:

$$e = E/A pprox a_V - a_A \left(rac{N-Z}{A}
ight)^2$$

Bethe-Weisäcker semi-empirical mass formula (liquid-drop model):

$$E = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(N-Z)^2}{A} + \frac{\delta a_P}{A^{3/4}}$$

For infinite nuclear matter:

$$e = E/A pprox a_V - a_A \left(rac{N-Z}{A}
ight)^2$$

$$e(\rho,\beta) = e(\rho,0) + S(\rho)\beta^2 + O(\beta^4) \qquad \beta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}$$

Symmetry Energy

EOS:

$$e(\rho,\beta) = e(\rho,0) + S(\rho)\beta^2 + O(\beta^4)$$

Symmetry energy:

$$S(\rho) = S(\rho_0) + \frac{dS}{d\rho} \Big|_{\rho_0} (\rho - \rho_0) + \frac{1}{2} \left. \frac{d^2 S}{d\rho^2} \right|_{\rho_0} (\rho - \rho_0)^2 + \dots$$
$$S_0 = S(\rho_0) \qquad L = 3\rho_0 \left. \frac{dS}{d\rho} \right|_{\rho_0}$$

Neutron Stars

$$eta pprox 1$$
 $e(
ho) \simeq e(
ho, 0) + S(
ho)$
 $P =
ho^2 rac{de}{d
ho} \simeq
ho^2 rac{dS}{d
ho} = rac{L(
ho)
ho}{3}$
 $R_{\bigstar} \simeq C(
ho, M) P^{0.23 - 0.26}$

J. M. Lattimer and M. Prakash 2001 ApJ 550 426

Density Dependence of the Symmetry Energy

- L is poorly understood
- Precise measurement of the neutron skin thickness in $^{208}\mbox{Pb}$ can constrain L

Theoretical Predictions

Weibin Zhang

INT Seattle 2023

Parity-Violating Electron Scattering (PVES)

- Weak probe
- Interference with EM amplitude
- Clean, no QCD background as in hadronic probes
- Asymmetry is sensitive to the neutron distribution

	Electric charge	Weak charge
Proton	1	0.07
Neutron	0	-0.99

Asymmetry

- γ interacts with only vector current
- Z⁰ interacts with both vector and axial-vector currents

$$\mathcal{A}_{\mathsf{PV}} = \frac{\left(\frac{d\sigma}{d\Omega}\right)^R - \left(\frac{d\sigma}{d\Omega}\right)^L}{\left(\frac{d\sigma}{d\Omega}\right)^R + \left(\frac{d\sigma}{d\Omega}\right)^L} \approx \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \frac{Q_{wk}}{Z} \frac{F_{wk}(Q^2)}{F_{ch}(Q^2)} \sim 10^{-4} \frac{Q^2}{\mathrm{GeV}^2}$$

where:

$$F(Q^2) = \int d^3r \frac{\sin(Qr)}{Qr} \rho(r)$$

• $\mathcal{A}_{\mathsf{PV}} \sim \mathsf{ppm}$, $\frac{\delta \mathcal{A}}{\mathcal{A}} \lesssim 4\% \Rightarrow \delta R_n \lesssim 0.05$ fm

Weibin Zhang

Experimental Setup

Hall A at JLab

CEBAF

Hall A

	PREX-II	CREX
E (GeV)	0.95	2.18
θ (deg)	4.7	4.5

Weibin Zhang

Polarized Electron Source: GaAs-Based Semiconductor

Weibin Zhang

INT Seattle 2023

Helicity Control

- Pockels Cell (PC): fast helicity flipping
- Insertable Half-Wave Plate (IHWP): slow helicty flipping
- Wien Filter: very slow helicity flipping

Polarimeters

- Invasive, happens every few days
- PREX-II: $\mathcal{P} = (89.67 \pm 0.80)\%$

• CREX:
$$\mathcal{P} = (87.06 \pm 0.74)\%$$

- Non-invasive
- PREX-II: $\mathcal{P} = (89.68 \pm 0.15)\%$
- CREX: $\mathcal{P} = (87.115 \pm 0.453)\%$

Septum and HRS

- Septum: make the small scattering angle of $\sim 5^\circ$ possible
- High Resolution Spectrometer (HRS): precise Q² measurement, reject inelastic scatterings

Detectors

- Main Detectors: 5 mm thick fused silica (quartz) with a size of 16 cm long by 3.5 cm wide
- AT: also a quartz detector, used for monitoring the transverse polarization
- GEM: for optics study

Weibin Zhang

Run Time

Charge Tracking

CREX: Dec, 2019 - Mar, 2020 Aug - Sep, 2020

Data Analysis

Asymmetry Extraction and Interpretation

$$\mathcal{A}_{cor} = \mathcal{A}_{raw} - \sum_{i} \beta_{i} \Delta x_{i}$$
$$\mathcal{A}_{PV} = \frac{\mathcal{A}_{cor} / \mathcal{P} - \sum_{i} \mathcal{A}_{i} f_{i}}{1 - \sum_{i} f_{i}}$$

•
$$\mathcal{A}_{cor}$$
: corrected asymmetry

- *A*_{raw}: raw asymmetry
- β_i: correction coefficient
- Δx_i : beam fluctuation
- \mathcal{P} : beam polarization
- A_i : background asymmetry
- *f_i*: background fraction

$$\langle \mathcal{A} \rangle = \frac{\int d\theta \sin \theta \mathcal{A}(\theta) \frac{d\sigma}{d\Omega} \epsilon(\theta)}{\int d\theta \sin \theta \frac{d\sigma}{d\Omega} \epsilon(\theta)}$$

- $\mathcal{A}(\theta)$: theoretical prediction
- $\epsilon(\theta)$: acceptance function

Raw Data (\mathcal{A}_{raw})

INTCREX raw asymmetry distributions

Weibin Zhang

Helicity Correlated Beam Asymmetry (HCBA)

- False asymmetry caused by beam fluctuations
- Though of the fast helicity reversal, there is no way to eliminate beam flucatations completely

Regression

 $\mathcal{A}_{cor} = \mathcal{A}_{raw} - \sum_{i} \beta_{i} \Delta x_{i}$

• Based on natural beam fluctuations, minimize the χ^2 of a given fit: $\chi^2 = \sum \left(\mathcal{A}_{raw} - \sum_i \beta_i \Delta M_i \right)^2 \quad \frac{\partial \chi^2}{\partial \beta_i} = 0$

Weibin Zhang

INT Seattle 2023

Beam Modulation $A_{cor} = A_{raw} - \sum_i \beta_i \Delta x_i$

• Modulate the beam deliberately, and then measure the detector (monitor) response: $\frac{\partial D}{\partial C_i} = \sum_{i}^{N_{bpm}} \beta_i \frac{\partial M_i}{\partial C_i} \quad \beta_i = \frac{\partial D}{\partial M_i}$

Lagrangian Multiplier

$$\mathcal{A}_{cor} = \mathcal{A}_{raw} - \sum_i \frac{\beta_i \Delta x_i}{\lambda_i}$$

$$\mathcal{L} = \chi^2 + \sum_i \lambda_i \left(\sum_j \frac{\partial D}{\partial C_j} \frac{\partial C_j}{\partial M_i} - \frac{\partial D}{\partial M_i} \right)$$
$$\frac{\partial \mathcal{L}}{\partial \beta} = 0 \qquad \frac{\partial \mathcal{L}}{\partial \lambda} = 0$$

- Regression is susceptible to instrumental noise
- Dithering is accurate, but not precise, limited by the low modulation frequency
- Lagrangian multiplier: try to combine these 2 techniques to avoid their drawbacks, while keeping their advantages

Corrected Asymmetry (\mathcal{A}_{cor})

Ap, Raw (red) vs. Corrected (blue)

Comparison Between the Three Methods

Asymmetry after correction

- Good agreement between the three methods
- Asymmetries corrected with the Lagrangian Multiplier are used

Result and Discussion
Final Number: A_{PV}

$$\mathcal{A}_{cor} = \mathcal{A}_{raw} - \sum_{i} \beta_i \Delta x_i$$
$$\mathcal{A}_{PV} = \frac{\mathcal{A}_{cor} / \mathcal{P} - \sum_{i} \mathcal{A}_i f_i}{1 - \sum_{i} f_i}$$

\mathcal{A} (ppb)	PREX-II	CREX
\mathcal{A}_{raw}	431.64 ± 44.01	2106 ± 178.9
\mathcal{A}_{cor}	492.02 ± 13.52	2080.3 ± 83.8
\mathcal{A}_{PV}	$549.4 \pm 16.1_{stat} \pm 8.1_{syst}$	$2412.3\pm106.1_{stat}\pm38.7_{syst}$
Unblinded \mathcal{A}_{PV}	$550.0 \pm 16_{stat} \pm 8_{syst}$	$2668 \pm 106_{stat} \pm 40_{syst}$

Final Number: R_{skin}

Exp PREX-II		CREX	
Target	²⁰⁸ Pb	⁴⁸ Ca	
$\langle Q^2 \rangle$ (GeV ²)	0.00616 ± 0.00005	0.0297 ± 0.0002	
$\langle \mathcal{A}_{PV} angle$ (ppb)	$550\pm16_{\sf stat}\pm8_{\sf syst}$	$2668 \pm 106_{stat} \pm 40_{syst}$	
F _W	$0.368\pm0.013_{exp}\pm0.001_{theo}$	$0.1304 \pm 0.0052_{\sf stat} \pm 0.0020_{\sf syst}$	
$F_{ch} - F_W$	$0.041\pm0.013_{\text{exp}}\pm0.001_{\text{theo}}$	$0.0277 \pm 0.0052_{\text{stat}} \pm 0.0020_{\text{syst}}$	
R_W (fm)	$5.795 \pm 0.082_{\text{exp}} \pm 0.013_{\text{theo}}$	$3.640 \pm 0.026_{exp} \pm 0.023_{theo}$	
$R_n - R_p$ (fm)	$0.278 \pm 0.078_{\text{exp}} \pm 0.012_{\text{theo}}$	$0.121\pm0.026_{exp}\pm0.024_{theo}$	

Final Number: L

PRL 126, 172503

 $L(\rho_0) = 106 \pm 37 \text{ MeV}$ $L(\rho_1) = 71.5 \pm 22.6 \text{ MeV}$

INT Seattle 2023

Physical Implications: Nuclear Theory

PRL 129, 042501

- Our results will guide the development of nulcear theories
- Only a few models' predictions match with both measurements simultaneously
- More work, from both experimental and theoretical sides, are needed to accommodate the difference between them

Physical Implications: Nuclear Saturation Density

- Interior baryon density: $ho_b=0.1482\pm0.0040~{
 m fm}^{-3}$
- Nuclear saturation density: $ho_0 = 0.1510 \pm 0.0059 ~{
 m fm}^{-3}$

Physical Implications: Size of a Neutron Star

PREX-II result

- supports a large neutron star radius
- is consistent with the NICER result
- is in mild tension with the LIGO observation

Physical Implications: The Direct Ucra Process in Neutron Stars

- PREX-II R_{skin} supports a lower threshold density:
 - $ho_{\bigstar} \approx 0.24 \ {\rm fm}^{-3}$ $M_{\bigstar} \approx 0.85 M_{\odot}$

Transverse Asymmetry

Introduction

Transverse Asymmetry (Beam Normal Single Spin Asymmetry):

$$A_n = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} \approx 0 + \frac{2 \mathrm{Im}(T_{2\gamma} \cdot T_{1\gamma}^*)}{|T_{1\gamma}|^2}$$

- A_n is 0 under Born approximation
- A_n is sensitive to Two Photon Exchange (TPE) interaction
- *A_n* is a systematic uncertainty in the *A*_{PV} measurement for PREX-II/CREX

Weibin Zhang

INT Seattle 2023

How to Measure Transverse Asymmetry

$$\mathcal{A}_{\text{meas}}(\phi_e) = \mathcal{A}_n(\vec{S}_e \cdot \hat{n}) = \mathcal{A}_n|\vec{S}_e|\sin(\phi_e - \phi_s)$$

- $\hat{n} \equiv \frac{(\vec{k} \times \vec{k'})}{|\vec{k} \times \vec{k'}|}$: normal direction of the scattering plane
- Azimuthal angle (ϕ_e) dependent
- Choose ϕ_s to be: 0° (horizontal) or 90° (vertical)

AT Result

PRL 128, 142501

• A_n for Pb208 is consistanly 0 at a different Q^2 values

• First measurement of a new nucleus: Ca40

Summary

Parity Violating Asymmetry measurement

- Precise measurements of the neutron skin thicknesses of Pb208 and Ca48 (the first time)
- Both measurements are statistics limited
- Constrain nuclear models and the density dependence of the symmetry energy (L)

Transverse Asymmetry measurement

- Theory calculations agree with measurements for light nuclei
- Transverse asymmetry is found to be consistent with 0 for Pb208 at all Q

Backup

One Data Point

44

History of PVES

45

Why ²⁰⁸Pb and ⁴⁸Ca?

- Doubly magic nuclei
- Spin-0

Form Factors

$$\mathcal{A}_{PV} = \frac{\frac{d\sigma^{R}}{d\Omega} - \frac{d\sigma^{L}}{d\Omega}}{\frac{d\sigma^{R}}{d\Omega} + \frac{d\sigma^{L}}{d\Omega}} = \frac{|\mathcal{M}^{R}|^{2} - |\mathcal{M}^{L}|^{2}}{|\mathcal{M}^{R}|^{2} + |\mathcal{M}^{L}|^{2}}$$
$$\approx \frac{\mathcal{M}_{Z}^{R} - \mathcal{M}_{Z}^{L}}{\mathcal{M}_{\gamma}} \propto \frac{\frac{d\sigma_{weak}}{d\Omega}}{\frac{d\sigma_{E+M}}{d\Omega}} \qquad (\text{for low } Q^{2})$$
$$\approx \frac{G_{F}Q^{2}}{4\pi\alpha\sqrt{2}} \frac{Q_{wk}}{Z} \frac{F_{wk}(Q^{2})}{F_{ch}(Q^{2})}$$

where: $\mathcal{M}^{R,L} = \mathcal{M}_{\gamma} + \mathcal{M}^{R,L}_{Z} (\mathcal{M}_{\gamma} >> \mathcal{M}_{Z})$ and

$$F(Q^2) = \int d^3r \frac{\sin(Qr)}{Qr} \rho(r)$$

Weibin Zhang

Dynamics

$$E' = \frac{ME}{M + E(1 - \cos \theta)}$$

Here M is the mass of the

where \boldsymbol{M} is the mass of the target nucleus

• with very small scattering angle $\theta \sim 5^{\circ}$, $E' \approx E$, quasi-elastic scattering

•
$$Q^2 = -q^2 = -\left[(E - E')^2 - (\vec{p} - \vec{p}')^2\right] = 2EE'(1 - \cos\theta)$$

Parameters

	PREX-II	CREX
Energy (GeV)	0.95	2.18
Beam current (μ A)	50-85	100-150
Polarization (%)	89.7	87.1
Scattering angle θ (deg)	4.7	4.5
$Q^2 \; (\text{GeV}^2)$	0.00616	0.0297
Scattering rate (MHz/ μ A/arm)	~ 30	~ 0.2
Collected charge (C)	114	412

Figure-of-Merit (FOM)

$$\mathsf{FOM} = R \times \mathcal{A}^2 \times \epsilon^2$$

- R: scattering rate
- \mathcal{A} : asymmetry

• $\epsilon = \frac{dA/A}{dR_n/R_n}$: sensitivity of the asymmetry w.r.t. neutron radius

Asymmetry of ²⁰⁸Pb

Figure: Parity-Violating asymmetry for $^{208}\text{Pb.}$ Left: E = 850 GeV; Right: $\theta = 6 \deg$

Neutron Skin Thickness of ⁴⁸Ca

Figure: Ab-initio calculation of the neutron skin thickness of ⁴⁸Ca. From left to right, neutron skin thickness (a), neutron radius (b) and electric dipole polarizability (c) of ⁴⁸Ca are plotted versus its proton radius. The ab-initio predictions are shown as red circles and dark squares, while DFT results are represented by gray diamonds. The blue line represents a linear fit to ab-initio predictions. The horizontal green line marks the experimental value of R_p , whose intersection with the blue line. nphys3529

Weibin Zhang

Neutron Skin Thickness of ²⁰⁸Pb

Figure: PREX-I result (red square). PhysRevLett.108.112502 Zhang INT Seattle 2023

CEBAF

Beamline

Target Chamber

Pulsar Lightcurve

Scattering Theory

For scattering:

$$S = 1 + i(2\pi)^4 \delta^{(4)}(\sum p_i - \sum p_f)T$$

The unitarity condition requires ($SS^{\dagger} = 1$):

$$T_{if} - T_{if}^{\dagger} = ia_{if}$$

Where a_{if} is the absorptive part of the amplitude T_{if}

$$a_{if} = \sum_{\Gamma} T_{i\Gamma} T^{\dagger}_{\Gamma f} (2\pi)^4 \delta^{(4)} (\sum p_i - \sum p_{\Gamma})$$

T-odd Effect¹

Define time reverse operation (spin and momenta reversed):

$$ilde{\Psi} = \mathcal{T} \Psi_{\uparrow}(ec{k}) = \Psi_{\downarrow}(-ec{k})$$

- Time reversal invariance: $|T_{if}|^2 = |T_{\tilde{f}\tilde{i}}|^2$
- T-odd: $\propto |T_{if}|^2 |T_{\tilde{i}\tilde{f}}|^2$

With time-reversal invariance:

$$|T_{if}|^2 - |T_{\tilde{i}\tilde{f}}|^2 = 2\mathcal{I}(T_{if}a_{fi}) - |a_{if}|^2$$

¹A. De Rujula, J. M. Kaplan, and E. De Rafael, Nucl. Phys. B35, 365 (1971)^{ang} INT Seattle 2023

Analyzing Power

PREX-I Result

PREX-I PRL 109, 192501 (2012)

• Theoretical predictions match A_n measurements of light nuclei Weibe 2 To everyone's surprise, A_n for Pb208 was measured to be 0 ⁶¹

Phenomenological Fit

- For light nuclei, the linear fit of $A_n \times Z/A$ vs Q looks good
- Observe that it has a non-zero offset

Collimator Power

- Collimator is key component in these experiments, we need to make sure radiation deposit on collimator is under control
- The radiation power on collimator tells us the quality of target

central thickness: t1 outer thickness: t2

	$t_1 (mm)$	<i>t</i> ₂ (mm)	Power/Current (W/ μ A)
	0.55	0.550	52.6172
	0.45	0.583	53.4176
	0.35	0.617	56.2972
	0.25	0.650	58.7556
	0.15	0.683	62.6694
L	0.05	0.717	66.8324
-			

Collimator Power

 Simulation result is consistent with experimental data: radiation increases along charge accumulation (target degradation)

All Hall A Measurements

- A_n for Pb208 was found to be 0 at three different Q values
- For light nuclei, theoretical calculations follow the observed experimental measurements and trends

Weibin Zhang

INT Seattle 2023

$$\begin{split} G_{E,M}^{p,\gamma} &= \frac{2}{3} G_{E,M}^{u} - \frac{1}{3} G_{E,M}^{d} - \frac{1}{3} G_{E,M}^{s} \\ G_{E,M}^{n,\gamma} &= \frac{2}{3} G_{E,M}^{d} - \frac{1}{3} G_{E,M}^{u} - \frac{1}{3} G_{E,M}^{s} \\ G_{E,M}^{n,Z^{0}} &= \left(\frac{1}{4} - \sin^{2} \theta_{W}\right) G_{E,M}^{u} + \left(-\frac{1}{4} + \frac{1}{3} \sin^{2} \theta_{W}\right) \times \left(G_{E,M}^{d} + G_{E,M}^{s}\right) \end{split}$$
Radius

$$R_{n} - R_{p} = \left[1 + \frac{ZQ_{p}}{NQ_{n}}\right] (R_{wk} - R_{ch})$$
$$R_{ch} = 5.503 \text{ fm}$$
$$R_{p} = \sqrt{R_{ch}^{2} - r_{p}^{2}} = 5.432 \text{ fm}$$
$$R_{n} - R_{p} = 0.278 \pm 0.078 \text{ fm}$$

Two-Parameter Fermi Function

$$\rho_w(r, c, a) = \rho_w^0 \frac{\sinh(c/a)}{\cosh(r/a) + \cosh(c/a)}$$
$$\rho_w^0 = \frac{3Q_w}{4\pi c(c^2 + \pi^2 a^2)}$$
$$R_w^2 = \frac{1}{Q_w} \int r^2 \rho_w(r) d^3 r = \frac{3}{5}c^2 + \frac{7}{5}(\pi a)^2$$
$$\rho_w^0 = \frac{27Q_w}{4\pi (5R_w^2 - 4\pi^2 a^2)\sqrt{15R_w^2 - 21\pi^2 a^2}}$$
$$R_w = 5.795 \pm 0.082 \text{ fm}$$
$$a = 0.605 \pm 0.025 \text{ fm from theory}$$
$$Q_w = NQ_w^n + ZQ_w^p = -118.78$$
$$\rho_w^0 = 0.080 \pm 0.004 \text{ fm}^{-3}$$
$$\rho_b^0 = \frac{-\rho_w^0}{q_n} + \left(1 - \frac{q_p}{2q_n}\right)\rho_c^0$$

Weibin Zhang

Systematic Uncertainties

Collimators

Weibin Zhang

Carbon Contamination in Pb Target

$$\mathcal{A}_{\mathsf{PV}} = rac{\mathcal{A}_{\mathsf{cor}}/\mathcal{P} - \sum_{i} \mathcal{A}_{i} \mathbf{f}_{i}}{1 - \sum_{i} \mathbf{f}_{i}}$$

Why D-Pb-D sandwich target?

- · Lead has low melting point, and low thermal conductivity
- Diamond foils have excellent thermal conductivity
- Carbon background is clean
- The largest dilution: $f_c = (6.3 \pm 0.5)\%$
- Asymmetry correction: $\Delta \mathcal{A} = (0.7 \pm 1.4)$ ppb

Acceptance Function

$$\langle \mathcal{A} \rangle = \frac{\int d\theta \sin \theta \mathcal{A}(\theta) \frac{d\sigma}{d\Omega} \epsilon(\theta)}{\int d\theta \sin \theta \frac{d\sigma}{d\Omega} \epsilon(\theta)}$$

- The PREX-II/CREX experiments measure the average asymmetry over the spectrometer scattering angle acceptance
- An acceptance function is needed to connect our measurement with theoretical models
- The acceptance function is extracted from simulations

CREX Acceptance Fucntion: How Do We Know the Simulation is Correct

- There are sieve planes in front of the septum for track reconstruction
- By scanning through different parameters, we can identify the best model

CREX Acceptance Function: Result

- LHRS (RHRS): Left (Right)-HRS
- The acceptance functions between the two arms are not exactly the same