

Observation of the QCD dead-cone effect Nima Zardoshti (CERN)

Heavy-flavour workshop 21/10/2022

Casimir Colour factors

Different emission properties due to the different amount of colour charge carried by quarks and gluons

$$\frac{C_{\rm A}}{C_{\rm F}} = \frac{9}{4}$$

Gluon-initiated shower

Broader shower profile Higher number of emissions

Quark-initiated shower

narrower shower profile Fewer emissions in the shower

Heavy-quark-initiated shower

Suppression of small angle emissions Harder fragmentation

Casimir Colour factors

Different emission properties due to the different amount of colour charge carried by quarks and gluons

$$rac{C_{
m A}}{C_{
m F}}=rac{9}{4}$$

Dead-cone effect

Suppression of emissions in a cone of size m/E around the direction of the emitter

Sizeable effect for low energy heavy quarks

Difference in average multiplicity between events containing a b-quark jet and and those with a light-quark jet

$$\Psi(r) = \frac{p_{\mathrm{T}}(0, r)}{p_{\mathrm{T}}(0, R)}; \quad r \le R$$

 p_{T} density around the initial scattered b-quark direction compared to the density around light quarks and gluons

What is missing for a direct observation of the dead cone?

The dead-cone angle appears at the partonic emission level - need to reconstruct the dynamically evolving direction of the heavy quark

What is missing for a direct observation of the dead cone?

The dead-cone angle appears at the partonic emission level - need to reconstruct the dynamically evolving direction of the heavy quark

Uncorrelated sources such as the decay products of the heavy-flavour hadron can populate the dead-cone region

$$\Psi(r) = \frac{p_{\mathrm{T}}(0, r)}{p_{\mathrm{T}}(0, R)}; \quad r \le R$$

Nima Zardoshti - INT HF Workshop 2022

Take advantage of angular ordering of QCD emissions to reconstruct the shower with the C/A algorithm

Unwind the reclustering history and follow a particular branch of emissions through the shower

Take advantage of angular ordering of QCD emissions to reconstruct the shower with the C/A algorithm

Unwind the reclustering history and follow a particular branch of emissions through the shower

Take advantage of angular ordering of QCD emissions to reconstruct the shower with the C/A algorithm

Unwind the reclustering history and follow a particular branch of emissions through the shower

Take advantage of angular ordering of QCD emissions to reconstruct the shower with the C/A algorithm

Unwind the reclustering history and follow a particular branch of emissions through the shower

The parton flavour is not traced along the followed branch

Due to their large masses heavy-flavour quark production is suppressed during hadronisation

Heavy-flavour initiated showers can be identified through the presence of a heavy-flavour hadron

21

Due to their large masses heavy-flavour quark production is suppressed during hadronisation

Heavy-flavour initiated showers can be identified through the presence of a heavy-flavour hadron

Due to their large masses heavy-flavour quark production is suppressed during hadronisation

Heavy-flavour initiated showers can be identified through the presence of a heavy-flavour hadron

23

Due to their large masses heavy-flavour quark production is suppressed during hadronisation

Heavy-flavour initiated showers can be identified through the presence of a heavy-flavour hadron

U,

Heavy-flavour quarks retain their flavour throughout the shower evolution Q -> Qg emissions

24

Due to their large masses heavy-flavour quark production is suppressed during hadronisation

Heavy-flavour initiated showers can be identified through the presence of a heavy-flavour hadron

Reconstructed splitting kinematics

The angle of each gluon emission directly probes the dead-cone effect

The energy of the charm quark at each emission vertex sets the size of the dead-cone region

Selections on the transverse scale of the splittings will be used to suppress non-perturbative effects

Fully reconstructing the charm hadron

impact parameters ~100 $\mu\,m$

<u>Reconstructing the charm hadron</u> (D⁰)

 D^0 mesons are reconstructed through the $D^0 \rightarrow K^- \pi^+$ (and charge conjugate) channel

Selection on decay topology and PID are used to identify D^0 -meson candidates

$$2 < p_{\rm T}^{\rm D^0} < 36 {\rm ~GeV/c}$$

The analysis is performed using pp collisions

$$\sqrt{s} = 13 \,\mathrm{TeV}$$
 $\mathcal{L}_{\mathrm{int}} = 25 \,\mathrm{nb}^{-1}$

The D^0 -decay daughters are replaced by the reconstructed D^0 candidate prior to jet finding

Jet finding is performed using the anti- k_{T} algorithm with R=0.4 and jets containing a D⁰ meson are selected

$$5 < p_{\mathrm{T}}^{\mathrm{jet}} < 50 \ \mathrm{GeV/c}$$

Nima Zardoshti - INT HF Workshop 2022

Measuring the Lund plane for a particular flavour of emissions in QCD

Nima Zardoshti - INT HF Workshop 2022

28

$$R(\theta) = \frac{1}{N^{D^0 \text{ jets}}} \frac{dn^{D^0 \text{ jets}}}{d\ln(1/\theta)} / \frac{1}{N^{\text{inclusive jets}}} \frac{dn^{\text{inclusive jets}}}{d\ln(1/\theta)} \begin{vmatrix} \text{Compare the angular distribution of charm-quark} \\ \text{emissions to those of light quarks and gluons} \end{vmatrix}$$

Now that we have uncovered the mechanism responsible for mass effects in the QCD shower we extend the techniques to characterise the impact of these mass effects

The grooming procedure reduces contribution of non-perturbative effects and enriches the selection with perturbative emissions

Nima Zardoshti - INT HF Workshop 2022

Measuring the c->cg splitting function

35

Measuring the c->cg angular dependence

arXiv:2208.04857

Towards isolating the perturbative physics of heavy-flavour fragmentation functions

Comparisons in Pb-Pb

Measurements of the heavy-flavour shower profile to be extended to heavy-ion collisions where these flavour dependent properties can unlock new insights into the nature of the deconfined medium