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o Quantum Chromodynamics (QCD) and its (chiral) phase structure

[1] Peter Senger. Probing dense QCD matter in the laboratory—
The CBM experiment at FAIR. Phys. Scripta, 95(7):074003, 
2020

[2] Wei-jie Fu, Jan M. Pawlowski, and Fabian Rennecke. 
QCD phase structure at finite temperature and density. Phys. 
Rev. D, 101(5):054032, 2020.
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FIG. 1. Phase diagram for Nf = 2 + 1 flavour QCD in com-
parison to other theoretical approaches and phenomenological
freeze-out data. Our result for the chiral crossover is depicted
by the black dashed line. The crossover temperature has been
determined through the peak position of the thermal suscep-
tibility of the renormalised light chiral condensate, @T �l,R,
at fixed baryon chemical potential µB . For more details see
Section V A, and in particular Figure 10. We show dotted
black lines for µB/T = 2, 3 to indicate the reliability bounds
for the lattice and functional methods.
The phase boundary globally agrees well with recent lattice
results. In particular the curvature of the phase boundary for
small chemical potential,  = 0.0142(2), is consistent with re-
cent lattice results,  = 0.0149(21) in [44],  = 0.0144(26) in
[47], and  = 0.015(4) in [49], for an overview see [62]. We find
a critical end point at (TCEP, µBCEP) = (107, 635) MeV. Indi-
cations for an inhomogeneous regime close to the chiral phase
transition for µB & 420 MeV are depicted by the hatched red
area. For quantitative statements in this area the current ap-
proximation has to be upgraded systematically. Accordingly
the hatched red area also serves as a reliability bound for the
current approximation. For more details see Section V B and
Figure 21.

Other theoretical results: lattice QCD based on an ana-
lytic continuation from the imaginary chemical potential [44]
(WB), lattice QCD based on a Taylor expansion in chemical
potential [49] (HotQCD), DSE approach with backcoupled
quarks and a dressed vertex [37] (Fischer et al.), and DSE
calculations with a gluon model [63] (Gao et al.).

Freeze-out data: [2] (STAR), [64] (Alba et al.), [3] (Andronic
et al.), [65] (Becattini et al.), [66] (Vovchenko et al.), and [67]
(Sagun et al.). Note that freeze-out data from Becattini et
al. with (light blue) and without (dark green) afterburner-
corrections are shown in two di↵erent colors.

ature is Tc = 156 MeV. The curvature of the chiral phase
boundary at small chemical potential is  = 0.0142(2).
With increasing µB , the crossover becomes sharper and
we find a critical endpoint at

(TCEP, µBCEP) = (107, 635) MeV . (1)

Our results for the chiral phase boundary are depicted

by the black dashed line in Figure 1.
In addition to a CEP, we also find indications for an

inhomogeneous regime for µB & 420 MeV in the vicinity
and above the chiral phase boundary. It is given by the
region in the phase diagram where mesonic dispersion
relation develop a minimum at nonvanishing spatial mo-
mentum, for more details we refer to Section V B. This
indicates a potential instability towards the formation of
an inhomogeneous quark condensate. The region where
this regime has significant overlap with the homogeneous
chiral condensate is shown by the red hatched area in
Figure 1. Within this area, a competition between ho-
mogeneous and inhomogeneous quark condensation has
to be taken into account. Hence, this already suggests
that the systematic error of the present approximation
grows large for µB/T & 3.

In Figure 1 also we compare our results to recent pre-
dictions of lattice gauge theory for the phase structure
at small µB/T from the Wuppertal-Budapest Collabo-
ration [44] (WB) and the HotQCD Collaboration [49]
(HotQCD). Our result for the pseudocritical temperature
and the curvature of the phase boundary agree very well
with the lattice. We also show predictions of the DSE
approach from di↵erent groups, [37] (Fischer et al.) and
[63] (Gao et al.). Finally we included the freeze-out data
from [2] (STAR), [64] (Alba et al.), [3] (Andronic et al.),
[65] (Becattini et al.), and [66] (Vovchenko et al.). The
freeze-out points are surprisingly close to our result for
the chiral phase boundary, even at larger µB . All in all,
we see that a consistent picture of the QCD phase bound-
ary at finite density starts to emerge form a culmination
of results from di↵erent sources.

In order to discuss the implication for CEP searches,
it is instructive to convert µB to the center-of-mass
beam energy per nucleon,

p
s. Assuming the connec-

tion between these quantities is captured by the statis-
tical hadronisation scenario, one finds to a very good
approximation for central collisions the relation

p
s =

(a/µB � 1)/b with a = 1307.5 MeV and b = 0.288 GeV�1

[3]. This yields for our prediction of the location of the
CEP the beam energy

p
sCEP ⇡ 3.7 GeV . (2)

This is clearly below the smallest beam energy of current
BES measurements of

p
s = 7.7 GeV, but well within

reach of future experiments such as FAIR’s SIS100 [16],
NICA MPD [19], J-PARC HI [20], and STAR’s Fixed-
Target (FXT) program [68], see also [22–24]. Our results
therefore provide a strong motivation for CEP searches
at these future experiments. Furthermore, the inhomo-
geneous regime appears to be also within reach of heavy-
ion collisions at small beam-energies. Hence, looking for
experimental signatures of this regime might be a worth-
while endeavour.

This work is organised as follows. In Section II we in-
troduce the functional renormalisation group approach
to QCD. In Section III, IV we discuss in detail the un-
derlying systematic truncation scheme, and specify the
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o Renormalization group acrossing the critical scale [3]
E.g.: RG flow of 4-fermion coupling in massless gauged-NJL, with fixed gauge coupling.

<latexit sha1_base64="w3CFcK1iF7M+Bw+95bzOsmZG2kI="></latexit>

ωtG̃S = →2G̃S +AG̃2
S +BG̃Sεs + Cε2

s

Wilson Renormalization Group Equations 1155

Therefore the 4-fermi part of the eTective potential may be written as

Veff(ψ, ψ̄; t) = −GS(t)
2Λ2

{

(ψ̄ψ)2 + (ψ̄iγ5ψ)2
}

+
GV (t)
2Λ2

{

(ψ̄γµψ)2 + (ψ̄γ5γµψ)2
}

.

(7)
Hereafter let us call GS the “scalar four-fermi coupling” and GV the “vector four-
fermi coupling”.∗)

Now let us evaluate the radiative corrections to these four-fermi operators, since
it will be suNcient to examine only these couplings for the purpose of understanding
the critical dynamics. By using the propagator of the gauge field in the Landau
gauge (α = 0), the RG equations for the four-fermi couplings are found to be

d

dt
gS = −2gS +

3
2
g2
S + 4gSgV + gSλ+

1
6
λ2,

d

dt
gV = −2gV +

1
4
g2
S − gV λ− 1

12
λ2, (8)

where we have introduced the rescaled couplings, gS = GS/(4π2), gV = GV /(4π2),
λ = 3e2/(4π2). Here we should note that no multi-fermi couplings more than four-
fermi take part in the radiative corrections for the four-fermi couplings, owing to
the 1-loop nature of the RGE. Therefore we may obtain the RG flows within the
2-dimensional coupling space (or 3-dimensional, if the gauge coupling is also taken
into account) irrespective of other couplings.

In Fig. 1 the Feynman diagrams representing the one-loop corrections to the
four-fermi couplings are shown. Let us call the corrections given by the diagrams in
the dashed box in Fig. 1 the “ladder” type, and the others the “non-ladder” type
hereafter. If we approximate the RGE by restricting to the “ladder type” correction,
then the beta function for the scalar four-fermi coupling is found to be given by

+

! = ++ +

+

+

+++

Fig. 1. Feynman diagrams of the radiative corrections to the four-fermi couplings gS and gV con-
sidered in the RGE (8). The diagrams surrounded by the dashed box show the “ladder” type
corrections.

∗) The sign of the scalar four-fermi coupling introduced here is the conventional one in the
literature.
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Flow w.r.t. RG scale:
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o Dynamical bosonization and meson fluctuations

4-fermion coupling? Chiral susceptibility!
<latexit sha1_base64="ru+fHadzXOXouDtuvdTaDffIBHU="></latexit>

→ ω2!k

ω
(
ε̄ε

)
ω
(
ε̄ε

)

Divergence arised from the massless mode propagation:
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→ 1

p2

Emergence of the mesonic resonances:
<latexit sha1_base64="6Pt62Qk36WHaIsPt5k1aBDCwst4="></latexit>

ωtε
a
k(p) =

∫

q
ωtAk(q → p, q)ϑ̄(q → p)!aϑ(q)

<latexit sha1_base64="oGdKUETcAFuUrWLrfuicQtPjcoM=">AAAB+HicbVA9SwNBEJ3zM8aPnFraLAbBKtyJRMugjYVFBPMByRH2NpvLkr3dY3dPiUd+iY2FIrb+FDv/jZvkCk18MPB4b4aZeWHCmTae9+2srK6tb2wWtorbO7t7JXf/oKllqghtEMmlaodYU84EbRhmOG0niuI45LQVjq6nfuuBKs2kuDfjhAYxjgQbMIKNlXpuqXsrRaRYNDRYKfnYc8texZsBLRM/J2XIUe+5X92+JGlMhSEca93xvcQEGVaGEU4nxW6qaYLJCEe0Y6nAMdVBNjt8gk6s0kcDqWwJg2bq74kMx1qP49B2xtgM9aI3Ff/zOqkZXAYZE0lqqCDzRYOUIyPRNAXUZ4oSw8eWYKKYvRWRIVaYGJtV0YbgL768TJpnFb9aqd6dl2tXeRwFOIJjOAUfLqAGN1CHBhBI4Rle4c15cl6cd+dj3rri5DOH8AfO5w9DqpOB</latexit>

=→

Enters the flow, tunned to absorb the flow of 4-fermion

<latexit sha1_base64="lVDCmaD5NMEkVpHO9ILKir1oHpA=">AAACknicdVFNj9MwEHXC11I+tgvcuFhUSMulSipYVkjAwl44cFgk2q5Ud6OJO2mtOk5kTxBVlB/E3+HGv8FpA4JdGMnWmzdvxuOZtNTKURT9CMJr12/cvLV3u3fn7r37+/2DBxNXVFbiWBa6sOcpONTK4JgUaTwvLUKeapym69M2Pv2C1qnCfKZNifMclkZlSgJ5Kul/E3Kl+GsuMguyjpta5EArCbqeNE3HihIsKdAXIz5N1s1vn+cXo6bNVYaSr1xozEhoMEuNfOcdcpGC9QlO+WL+5sKq5Yqe/ZL/XxB1SNhtwWSd9AfRMNoavwriDgxYZ2dJ/7tYFLLK0ZDU4Nwsjkqa123vUmPTE5XDEuQaljjz0ECObl5vR9rwp55Z8Kyw/hjiW/bPjBpy5zZ56pXtwNzlWEv+KzarKDue18qUFaGRu4eySnMqeLsfvlAWJemNByCt8r1yuQK/BvJb7PkhxJe/fBVMRsP4aHj06fng5H03jj32mD1hhyxmL9kJ+8DO2JjJYD94EbwJ3oaPwlfhu/B0Jw2DLuch+8vCjz8B6b7IkQ==</latexit>

ω =
1

V
ε2Wk

εm2
=

∫

x

〈(
ϑ̄ϑ

)
x

(
ϑ̄ϑ

)
0

〉
k

See, e.g, W.-j. Fu, et al. [2] and J. Braun, et al. [4].
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o Question:  

Is the mesonic fluctuations necessary to get into the broken phase? 

o “Conclusion” from this work:

No in principle, and yes in practice.

• No:

Weak solution of fRG.
See, e.g, K.-I. Aoki, et al. [5].

• Yes: 

Mesonic fluctuation 
and chiral criticality 

See, e.g W.-J. Fu, et al. [2].

• In this work:
• Functional renormalization group 

(fRG) equation for QCD (fermion) in 
the medium;

• Local potential approximation (LPA) 
and its modification, ladder and non-
ladder approximations.

• Weak solution;
• Phase diagram in (𝜇!, 𝑇)-plane.
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oFRG setups for QCD fermionic potential: LPA’
QCD action at UV:

<latexit sha1_base64="YOfp4ytqQ1oGQA+NeY72CVTqiNc="></latexit>

Sbare[!] =

∫

x

[
1

4
F a
µωF

a
µω +

1

2ω
(εµA

a
µ)

2 + ϑ̄(ε/+ igsA/→ml → µqϖ4)ϑ

]

QCD action at IR:
<latexit sha1_base64="AuMSVMoby1IbQRSykSatzc4eKp0=">AAAC73icbVLLjtMwFHUCA0N5dWDJ5ooKqRW0JFU1sEGaggQsi0Q7I+o0clw3tWI7mdhBU0X5CTYsQIgtv8OOv8HJFEFnuJKtk3PPfTpRJrg2nvfLca9c3bt2ff9G6+at23futg/uzXRa5JRNaSrS/CQimgmu2NRwI9hJljMiI8GOo+RV7T/+yHLNU/XebDIWSBIrvuKUGEuFB84efkOkJGEyx5M1D+AFYK5MeAY44nEs5oBXOaHlhzBZjKtyVMHrsMSywKqoFmT34/Gudgj4jFfQxRnJDScitEoY1/eC9BZDK6+FONPc1iJ5WSMrh/JPAJYJy1Xf92TxtLJyDnGooRzv8n2wGcNTwHEzxwh60OTs20TNfspIFKyCWZh0a8eTv8V61XbKIGx3vIHXGFwG/hZ00NYmYfsnXqa0kEwZKojWc9/LTFDWjVPBqhYuNMsITUjM5hYqIpkOyqafCh5ZZgmrNLdHGWjYfyNKIrXeyMgqJTFrfdFXk//zzQuzeh6UXGWFYYqeF1oVAkwK9ePDkueMGrGxgNCc216Brol9M2N/kZZdgn9x5MtgNhz4h4PDd6PO0cvtOvbRA/QQdZGPnqEj9BZN0BRRRzifnC/OV/fU/ex+c7+fS11nG3Mf7Zj74zd0beki</latexit>

!k[”] =

∫

x

[
ZA
k

4
F a
µωF

a
µω +

ZA
k

2ω
(εµA

a
µ)

2 + Zε
k ϑ̄(ε/+ igsA/→ µqϖ4)ϑ → Vk(ϑ, ϑ̄)

]

• Flow equation of average one-partical effective action (1PIEA)

Mean-field 
approximation

<latexit sha1_base64="Q5PD3bjPdSDQsdPimqZ9K9N1DYE="></latexit>

ωt!k[”] =
1

2
STr

[(
!(2)
k +Rk

)→1
ωtRk

]

…

<latexit sha1_base64="NsjKO6FvOGDmdJJbvTvwmNzF414=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqjPulsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LitetVJtXJVrt3kcBTiFM7gAD66hBvdQhyYwQHiGV3hzHp0X5935WLSuOfnMCfyB8/kD1heM+g==</latexit>

k

<latexit sha1_base64="VdLslFl5EfBqLJ2ZDaaZLBskdFY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2k3TpZhN2N0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAqujet+O4W19Y3NreJ2aWd3b/+gfHjU0kmmGDZZIhLVCahGwSU2DTcCO6lCGgcC28Hodua3n1BpnshHM07Rj2kkecgZNVZ6iPpev1xxq+4cZJV4OalAjka//NUbJCyLURomqNZdz02NP6HKcCZwWuplGlPKRjTCrqWSxqj9yfzUKTmzyoCEibIlDZmrvycmNNZ6HAe2M6ZmqJe9mfif181MeO1PuEwzg5ItFoWZICYhs7/JgCtkRowtoUxxeythQ6ooMzadkg3BW355lbQuql6tWru/rNRv8jiKcAKncA4eXEEd7qABTWAQwTO8wpsjnBfn3flYtBacfOYY/sD5/AH1TY2a</latexit>g1

<latexit sha1_base64="7t0Q1AtPztPjrLGf/EPZC94JDQs=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHoxWNF+wFtKJvtJF262YTdjVBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXpIJr47rfztr6xubWdmGnuLu3f3BYOjpu6SRTDJssEYnqBFSj4BKbhhuBnVQhjQOB7WB0O/PbT6g0T+SjGafoxzSSPOSMGis9RP1qv1R2K+4cZJV4OSlDjka/9NUbJCyLURomqNZdz02NP6HKcCZwWuxlGlPKRjTCrqWSxqj9yfzUKTm3yoCEibIlDZmrvycmNNZ6HAe2M6ZmqJe9mfif181MeO1PuEwzg5ItFoWZICYhs7/JgCtkRowtoUxxeythQ6ooMzadog3BW355lbSqFa9Wqd1flus3eRwFOIUzuAAPrqAOd9CAJjCI4Ble4c0Rzovz7nwsWtecfOYE/sD5/AH20Y2b</latexit>g2

<latexit sha1_base64="uQBjNV99GmDwsOT6WdXRNzA/pUw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3TpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEph0HW/ncLa+sbmVnG7tLO7t39QPjxqmSTTjDdZIhPdCajhUijeRIGSd1LNaRxI3g5GtzO//cS1EYl6xHHK/ZhGSoSCUbTSQ9RX/XLFrbpzkFXi5aQCORr98ldvkLAs5gqZpMZ0PTdFf0I1Cib5tNTLDE8pG9GIdy1VNObGn8xPnZIzqwxImGhbCslc/T0xobEx4ziwnTHFoVn2ZuJ/XjfD8NqfCJVmyBVbLAozSTAhs7/JQGjOUI4toUwLeythQ6opQ5tOyYbgLb+8SloXVa9Wrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjCI4Ble4c2Rzovz7nwsWgtOPnMMf+B8/gBR0I3X</latexit>gn

… …
<latexit sha1_base64="QwcZCJpLEjliwCWdHr3a4Ts6ptw=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8lUSkeix60GMF+wFtKJPtpl26u4m7G6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+nZXVtfWNzcJWcXtnd2+/dHDY1HGqCG2QmMeqHaKmnEnaMMxw2k4URRFy2gpHN1O/9USVZrF8MOOEBgIHkkWMoLFSu3uLQmBv1CuVvYo3g7tM/JyUIUe9V/rq9mOSCioN4ah1x/cSE2SoDCOcTordVNMEyQgHtGOpREF1kM3unbinVum7UaxsSePO1N8TGQqtxyK0nQLNUC96U/E/r5Oa6CrImExSQyWZL4pS7prYnT7v9pmixPCxJUgUs7e6ZIgKibERFW0I/uLLy6R5XvGrler9Rbl2ncdRgGM4gTPw4RJqcAd1aAABDs/wCm/Oo/PivDsf89YVJ585gj9wPn8A2m+P3g==</latexit>

!k

<latexit sha1_base64="Sday5645b4Kstrc1ZPexAS+v8ik=">AAACCXicbVDNSsNAGNzUv1r/oh69LBbBU0lEqhex6EGPFU1baELYbDft0t0k7G6EEnL14qt48aCIV9/Am2/jps1BqwMLw8x8fPtNkDAqlWV9GZWFxaXllepqbW19Y3PL3N7pyDgVmDg4ZrHoBUgSRiPiKKoY6SWCIB4w0g3Gl4XfvSdC0ji6U5OEeBwNIxpSjJSWfBO6V4hz5Geu4NDp5NCNizhR2XmeneXw1jfrVsOaAv4ldknqoETbNz/dQYxTTiKFGZKyb1uJ8jIkFMWM5DU3lSRBeIyGpK9phDiRXja9JIcHWhnAMBb6RQpO1Z8TGeJSTnigkxypkZz3CvE/r5+q8NTLaJSkikR4tihMGVQxLGqBAyoIVmyiCcKC6r9CPEICYaXbqOkS7PmT/5LOUcNuNpo3x/XWRVlHFeyBfXAIbHACWuAatIEDMHgAT+AFvBqPxrPxZrzPohWjnNkFv2B8fAMTR5n1</latexit>

!UV
?
= S

<latexit sha1_base64="qMf7+TVAVbEP1meWuTME7EQF9Kg=">AAACC3icbVDLSsNAFJ3UV62vqEs3Q4vgqiQi1Y1QdKHdVbEPaEKYTCft0JkkzEyEErJ346+4caGIW3/AnX/jtM2ith64cDjnXu69x48ZlcqyfozCyura+kZxs7S1vbO7Z+4ftGWUCExaOGKR6PpIEkZD0lJUMdKNBUHcZ6Tjj64nfueRCEmj8EGNY+JyNAhpQDFSWvLMsnODOEde6ggOG/cZvITzit1sZJ5ZsarWFHCZ2DmpgBxNz/x2+hFOOAkVZkjKnm3Fyk2RUBQzkpWcRJIY4REakJ6mIeJEuun0lwwea6UPg0joChWcqvMTKeJSjrmvOzlSQ7noTcT/vF6iggs3pWGcKBLi2aIgYVBFcBIM7FNBsGJjTRAWVN8K8RAJhJWOr6RDsBdfXibt06pdq9buzir1qzyOIjgCZXACbHAO6uAWNEELYPAEXsAbeDeejVfjw/ictRaMfOYQ/IHx9QsPFpnO</latexit>

!IR = !1PI

Wetterich equation [6]:



FRG setup

9

• Regulator function: sharp cutoff

2

stress the necessary elements, such as the regulator choice
and approximation scheme, in setting up the flow equa-
tion of Vk(ω, ω̄). In Section III, we summarize the logic
flow of the weak fRG equation and the method of charac-
teristics. After briefly introducing our numerical setups
in Section IV, we integrate our results in Section V. The
detailed derivation can be found in Appendices A and B.

II. FUNCTIONAL RENORMALIZATION
GROUP SETUP

We start with the bare QCD action at finite tempera-
ture and finite chemical potential in the Euclidean space-
time

Sbare[!] =

∫

x

[
1

4
F a
µωF

a
µω +

1

2ε
(ϑµA

a
µ)

2

+ ω̄(/ϑ + igs /A+ml → µqϖ4)ω

]
, (1)

where the spacetime integral is given by
∫
x =

∫
1/T
0

dx4

∫
d3x with temperature T and the field content

reads

! = (Aa
µ,ω

T , ω̄)T . (2)

In eq. (1), we denote /A = Aa
µϖµT

a with ϖµ being the
gamma matrices in the Euclidean space time and T a be-
ing the matrix representations of the SU(3) gauge group.
The gauge field strength is given by F a

µω = ϑµAa
ω→ϑωAa

µ+

gsfabcAb
µA

c
ω . The fermionic field ω = (uT , dT )T includes

the light two flavors of quarks, and we adopt the isospin
symmetry for the current quark mass mu = md ↑ ml.
The light quark chemical potential µq can be replaced by
the baryonic chemical potential µB as µq = µB/3. The
second term in eq. (1) is the gauge-fixing term with the
gauge-fixing parameter ε, while here we do not explicitly
present the corresponding ghost action.
To study the phase structure from the QCD action

(1) non-perturbatively, we employ the Wetterich equa-
tion [19]

ϑt”k[!] =
1

2
STr

[(
”(2)

k +Rk

)→1

ϑtRk

]
, (3)

where ”k is the one-particle irreducible (1PI) averaged
e#ective action and t = log(k/$) is the dimensionless RG
scale with a reference scale $. The Wetterich equation
(3) describes the evolution of ”k with respect to changing

k from the initial action ”k=!↑↓ = Sbare. Here ”(2)

k is
the inverse full two-point function (the Hessian) which is
obtained by the second-order functional derivative with
respect to the fields (2)

”(2)

k,I,J(q, p) =

↑
ϱ

ϱ!T
I (→p)

”k

↔
ϱ

ϱ!J(q)
, (4)

where the indices I and J stand for the internal degrees
of freedom in the fields, and STr is the functional su-
pertrace acting on all spaces in which the fields are de-
fined. The coarse-graining process in the formulation of
the Wetterich equation (3) is controlled by the regulator
function Rk.

A. Truncated e!ective action

In this work, we employ the LPA’ to truncate the flow
equation (3) in a solvable way. Performing the derivative
expansion to the general e#ective action and keeping the
lowest order, we make an ansatz for the e#ective action

”k[!] =

∫

x

[
ZA
k

4
F a
µωF

a
µω +

ZA
k

2ε

∫

x
(ϑµA

a
µ)

2

+ Zε
k ω̄(/ϑ + igs /A→ µqϖ4)ω → Vk(ω, ω̄)

]
. (5)

Here Vk(ω, ω̄) is the fermionic potential given as polyno-
mials of gauge-invariant bilinear operators ω̄”ω where ”
represents the spinor basis such as 1spinor, ϖµ, etc, and Zε

k
and ZA

k are the field renormalization factors for the quark
fields and for the gluon field, respectively. In eq. (5),
we have neglected the gluonic (Polyakov loop) potential,
which implies that we do not consider the confinement
e#ect. Also, we do not introduce the thermal splitting of
the Lorentzian tensorial structures as an approximation,
which means that we introduce the unified wave function
renormalization factor for the temporal and spatial com-
ponent of the kinetic terms for both gluon and fermion.
For Rk, we adopt the regulator functions for the three-

dimensional momentum, i.e.,

R
ε
k (|p|) = Zε

k i/pr
ε
k (|p|/k), (6)

R
A
k (|p|) = ZA

k p2rεk (|p|/k), (7)

with the sharp-cuto# regulator function in momentum
space

rAk = rεk =
1

ς(|p|/k → 1)
→ 1. (8)

For this choice, the flow equation (3) reads

ϑt”k[!] = →
1

2

∫

p,shell
str log”(2)

k , (9)

where we have introduced a shorthand notation for the
momentum integral

∫

p,shell
↑ T

↓∑

n=→↓

∫
d3p

(2φ)3
kϱ (|p|→ k). (10)

Note here that the regulators (6) and (7) allows us to
sum all Matsubara modes in the temporal direction and
to perform the momentum integral analytically. The
derivation of eq. (9) and the general structure of the flow
equation are summarized in Appendix A.

2

stress the necessary elements, such as the regulator choice
and approximation scheme, in setting up the flow equa-
tion of Vk(ω, ω̄). In Section III, we summarize the logic
flow of the weak fRG equation and the method of charac-
teristics. After briefly introducing our numerical setups
in Section IV, we integrate our results in Section V. The
detailed derivation can be found in Appendices A and B.

II. FUNCTIONAL RENORMALIZATION
GROUP SETUP

We start with the bare QCD action at finite tempera-
ture and finite chemical potential in the Euclidean space-
time

Sbare[!] =

∫

x

[
1

4
F a
µωF

a
µω +

1

2ε
(ϑµA

a
µ)

2

+ ω̄(/ϑ + igs /A+ml → µqϖ4)ω

]
, (1)

where the spacetime integral is given by
∫
x =

∫
1/T
0

dx4

∫
d3x with temperature T and the field content

reads

! = (Aa
µ,ω

T , ω̄)T . (2)

In eq. (1), we denote /A = Aa
µϖµT

a with ϖµ being the
gamma matrices in the Euclidean space time and T a be-
ing the matrix representations of the SU(3) gauge group.
The gauge field strength is given by F a

µω = ϑµAa
ω→ϑωAa

µ+

gsfabcAb
µA

c
ω . The fermionic field ω = (uT , dT )T includes

the light two flavors of quarks, and we adopt the isospin
symmetry for the current quark mass mu = md ↑ ml.
The light quark chemical potential µq can be replaced by
the baryonic chemical potential µB as µq = µB/3. The
second term in eq. (1) is the gauge-fixing term with the
gauge-fixing parameter ε, while here we do not explicitly
present the corresponding ghost action.
To study the phase structure from the QCD action

(1) non-perturbatively, we employ the Wetterich equa-
tion [19]

ϑt”k[!] =
1

2
STr

[(
”(2)

k +Rk

)→1

ϑtRk

]
, (3)

where ”k is the one-particle irreducible (1PI) averaged
e#ective action and t = log(k/$) is the dimensionless RG
scale with a reference scale $. The Wetterich equation
(3) describes the evolution of ”k with respect to changing

k from the initial action ”k=!↑↓ = Sbare. Here ”(2)

k is
the inverse full two-point function (the Hessian) which is
obtained by the second-order functional derivative with
respect to the fields (2)

”(2)

k,I,J(q, p) =

↑
ϱ

ϱ!T
I (→p)

”k

↔
ϱ

ϱ!J(q)
, (4)

where the indices I and J stand for the internal degrees
of freedom in the fields, and STr is the functional su-
pertrace acting on all spaces in which the fields are de-
fined. The coarse-graining process in the formulation of
the Wetterich equation (3) is controlled by the regulator
function Rk.

A. Truncated e!ective action

In this work, we employ the LPA’ to truncate the flow
equation (3) in a solvable way. Performing the derivative
expansion to the general e#ective action and keeping the
lowest order, we make an ansatz for the e#ective action

”k[!] =

∫

x

[
ZA
k

4
F a
µωF

a
µω +

ZA
k

2ε

∫

x
(ϑµA

a
µ)

2

+ Zε
k ω̄(/ϑ + igs /A→ µqϖ4)ω → Vk(ω, ω̄)

]
. (5)

Here Vk(ω, ω̄) is the fermionic potential given as polyno-
mials of gauge-invariant bilinear operators ω̄”ω where ”
represents the spinor basis such as 1spinor, ϖµ, etc, and Zε

k
and ZA

k are the field renormalization factors for the quark
fields and for the gluon field, respectively. In eq. (5),
we have neglected the gluonic (Polyakov loop) potential,
which implies that we do not consider the confinement
e#ect. Also, we do not introduce the thermal splitting of
the Lorentzian tensorial structures as an approximation,
which means that we introduce the unified wave function
renormalization factor for the temporal and spatial com-
ponent of the kinetic terms for both gluon and fermion.
For Rk, we adopt the regulator functions for the three-

dimensional momentum, i.e.,

R
ε
k (|p|) = Zε

k i/pr
ε
k (|p|/k), (6)

R
A
k (|p|) = ZA

k p2rεk (|p|/k), (7)

with the sharp-cuto# regulator function in momentum
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rAk = rεk =
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ς(|p|/k → 1)
→ 1. (8)

For this choice, the flow equation (3) reads
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where we have introduced a shorthand notation for the
momentum integral

∫

p,shell
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Note here that the regulators (6) and (7) allows us to
sum all Matsubara modes in the temporal direction and
to perform the momentum integral analytically. The
derivation of eq. (9) and the general structure of the flow
equation are summarized in Appendix A.
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stress the necessary elements, such as the regulator choice
and approximation scheme, in setting up the flow equa-
tion of Vk(ω, ω̄). In Section III, we summarize the logic
flow of the weak fRG equation and the method of charac-
teristics. After briefly introducing our numerical setups
in Section IV, we integrate our results in Section V. The
detailed derivation can be found in Appendices A and B.

II. FUNCTIONAL RENORMALIZATION
GROUP SETUP

We start with the bare QCD action at finite tempera-
ture and finite chemical potential in the Euclidean space-
time
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where the spacetime integral is given by
∫
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∫
d3x with temperature T and the field content

reads

! = (Aa
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T , ω̄)T . (2)

In eq. (1), we denote /A = Aa
µϖµT

a with ϖµ being the
gamma matrices in the Euclidean space time and T a be-
ing the matrix representations of the SU(3) gauge group.
The gauge field strength is given by F a

µω = ϑµAa
ω→ϑωAa

µ+

gsfabcAb
µA

c
ω . The fermionic field ω = (uT , dT )T includes

the light two flavors of quarks, and we adopt the isospin
symmetry for the current quark mass mu = md ↑ ml.
The light quark chemical potential µq can be replaced by
the baryonic chemical potential µB as µq = µB/3. The
second term in eq. (1) is the gauge-fixing term with the
gauge-fixing parameter ε, while here we do not explicitly
present the corresponding ghost action.
To study the phase structure from the QCD action

(1) non-perturbatively, we employ the Wetterich equa-
tion [19]
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where ”k is the one-particle irreducible (1PI) averaged
e#ective action and t = log(k/$) is the dimensionless RG
scale with a reference scale $. The Wetterich equation
(3) describes the evolution of ”k with respect to changing

k from the initial action ”k=!↑↓ = Sbare. Here ”(2)

k is
the inverse full two-point function (the Hessian) which is
obtained by the second-order functional derivative with
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where the indices I and J stand for the internal degrees
of freedom in the fields, and STr is the functional su-
pertrace acting on all spaces in which the fields are de-
fined. The coarse-graining process in the formulation of
the Wetterich equation (3) is controlled by the regulator
function Rk.

A. Truncated e!ective action

In this work, we employ the LPA’ to truncate the flow
equation (3) in a solvable way. Performing the derivative
expansion to the general e#ective action and keeping the
lowest order, we make an ansatz for the e#ective action
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Here Vk(ω, ω̄) is the fermionic potential given as polyno-
mials of gauge-invariant bilinear operators ω̄”ω where ”
represents the spinor basis such as 1spinor, ϖµ, etc, and Zε

k
and ZA

k are the field renormalization factors for the quark
fields and for the gluon field, respectively. In eq. (5),
we have neglected the gluonic (Polyakov loop) potential,
which implies that we do not consider the confinement
e#ect. Also, we do not introduce the thermal splitting of
the Lorentzian tensorial structures as an approximation,
which means that we introduce the unified wave function
renormalization factor for the temporal and spatial com-
ponent of the kinetic terms for both gluon and fermion.
For Rk, we adopt the regulator functions for the three-

dimensional momentum, i.e.,

R
ε
k (|p|) = Zε

k i/pr
ε
k (|p|/k), (6)

R
A
k (|p|) = ZA

k p2rεk (|p|/k), (7)

with the sharp-cuto# regulator function in momentum
space

rAk = rεk =
1

ς(|p|/k → 1)
→ 1. (8)

For this choice, the flow equation (3) reads

ϑt”k[!] = →
1

2

∫

p,shell
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k , (9)

where we have introduced a shorthand notation for the
momentum integral

∫

p,shell
↑ T

↓∑

n=→↓

∫
d3p

(2φ)3
kϱ (|p|→ k). (10)

Note here that the regulators (6) and (7) allows us to
sum all Matsubara modes in the temporal direction and
to perform the momentum integral analytically. The
derivation of eq. (9) and the general structure of the flow
equation are summarized in Appendix A.
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k are the field renormalization factors for the quark
fields and for the gluon field, respectively. In eq. (5),
we have neglected the gluonic (Polyakov loop) potential,
which implies that we do not consider the confinement
e#ect. Also, we do not introduce the thermal splitting of
the Lorentzian tensorial structures as an approximation,
which means that we introduce the unified wave function
renormalization factor for the temporal and spatial com-
ponent of the kinetic terms for both gluon and fermion.
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ϑt”k[!] = →
1

2

∫

p,shell
str log”(2)

k , (9)
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Note here that the regulators (6) and (7) allows us to
sum all Matsubara modes in the temporal direction and
to perform the momentum integral analytically. The
derivation of eq. (9) and the general structure of the flow
equation are summarized in Appendix A.
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• General structure of the flow equation

• Truncating the loops: “ladder” and “non-ladder” approximations
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Non-ladder diagram:

Color factors:
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E.g.: (Part of) RG flow of 
4-fermion coupling.
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• Partial defferential equations [7]

4

FIG. 1. Sketch of the mixed quark-gluon vertex A+ B. The
solid line represents a fermion, while the curly lines corre-
spond to gluons.

FIG. 2. Sketch of (A + B)2 → A2 + B2 under the ladder
approximation (17).

When expanding (A+B)n, the terms Al
B
m (l+m = n)

represent the di!erent constructions of the gluonic loop
with fermionic background fields. Truncating or approx-
imating this combination is to drop some types of loops
in the flow.

The simplest approximation scheme is to keep only the
loops with forward or reverse ordering of the color gen-
erator, i.e.,

(A+ B)n → A
n + B

n. (17)

As an example, we schematically show the diagrams
that are taken into account for the 4-point function, i.e.,
(A+B)2-term, in Figure 2. From this figure, this approx-
imation scheme is called the “ladder” approximation.

After taking this approximation and the general Fierz
transformation toward the scalar channel, the vertex ex-
pansion is then able to be resummed in a closed form
easily. This results in

ωtV (ε; t) = ϑωεωεV (ε; t)

↑ T
∑

n

k3

2ϖ2
log

(
ϱ2

ω,n + (
√
k2 +M2 ↑ µq)

2

)

↑ T
∑

n

k3

2ϖ2
log

(
ϱ2

ω,n + (
√
k2 +M2 + µq)

2

)
, (18)

where the dressed mass of quarks is defined as

M ↓ ωεV (ε; t) + C2g
2

s
3 + ς

4(k2 + ϱ2

A,n)
ε, (19)

with Matsubara frequencies ϱω,n = (2n + 1)ϖT and

ϱA,n = 2nϖT , and C2 =
∑N2

c→1

a=1
T aT a is the Casimir

operator of the fundamental representation of SU(Nc).

2. “Non-ladder” case

In the “ladder” approximation scheme, we have
dropped diagrams such as the crossed gluon lines shown

FIG. 3. Example of diagrams that are not included in “lad-
der” approximation scheme.

in Figure 3. Another type of approximation scheme be-
yond the ladder approximation is the “non-ladder” ap-
proximation. This approximation scheme balances the
color factors of some loops to make it resumable in a
closed form, thus bringing in the milder quantitative sys-
tematic errors compared with the “ladder” case. The
mixed quark-gluon vertex then reads

(A+ B)abµϑ ↔ φ̄

[
T aT b”A

µϑ + T bT a”B
µϑ

]
φ

= φ̄

[
T aT b”A

µϑ + T aT b”B
µϑ

]
φ

+ ([T a, T b] term), (20)

where ”A/B
µϑ denotes the tensorial structure apart from

the color-space contribution. We ignore the [T a, T b] term
in the beyond-ladder approximation scheme as an e!ect
from the projection onto the fermionic subspaces by trun-
cating the interaction term ↔ ωµFµϑφ̄↼ϑφ following the
discussion in [16, 17].
Then, after performing the Fierz transformation and

several steps of algebraic calculations, the flow equation
results in

ωtV (ε; t) = ϑωεωεV (ε; t)

↑
1

2

[
FlowN.L.,→

k (ε,Mω) + FlowN.L.,+
k (ε,Mω)

]
. (21)

Because the explicit form of FlowN.L.,±
k (ε,Mω) is lengthy,

we do not show it here. Instead, we give it in eq. (B65)
in Appendix B 3.

C. Gluonic sector and running gauge coupling

After the above discussions, the flow equations of the
fermionic potential V (ε; t) are then closed as partial
di!erential equations (PDEs), besides the gauge cou-
pling gs, (also be regarded as the renormalized quark-
gluon dressing in the first tensoral channel ↽(1), see e.g.,
Ref. [24]) and the gluon wave function renormalization
ZA
k . In the current work, we take the minimal approach

for the gluonic sectors, which also makes the ghost sec-
tor independent of the fermionic sector. We take the
p = k approximation [25] and hard thermal loop (HTL)
approximation for the gluon wave function that

ZA
k = Ztrans

T,µq
(p = k), (22)
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FIG. 1. Sketch of the mixed quark-gluon vertex A+ B. The
solid line represents a fermion, while the curly lines corre-
spond to gluons.

FIG. 2. Sketch of (A + B)2 → A2 + B2 under the ladder
approximation (17).

When expanding (A+B)n, the terms Al
B
m (l+m = n)

represent the di!erent constructions of the gluonic loop
with fermionic background fields. Truncating or approx-
imating this combination is to drop some types of loops
in the flow.

The simplest approximation scheme is to keep only the
loops with forward or reverse ordering of the color gen-
erator, i.e.,

(A+ B)n → A
n + B

n. (17)

As an example, we schematically show the diagrams
that are taken into account for the 4-point function, i.e.,
(A+B)2-term, in Figure 2. From this figure, this approx-
imation scheme is called the “ladder” approximation.

After taking this approximation and the general Fierz
transformation toward the scalar channel, the vertex ex-
pansion is then able to be resummed in a closed form
easily. This results in

ωtV (ε; t) = ϑωεωεV (ε; t)

↑ T
∑

n

k3

2ϖ2
log

(
ϱ2

ω,n + (
√
k2 +M2 ↑ µq)

2

)

↑ T
∑

n

k3

2ϖ2
log

(
ϱ2

ω,n + (
√
k2 +M2 + µq)

2

)
, (18)

where the dressed mass of quarks is defined as

M ↓ ωεV (ε; t) + C2g
2

s
3 + ς

4(k2 + ϱ2

A,n)
ε, (19)

with Matsubara frequencies ϱω,n = (2n + 1)ϖT and

ϱA,n = 2nϖT , and C2 =
∑N2

c→1

a=1
T aT a is the Casimir

operator of the fundamental representation of SU(Nc).

2. “Non-ladder” case

In the “ladder” approximation scheme, we have
dropped diagrams such as the crossed gluon lines shown

FIG. 3. Example of diagrams that are not included in “lad-
der” approximation scheme.

in Figure 3. Another type of approximation scheme be-
yond the ladder approximation is the “non-ladder” ap-
proximation. This approximation scheme balances the
color factors of some loops to make it resumable in a
closed form, thus bringing in the milder quantitative sys-
tematic errors compared with the “ladder” case. The
mixed quark-gluon vertex then reads

(A+ B)abµϑ ↔ φ̄

[
T aT b”A

µϑ + T bT a”B
µϑ

]
φ

= φ̄

[
T aT b”A

µϑ + T aT b”B
µϑ

]
φ

+ ([T a, T b] term), (20)

where ”A/B
µϑ denotes the tensorial structure apart from

the color-space contribution. We ignore the [T a, T b] term
in the beyond-ladder approximation scheme as an e!ect
from the projection onto the fermionic subspaces by trun-
cating the interaction term ↔ ωµFµϑφ̄↼ϑφ following the
discussion in [16, 17].
Then, after performing the Fierz transformation and

several steps of algebraic calculations, the flow equation
results in

ωtV (ε; t) = ϑωεωεV (ε; t)

↑
1

2

[
FlowN.L.,→

k (ε,Mω) + FlowN.L.,+
k (ε,Mω)

]
. (21)

Because the explicit form of FlowN.L.,±
k (ε,Mω) is lengthy,

we do not show it here. Instead, we give it in eq. (B65)
in Appendix B 3.

C. Gluonic sector and running gauge coupling

After the above discussions, the flow equations of the
fermionic potential V (ε; t) are then closed as partial
di!erential equations (PDEs), besides the gauge cou-
pling gs, (also be regarded as the renormalized quark-
gluon dressing in the first tensoral channel ↽(1), see e.g.,
Ref. [24]) and the gluon wave function renormalization
ZA
k . In the current work, we take the minimal approach

for the gluonic sectors, which also makes the ghost sec-
tor independent of the fermionic sector. We take the
p = k approximation [25] and hard thermal loop (HTL)
approximation for the gluon wave function that

ZA
k = Ztrans

T,µq
(p = k), (22)

Non-ladder:

Now, the fermionic sector is ready, leaving gluonic sector (gauge coupling) unknown.
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ωtV (ε; t)→ ϑωεωεV (ε; t) = →1
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∫

p,shell
tr

[
logS→1(p→ω ) + log (S(T )(p+ω ))

→1

]

+
1

2

∫

p,shell
tr↑ log

{
ϖabϖµϑ +Aab

µϑ + Bab
µϑ

}
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where the right-hand side denotes the transverse gluon
propagator dressing at finite temperature and quark
chemical potential, and

Ztrans

T,µq
(p) = Zvac(p) +

4ω

3
εHTL

S

(
T 2 +

3

ω2
µ2

q

)
1

p2
, (23)

where εHTL

S = 0.115 is the gauge coupling for evaluating
the HTL mass. Equation (23) implies that we only take
into account the light quark vacuum polarization con-
tribution to the thermal medium of the gluon, and the
strange flavor contribution is dropped due to its heavi-
ness. For the vacuum gluon dressing Z→1

vac
(p), we take the

“functional-lattice” propagator form [6, 18]

Z→1

vac
(k2)

=
k2 a2

+k2

b2+k2

M2

G(k
2) + k2 [1 + c log(d2k2 + e2M2

G(k
2))]

ω , (24)

in which

M2

G(k
2) =

f4

g2 + k2
, (25)

and ϑ =
13→ 4

3Nf

22→ 4
3Nf

is the perturbative anomalous dimen-

sion of the gluon propagator.
Here we choose Nf = 3 to match the (2 + 1)-flavor re-

sult of the gluon propagator. Within the current trunca-
tion scheme, the strange flavor and the light two-flavors
are separated from each other due to the ignorance of
the quantitative back-reaction in the gluon propagator.
Thus, this allows us to simulate the (2+1)-flavor re-
sult with only the light quark involved in evaluating the
fermionic e!ective potential.

The values of the parameters are chosen as

a = 1 GeV, b = 0.735 GeV, c = 0.12,

d = 0.0257 GeV→1, e = 0.081 GeV→1. (26)

in the gluon propagator (24) and as

f = 0.65 GeV, g = 0.87 GeV, (27)

in the gluon mass (25), to fit with the (2+1)-flavor data
from the functional approaches [18].

For the gauge coupling before renormalization, we use
the second-order Padé approximation which yields

ḡs(k) =
0.2301 + 0.4411 k + 0.3967 k2

0.0832 + 0.0838 k + 0.4502 k2
. (28)

to fit the data of the ϖ(1)

q̄Aq(p̄) in the fRG approach to the
(2+1) flavors [8].

Then, the renormalized gauge coupling reads

εs =
1

ZA
k

ḡ2s
4ω

, (29)

FIG. 4. Running gauge coupling ωs defined in eq. (29) as a
function of the RG scale k, evaluated at di!erent temperature
T and baryon chemical potential µB .

which is plotted within the range of the RG scale k →

[10→1, 40] GeV in Figure 4. In comparison to the pertur-
bative 1-loop running gauge coupling ε1-loop, we choose
the renormalization condition as εs(20 GeV) = 0.163,
and rescaled it to match the same initial condition
ε̄1-loop(40 GeV) = εs(40 GeV), which is shown as the
red solid line in Figure 4. They are in the agreement to
each other down to the RG scale around k ↑ 10 GeV.

We introduce a rescaling factor to represent the de-
gree of freedom of the gauge coupling εs ↓ ε̄s = s · εs.
For instance, ε̄s(40 GeV) = 0.1410 for s = 2.180. This
completes the current setup, and the flow equations of
the fermionic potential are ready to be solved as closed
PDEs.

III. WEAK SOLUTION AND METHOD OF
CHARACTERISTICS

We aim to obtain the dynamical mass (or chiral con-
densate) by solving the flow equations (18) and (20).
However, the fermionic e!ective potential develops sin-
gularities (or discontinuities) at a certain energy scale as
a result of the phase transition. This implies that the
flow of V (ϱ; t) terminates at an intermediate scale, mak-
ing it di”cult to extract physical quantities in the deep
infrared regime (k ↓ 0). In this section, we introduce the
strategy to solve the ladder (18) and the non-ladder (20)
flow equations with explicit discontinuity. The method
we will apply is within the framework of the weak so-
lution [14] in solving the first-order partial di!erential
equations.

oGluonic sector and running coupling

• Difficulty: running coupling

Missing: is not accessable…

Renormalized gauge coupling: 
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where the right-hand side denotes the transverse gluon
propagator dressing at finite temperature and quark
chemical potential, and

Ztrans

T,µq
(p) = Zvac(p) +

4ω

3
εHTL

S

(
T 2 +

3

ω2
µ2

q

)
1

p2
, (23)

where εHTL

S = 0.115 is the gauge coupling for evaluating
the HTL mass. Equation (23) implies that we only take
into account the light quark vacuum polarization con-
tribution to the thermal medium of the gluon, and the
strange flavor contribution is dropped due to its heavi-
ness. For the vacuum gluon dressing Z→1

vac
(p), we take the

“functional-lattice” propagator form [6, 18]

Z→1

vac
(k2)

=
k2 a2

+k2

b2+k2

M2

G(k
2) + k2 [1 + c log(d2k2 + e2M2
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2))]

ω , (24)

in which

M2
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2) =
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g2 + k2
, (25)

and ϑ =
13→ 4

3Nf

22→ 4
3Nf

is the perturbative anomalous dimen-

sion of the gluon propagator.
Here we choose Nf = 3 to match the (2 + 1)-flavor re-

sult of the gluon propagator. Within the current trunca-
tion scheme, the strange flavor and the light two-flavors
are separated from each other due to the ignorance of
the quantitative back-reaction in the gluon propagator.
Thus, this allows us to simulate the (2+1)-flavor re-
sult with only the light quark involved in evaluating the
fermionic e!ective potential.

The values of the parameters are chosen as

a = 1 GeV, b = 0.735 GeV, c = 0.12,

d = 0.0257 GeV→1, e = 0.081 GeV→1. (26)

in the gluon propagator (24) and as

f = 0.65 GeV, g = 0.87 GeV, (27)

in the gluon mass (25), to fit with the (2+1)-flavor data
from the functional approaches [18].

For the gauge coupling before renormalization, we use
the second-order Padé approximation which yields

ḡs(k) =
0.2301 + 0.4411 k + 0.3967 k2

0.0832 + 0.0838 k + 0.4502 k2
. (28)

to fit the data of the ϖ(1)

q̄Aq(p̄) in the fRG approach to the
(2+1) flavors [8].

Then, the renormalized gauge coupling reads

εs =
1

ZA
k

ḡ2s
4ω

, (29)

FIG. 4. Running gauge coupling ωs defined in eq. (29) as a
function of the RG scale k, evaluated at di!erent temperature
T and baryon chemical potential µB .

which is plotted within the range of the RG scale k →

[10→1, 40] GeV in Figure 4. In comparison to the pertur-
bative 1-loop running gauge coupling ε1-loop, we choose
the renormalization condition as εs(20 GeV) = 0.163,
and rescaled it to match the same initial condition
ε̄1-loop(40 GeV) = εs(40 GeV), which is shown as the
red solid line in Figure 4. They are in the agreement to
each other down to the RG scale around k ↑ 10 GeV.

We introduce a rescaling factor to represent the de-
gree of freedom of the gauge coupling εs ↓ ε̄s = s · εs.
For instance, ε̄s(40 GeV) = 0.1410 for s = 2.180. This
completes the current setup, and the flow equations of
the fermionic potential are ready to be solved as closed
PDEs.

III. WEAK SOLUTION AND METHOD OF
CHARACTERISTICS

We aim to obtain the dynamical mass (or chiral con-
densate) by solving the flow equations (18) and (20).
However, the fermionic e!ective potential develops sin-
gularities (or discontinuities) at a certain energy scale as
a result of the phase transition. This implies that the
flow of V (ϱ; t) terminates at an intermediate scale, mak-
ing it di”cult to extract physical quantities in the deep
infrared regime (k ↓ 0). In this section, we introduce the
strategy to solve the ladder (18) and the non-ladder (20)
flow equations with explicit discontinuity. The method
we will apply is within the framework of the weak so-
lution [14] in solving the first-order partial di!erential
equations.

Padé approximation to fit the runng coupling [8]: 

A. K. Cyrol, et al. [8]

many of which are calculated here for the first time. Here,
we focus on a detailed discussion of our results for the
quark-gluon vertex as the most crucial ingredient for
quantitative accuracy in the unquenched system. The
transversely projected quark-gluon vertex can be repre-
sented with eight basis elements [100]. They include four
chirally symmetric tensors, one of them being the classical
tensor, as well as four tensors which break chiral symmetry;
see Appendix C. In line with earlier investigations
[1,4,56,101], it turns out that only two nonclassical tensor
structures have to be considered as leading nonclassical
tensors in the backcoupling scheme shown in Table I; see
also the detailed discussion of the truncation scheme in
Appendix B. The first, and quantitatively most important, is
the chirally symmetric tensor structure T ð7Þ

q̄qA, and the
second is given by the chiral symmetry-breaking tensor

structure T ð4Þ
q̄qA; see (C2) for the considered basis. Our

results for the leading dressing functions of the quark-gluon
vertex are shown in Fig. 6(a) in comparison to the lattice
results for the classical tensor structure [90]. Within the
errors we find good agreement with the lattice results in the
soft-gluon limit. Consistent with earlier investigations [1],
we find that the dressing of the classical tensor structure of
the quark-gluon vertex shows a sizable angular depend-
ence, as illustrated in Figs. 6(b) and 7(a). We checked that
this angular dependence is genuine and cannot simply be
removed by a reparametrization with propagator dressings.
Therefore, the inclusion with the full three-dimensional
momentum dependence is required. This is in contrast to
the gluonic vertices, where one-dimensional momentum
approximations at the symmetric point represent already
a quantitatively good approximation; see [2,32] and
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FIG. 6. Two-flavor quark-gluon vertex dressing functions λðiÞq̄qA. (a) Dressing functions in the soft gluon limit, λðiÞq̄qA ðp;−pÞ. The
classical tensor structure λð1Þq̄qA ðp;−pÞ is compared to lattice data [71] and normalized to match our results at 1 GeV. (b) Dependence on

relative and angular momentum variables for fixed momentum scales p̄ ¼
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
ðp2

1 þ p2
2 þ p2

3Þ/3
p

. Lines correspond to the symmetric
point momentum configuration kp1k ¼ kp2k ¼ kp3k.

(a) (b)

FIG. 7. Quark-gluon and four-Fermi vertices. (a) Classical tensor structure λð1Þq̄qA of the quark-gluon vertex as a function of orthogonal
gluon and antiquark momenta. (b) Dressing functions of four-Fermi channels that are not dynamically hadronized. Here the same
conventions as in [1] have been used for labeling the dressing functions.
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ḡs(k) = ω(1)
q̄Aq(p̄ = k)

• Quantitative result of the gluon propagator wave function 
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FIG. 1. Sketch of the mixed quark-gluon vertex A+ B. The
solid line represents a fermion, while the curly lines corre-
spond to gluons.

FIG. 2. Sketch of (A + B)2 → A2 + B2 under the ladder
approximation (17).

When expanding (A+B)n, the terms Al
B
m (l+m = n)

represent the di!erent constructions of the gluonic loop
with fermionic background fields. Truncating or approx-
imating this combination is to drop some types of loops
in the flow.

The simplest approximation scheme is to keep only the
loops with forward or reverse ordering of the color gen-
erator, i.e.,

(A+ B)n → A
n + B

n. (17)

As an example, we schematically show the diagrams
that are taken into account for the 4-point function, i.e.,
(A+B)2-term, in Figure 2. From this figure, this approx-
imation scheme is called the “ladder” approximation.

After taking this approximation and the general Fierz
transformation toward the scalar channel, the vertex ex-
pansion is then able to be resummed in a closed form
easily. This results in

ωtV (ε; t) = ϑωεωεV (ε; t)

↑ T
∑

n

k3

2ϖ2
log

(
ϱ2

ω,n + (
√
k2 +M2 ↑ µq)

2

)

↑ T
∑

n

k3

2ϖ2
log

(
ϱ2

ω,n + (
√
k2 +M2 + µq)

2

)
, (18)

where the dressed mass of quarks is defined as

M ↓ ωεV (ε; t) + C2g
2

s
3 + ς

4(k2 + ϱ2

A,n)
ε, (19)

with Matsubara frequencies ϱω,n = (2n + 1)ϖT and

ϱA,n = 2nϖT , and C2 =
∑N2

c→1

a=1
T aT a is the Casimir

operator of the fundamental representation of SU(Nc).

2. “Non-ladder” case

In the “ladder” approximation scheme, we have
dropped diagrams such as the crossed gluon lines shown

FIG. 3. Example of diagrams that are not included in “lad-
der” approximation scheme.

in Figure 3. Another type of approximation scheme be-
yond the ladder approximation is the “non-ladder” ap-
proximation. This approximation scheme balances the
color factors of some loops to make it resumable in a
closed form, thus bringing in the milder quantitative sys-
tematic errors compared with the “ladder” case. The
mixed quark-gluon vertex then reads

(A+ B)abµϑ ↔ φ̄

[
T aT b”A

µϑ + T bT a”B
µϑ

]
φ

= φ̄

[
T aT b”A

µϑ + T aT b”B
µϑ

]
φ

+ ([T a, T b] term), (20)

where ”A/B
µϑ denotes the tensorial structure apart from

the color-space contribution. We ignore the [T a, T b] term
in the beyond-ladder approximation scheme as an e!ect
from the projection onto the fermionic subspaces by trun-
cating the interaction term ↔ ωµFµϑφ̄↼ϑφ following the
discussion in [16, 17].
Then, after performing the Fierz transformation and

several steps of algebraic calculations, the flow equation
results in

ωtV (ε; t) = ϑωεωεV (ε; t)

↑
1

2

[
FlowN.L.,→

k (ε,Mω) + FlowN.L.,+
k (ε,Mω)

]
. (21)

Because the explicit form of FlowN.L.,±
k (ε,Mω) is lengthy,

we do not show it here. Instead, we give it in eq. (B65)
in Appendix B 3.

C. Gluonic sector and running gauge coupling

After the above discussions, the flow equations of the
fermionic potential V (ε; t) are then closed as partial
di!erential equations (PDEs), besides the gauge cou-
pling gs, (also be regarded as the renormalized quark-
gluon dressing in the first tensoral channel ↽(1), see e.g.,
Ref. [24]) and the gluon wave function renormalization
ZA
k . In the current work, we take the minimal approach

for the gluonic sectors, which also makes the ghost sec-
tor independent of the fermionic sector. We take the
p = k approximation [25] and hard thermal loop (HTL)
approximation for the gluon wave function that

ZA
k = Ztrans

T,µq
(p = k), (22)5

where the right-hand side denotes the transverse gluon
propagator dressing at finite temperature and quark
chemical potential, and

Ztrans

T,µq
(p) = Zvac(p) +

4ω

3
εHTL

S

(
T 2 +

3

ω2
µ2

q

)
1

p2
, (23)

where εHTL

S = 0.115 is the gauge coupling for evaluating
the HTL mass. Equation (23) implies that we only take
into account the light quark vacuum polarization con-
tribution to the thermal medium of the gluon, and the
strange flavor contribution is dropped due to its heavi-
ness. For the vacuum gluon dressing Z→1

vac
(p), we take the

“functional-lattice” propagator form [6, 18]

Z→1

vac
(k2)

=
k2 a2

+k2

b2+k2

M2

G(k
2) + k2 [1 + c log(d2k2 + e2M2

G(k
2))]

ω , (24)

in which

M2

G(k
2) =

f4

g2 + k2
, (25)

and ϑ =
13→ 4

3Nf

22→ 4
3Nf

is the perturbative anomalous dimen-

sion of the gluon propagator.
Here we choose Nf = 3 to match the (2 + 1)-flavor re-

sult of the gluon propagator. Within the current trunca-
tion scheme, the strange flavor and the light two-flavors
are separated from each other due to the ignorance of
the quantitative back-reaction in the gluon propagator.
Thus, this allows us to simulate the (2+1)-flavor re-
sult with only the light quark involved in evaluating the
fermionic e!ective potential.

The values of the parameters are chosen as

a = 1 GeV, b = 0.735 GeV, c = 0.12,

d = 0.0257 GeV→1, e = 0.081 GeV→1. (26)

in the gluon propagator (24) and as

f = 0.65 GeV, g = 0.87 GeV, (27)

in the gluon mass (25), to fit with the (2+1)-flavor data
from the functional approaches [18].

For the gauge coupling before renormalization, we use
the second-order Padé approximation which yields

ḡs(k) =
0.2301 + 0.4411 k + 0.3967 k2

0.0832 + 0.0838 k + 0.4502 k2
. (28)

to fit the data of the ϖ(1)

q̄Aq(p̄) in the fRG approach to the
(2+1) flavors [8].

Then, the renormalized gauge coupling reads

εs =
1

ZA
k

ḡ2s
4ω

, (29)

FIG. 4. Running gauge coupling ωs defined in eq. (29) as a
function of the RG scale k, evaluated at di!erent temperature
T and baryon chemical potential µB .

which is plotted within the range of the RG scale k →

[10→1, 40] GeV in Figure 4. In comparison to the pertur-
bative 1-loop running gauge coupling ε1-loop, we choose
the renormalization condition as εs(20 GeV) = 0.163,
and rescaled it to match the same initial condition
ε̄1-loop(40 GeV) = εs(40 GeV), which is shown as the
red solid line in Figure 4. They are in the agreement to
each other down to the RG scale around k ↑ 10 GeV.

We introduce a rescaling factor to represent the de-
gree of freedom of the gauge coupling εs ↓ ε̄s = s · εs.
For instance, ε̄s(40 GeV) = 0.1410 for s = 2.180. This
completes the current setup, and the flow equations of
the fermionic potential are ready to be solved as closed
PDEs.

III. WEAK SOLUTION AND METHOD OF
CHARACTERISTICS

We aim to obtain the dynamical mass (or chiral con-
densate) by solving the flow equations (18) and (20).
However, the fermionic e!ective potential develops sin-
gularities (or discontinuities) at a certain energy scale as
a result of the phase transition. This implies that the
flow of V (ϱ; t) terminates at an intermediate scale, mak-
ing it di”cult to extract physical quantities in the deep
infrared regime (k ↓ 0). In this section, we introduce the
strategy to solve the ladder (18) and the non-ladder (20)
flow equations with explicit discontinuity. The method
we will apply is within the framework of the weak so-
lution [14] in solving the first-order partial di!erential
equations.

HTL approximation to the thermal mass 
(quark vacuum polarization):

Gluon dressing at vanishing temperature and quark 
chemical potential: (see, e.g., F. Gao, et al. [9].)
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where the right-hand side denotes the transverse gluon
propagator dressing at finite temperature and quark
chemical potential, and
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where εHTL

S = 0.115 is the gauge coupling for evaluating
the HTL mass. Equation (23) implies that we only take
into account the light quark vacuum polarization con-
tribution to the thermal medium of the gluon, and the
strange flavor contribution is dropped due to its heavi-
ness. For the vacuum gluon dressing Z→1

vac
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“functional-lattice” propagator form [6, 18]
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is the perturbative anomalous dimen-

sion of the gluon propagator.
Here we choose Nf = 3 to match the (2 + 1)-flavor re-

sult of the gluon propagator. Within the current trunca-
tion scheme, the strange flavor and the light two-flavors
are separated from each other due to the ignorance of
the quantitative back-reaction in the gluon propagator.
Thus, this allows us to simulate the (2+1)-flavor re-
sult with only the light quark involved in evaluating the
fermionic e!ective potential.
The values of the parameters are chosen as

a = 1 GeV, b = 0.735 GeV, c = 0.12,

d = 0.0257 GeV→1, e = 0.081 GeV→1. (26)

in the gluon propagator (24) and as

f = 0.65 GeV, g = 0.87 GeV, (27)

in the gluon mass (25), to fit with the (2+1)-flavor data
from the functional approaches [18].
For the gauge coupling before renormalization, we use

the second-order Padé approximation which yields

ḡs(k) =
0.2301 + 0.4411 k + 0.3967 k2

0.0832 + 0.0838 k + 0.4502 k2
. (28)

to fit the data of the ϖ(1)

q̄Aq(p̄) in the fRG approach to the
(2+1) flavors [8].
Then, the renormalized gauge coupling reads
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FIG. 4. Running gauge coupling ωs defined in eq. (29) as a
function of the RG scale k, evaluated at di!erent temperature
T and baryon chemical potential µB .

which is plotted within the range of the RG scale k →

[10→1, 40] GeV in Figure 4. In comparison to the pertur-
bative 1-loop running gauge coupling ε1-loop, we choose
the renormalization condition as εs(20 GeV) = 0.163,
and rescaled it to match the same initial condition
ε̄1-loop(40 GeV) = εs(40 GeV), which is shown as the
red solid line in Figure 4. They are in the agreement to
each other down to the RG scale around k ↑ 10 GeV.

We introduce a rescaling factor to represent the de-
gree of freedom of the gauge coupling εs ↓ ε̄s = s · εs.
For instance, ε̄s(40 GeV) = 0.1410 for s = 2.180. This
completes the current setup, and the flow equations of
the fermionic potential are ready to be solved as closed
PDEs.

III. WEAK SOLUTION AND METHOD OF
CHARACTERISTICS

We aim to obtain the dynamical mass (or chiral con-
densate) by solving the flow equations (18) and (20).
However, the fermionic e!ective potential develops sin-
gularities (or discontinuities) at a certain energy scale as
a result of the phase transition. This implies that the
flow of V (ϱ; t) terminates at an intermediate scale, mak-
ing it di”cult to extract physical quantities in the deep
infrared regime (k ↓ 0). In this section, we introduce the
strategy to solve the ladder (18) and the non-ladder (20)
flow equations with explicit discontinuity. The method
we will apply is within the framework of the weak so-
lution [14] in solving the first-order partial di!erential
equations.

F. Gao, et al. [9]

Flavor: (2+1) at physical point.FIG. 3: 2+1–flavour gluon propagator, GA(p2), and dressing function 1/ZA(p) = p2 GA(p).

Lattice simulations: [31, 84, 85], fRG-DSE approach: [60, 61], fRG approach: [58]. The

computations in [58, 60, 61] are based on the 2-flavour input fRG data from [82].

be tuned for achieving cuto↵-independence. Nonetheless, while the MOM2 scheme is the

natural and fully consistent RG scheme within the fRG approach, the considerations here

and in Appendix A do not constitute a proof of the full self-consistency of the present

operational procedure in the SDE, which is the subject of ongoing work.

In summary, for the numerical treatment of the system of integral equations presented

here, we simply implement the substitution

⌃(p) ! ⌃(p)|Zf
1=1

,
⇥
ai(p, q), bi(p, q)

⇤
!

⇥
ai(p, q), bi(p, q)

⇤
Zf
1=1=Z1

, (5.1)

as well as a BHPZ-subtraction. It is evident from the discussion above and in Appendix A,

that the simplifications implemented by (5.1) are bound to induce a residual small cuto↵-

and µ-dependence to the results obtained, which are discussed in Section VIII.

B. Gluon propagator

The gluon propagator can be computed from its own SDE; for the most recent results

in Yang-Mills theory, see [89–92], while for 2+1–flavour solutions of the fRG-assisted SDE,

see [60, 61]. Consequently, we could extend the current system to a fully self-coupled one,

the only input being the strong coupling and the current quark masses. However, in this

work we concentrate rather on the novel key ingredient, namely the computation of the full

transversally projected quark-gluon vertex and its properties. Therefore, we simply take

18
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PDE closed.

• Rescale the gauge coupling: controlling IR quantities
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ωs → ω̄s = s · ωs
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oWhy divergence of 4-fermi matters?
• Center object:

• Definning:

<latexit sha1_base64="vm3WVX7VV4RMlaWz/0jck8O31Cc=">AAACJHicbVDJSgNBFOyJW4xb1KOXxiBE0DAjEoUgBAXxGMEskAxDT6cnadKz0P1GCEM+xou/4sWDCx68+C32JMElWtBQVNXj9Ss3ElyBab4bmbn5hcWl7HJuZXVtfSO/udVQYSwpq9NQhLLlEsUED1gdOAjWiiQjvitY0x1cpH7zlknFw+AGhhGzfdILuMcpAS05+UonIhI4EQ7gRrGjeM8nFQz7+Awf4svilztxcOMAf2ecfMEsmWPgv8SakgKaoubkXzrdkMY+C4AKolTbMiOwk3QFFWyU68SKRYQOSI+1NQ2Iz5SdjI8c4T2tdLEXSv0CwGP150RCfKWGvquTPoG+mvVS8T+vHYN3aic8iGJgAZ0s8mKBIcRpY7jLJaMghpoQKrn+K6Z9IgkF3WtOl2DNnvyXNI5KVrlUvj4uVM+ndWTRDtpFRWShE1RFV6iG6oiiO/SAntCzcW88Gq/G2ySaMaYz2+gXjI9PC1Gilw==</latexit>

ωtV (ε; t) = →F (ωωV,ε; t)
Fermionic potential
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M(ω; t) → εωV (ω; t), G(ω; t) → ε2
ωV (ω; t)

Mass function 4-fermion coupling
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ω = ε̄ε

• “Problem” we meet:
E.g., chiral limit
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∣∣ → ↑

Critical scale

<latexit sha1_base64="oGdKUETcAFuUrWLrfuicQtPjcoM=">AAAB+HicbVA9SwNBEJ3zM8aPnFraLAbBKtyJRMugjYVFBPMByRH2NpvLkr3dY3dPiUd+iY2FIrb+FDv/jZvkCk18MPB4b4aZeWHCmTae9+2srK6tb2wWtorbO7t7JXf/oKllqghtEMmlaodYU84EbRhmOG0niuI45LQVjq6nfuuBKs2kuDfjhAYxjgQbMIKNlXpuqXsrRaRYNDRYKfnYc8texZsBLRM/J2XIUe+5X92+JGlMhSEca93xvcQEGVaGEU4nxW6qaYLJCEe0Y6nAMdVBNjt8gk6s0kcDqWwJg2bq74kMx1qP49B2xtgM9aI3Ff/zOqkZXAYZE0lqqCDzRYOUIyPRNAXUZ4oSw8eWYKKYvRWRIVaYGJtV0YbgL768TJpnFb9aqd6dl2tXeRwFOIJjOAUfLqAGN1CHBhBI4Rle4c15cl6cd+dj3rri5DOH8AfO5w9DqpOB</latexit>

=→
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M(0+; t < tc) →= M(0→; t < tc)
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ωωV (0+; t < tc) →= ωωV (0→; t < tc)

Discontinuity

Non-analyticity

At some points, flow equation is not defined below the critical scale.

(* Possible solution: divide the field space, e.g.: K.-I. Aoki et al. PTEP, 2013:043B04 [7];

Singularities appears elsewhere @ finite chemical potential or beyond chiral limit. *)
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oWeak form of the RG equations
• Original RG equation vs. weak form of the RG equation 
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ωtV (ε; t) = →F (ωωV,ε; t)

Deformation:

<latexit sha1_base64="G60T4ouz5kZRbOYmKM68M+ZvrSc=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rGK/YA2lM120y7dZMPuRCmhP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bRqWa8QZTUul2QA2XIuYNFCh5O9GcRoHkrWB0M/Vbj1wboeIHHCfcj+ggFqFgFK3U6d6LwRCp1uqpVyq7FXcGsky8nJQhR71X+ur2FUsjHiOT1JiO5yboZ1SjYJJPit3U8ISyER3wjqUxjbjxs9nJE3JqlT4JlbYVI5mpvycyGhkzjgLbGVEcmkVvKv7ndVIMr/xMxEmKPGbzRWEqCSoy/Z/0heYM5dgSyrSwtxI2pJoytCkVbQje4svLpHle8aqV6t1FuXadx1GAYziBM/DgEmpwC3VoAAMFz/AKbw46L8678zFvXXHymSP4A+fzB5StkXg=</latexit>

→

<latexit sha1_base64="7ydDTHGVUHo1+2piM/ebpAuetZM=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkoiUj0WvXisYGuhCWGy3bRLN5uwuxFq6C/x4kERr/4Ub/4bN20O2vpg4PHezO7MC1POlHacb6uytr6xuVXdru3s7u3X7YPDnkoySWiXJDyR/RAU5UzQrmaa034qKcQhpw/h5KbwHx6pVCwR93qaUj+GkWARI6CNFNh1LwWpGfDAU2wUQ2A3nKYzB14lbkkaqEQnsL+8YUKymApNOCg1cJ1U+3nxKOF0VvMyRVMgExjRgaECYqr8fL74DJ8aZYijRJoSGs/V3xM5xEpN49B0xqDHatkrxP+8QaajKz9nIs00FWTxUZRxrBNcpICHTFKi+dQQIJKZXTEZgwSiTVY1E4K7fPIq6Z033VazdXfRaF+XcVTRMTpBZ8hFl6iNblEHdRFBGXpGr+jNerJerHfrY9FascqZI/QH1ucPE/2TYQ==</latexit>

ωω

Singularities at 
some points

<latexit sha1_base64="N9jF5QXOaqQfMBN3eUBsyoVrEfs="></latexit>

ωtM(ε; t) = →ωωF (M(ε; t),ε; t) = → ωF

ωM
· ωM
ωε

→ ωF

ωε“Conservation law”

Original RG:

<latexit sha1_base64="oGdKUETcAFuUrWLrfuicQtPjcoM=">AAAB+HicbVA9SwNBEJ3zM8aPnFraLAbBKtyJRMugjYVFBPMByRH2NpvLkr3dY3dPiUd+iY2FIrb+FDv/jZvkCk18MPB4b4aZeWHCmTae9+2srK6tb2wWtorbO7t7JXf/oKllqghtEMmlaodYU84EbRhmOG0niuI45LQVjq6nfuuBKs2kuDfjhAYxjgQbMIKNlXpuqXsrRaRYNDRYKfnYc8texZsBLRM/J2XIUe+5X92+JGlMhSEca93xvcQEGVaGEU4nxW6qaYLJCEe0Y6nAMdVBNjt8gk6s0kcDqWwJg2bq74kMx1qP49B2xtgM9aI3Ff/zOqkZXAYZE0lqqCDzRYOUIyPRNAXUZ4oSw8eWYKKYvRWRIVaYGJtV0YbgL768TJpnFb9aqd6dl2tXeRwFOIJjOAUfLqAGN1CHBhBI4Rle4c15cl6cd+dj3rri5DOH8AfO5w9DqpOB</latexit>

=→

<latexit sha1_base64="2nBK1TK0Ww30BpJPvlziHtx+5C8="></latexit>

lim
ω→±↑

ω(ε; t) = 0, lim
t→↓↑

ω(ε; t) = 0
Arbitary smooth test function

<latexit sha1_base64="kqQhlYXzCiSSDyjkTgY0e7rY+20=">AAAC3nicnVJLaxRBEO6Z+IjrIxtz9FK4CBGTZUYk5hIIEcSLEMFNAtvr2NNbs9ukp2forgkuwxxy8aCIV3+XN3+Id3sfIboRBAua/vjq2V91WmrlKIp+BOHKtes3bq7eat2+c/feWnv9/pErKiuxJwtd2JNUONTKYI8UaTwpLYo81Xicnr6Y+o/P0DpVmLc0KXGQi5FRmZKCPJW0f3JlKKm3/ZXRpHkXASf8QPWwAYIl3/y+DOBOjXIBfAu4xow24TXwzApZ81JYUkIDPxO2HKvmkqEGnsDLf8fNa/seVo3G9Bj2YPt/xtm6KH1RKKlpL2qSdifqRjODqyBegA5b2GHS/s6HhaxyNCS1cK4fRyUN6umwUmPT4pXDUshTMcK+h0bk6Ab1bD0NPPLMELLC+mMIZuzvGbXInZvkqY/MBY3dsm9K/s3XryjbHdTKlBWhkfNGWeVFLmC6axgqi5L0xAMhrfKzghwLrzz5H9HyIsTLT74Kjp52453uzptnnf2DhRyr7AF7yDZZzJ6zffaKHbIek0E/OA8+BZ/D9+HH8Ev4dR4aBoucDfaHhd9+Aeap528=</latexit>∫ 0

→↑
dt

∫ ↑

→↑
dω

(
M

εϑ

εt
+ F

εϑ

εω

)
= →

∫ ↑

→↑
dω (M ϑ)t=0

Weak RG:

Discontinuity is allowed!

• Weak solution of the weak RG equation

Mass function satisfies the weak RG equation is the weak solution.

• Containing finite numbers of discontinuity points (𝜎-direction); 

• Satisfies the original RG elsewhere.
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oRankine-Hugoniot condition

• Condition for weak solution

<latexit sha1_base64="QhaWXmnGoOlgmZu6DZZxvnONEzE=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpl272YTdiVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfju5nffuLaiFg94CThfkSHSoSCUbRSA/ulsltx5yCrxMtJGXLU+6Wv3iBmacQVMkmN6Xpugn5GNQom+bTYSw1PKBvTIe9aqmjEjZ/ND52Sc6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjjZ0IlKXLFFovCVBKMyexrMhCaM5QTSyjTwt5K2IhqytBmU7QheMsvr5LWZcWrVqqNq3LtNo+jAKdwBhfgwTXU4B7q0AQGHJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A47uNAw==</latexit>

t

<latexit sha1_base64="tdy5cBUx22e49sInllEMc7AaEZY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWrV2f1mp3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPn/GPLg==</latexit>ω

<latexit sha1_base64="7X4/dqifglY9fCFOo9ercNQjfgk=">AAAB8nicdVDLTgJBEJzFF+IL9ehlIjFBD2RZcMEb0YtHTOSRLEhmhwEmzOxuZnpNCOEzvHjQGK9+jTf/xlnARI1W0kmlqjvdXX4kuAbb/rBSK6tr6xvpzczW9s7uXnb/oKnDWFHWoKEIVdsnmgkesAZwEKwdKUakL1jLH18lfuueKc3D4BYmEetKMgz4gFMCRvI6mg8luTvLw2kvm7MLF1XXOXewXbDtilNyE+JUyk4JF42SIIeWqPey751+SGPJAqCCaO0V7Qi6U6KAU8FmmU6sWUTomAyZZ2hAJNPd6fzkGT4xSh8PQmUqADxXv09MidR6In3TKQmM9G8vEf/yvBgG1e6UB1EMLKCLRYNYYAhx8j/uc8UoiIkhhCpubsV0RBShYFLKmBC+PsX/k6ZTKLoF96acq10u40ijI3SM8qiIKqiGrlEdNRBFIXpAT+jZAuvRerFeF60pazlziH7AevsEw1CQ8Q==</latexit>

ω→(t)

<latexit sha1_base64="YprPo32QPO8nQXohUSPIsP3BptY=">AAAB8XicbVBNS8NAEN34WetX1aOXxSJ4KolI9Vj04rGC/cA2lM1m2i7dbMLuRCyh/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk41hwaPZazbATMghYIGCpTQTjSwKJDQCkY3U7/1CNqIWN3jOAE/YgMl+oIztNJDF+EJs3BCsVcquxV3BrpMvJyUSY56r/TVDWOeRqCQS2ZMx3MT9DOmUXAJk2I3NZAwPmID6FiqWATGz2YXT+ipVULaj7UthXSm/p7IWGTMOApsZ8RwaBa9qfif10mxf+VnQiUpguLzRf1UUozp9H0aCg0c5dgSxrWwt1I+ZJpxtCEVbQje4svLpHle8aqV6t1FuXadx1Egx+SEnBGPXJIauSV10iCcKPJMXsmbY5wX5935mLeuOPnMEfkD5/MHvUmQ+g==</latexit>

dt
<latexit sha1_base64="7XG2aFycIRlhCnMzQ4/FaHanJmE=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahXsquSPVY9OJBoYL9gHYt2TTbhmazIckKZemP8OJBEa/+Hm/+G9N2D9r6YODx3gwz8wLJmTau++3kVlbX1jfym4Wt7Z3dveL+QVPHiSK0QWIeq3aANeVM0IZhhtO2VBRHAaetYHQ99VtPVGkWiwczltSP8ECwkBFsrNS6e0zLt6eTXrHkVtwZ0DLxMlKCDPVe8avbj0kSUWEIx1p3PFcaP8XKMMLppNBNNJWYjPCAdiwVOKLaT2fnTtCJVfoojJUtYdBM/T2R4kjrcRTYzgiboV70puJ/Xicx4aWfMiETQwWZLwoTjkyMpr+jPlOUGD62BBPF7K2IDLHCxNiECjYEb/HlZdI8q3jVSvX+vFS7yuLIwxEcQxk8uIAa3EAdGkBgBM/wCm+OdF6cd+dj3ppzsplD+APn8weBZo8L</latexit>

M (L)

<latexit sha1_base64="V+O5OD5bzFyAPnbsMkx0b5h+wXA=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahXsquSPVY9OJFqGI/oF1LNs22odlsSLJCWfojvHhQxKu/x5v/xrTdg7Y+GHi8N8PMvEBypo3rfju5ldW19Y38ZmFre2d3r7h/0NRxoghtkJjHqh1gTTkTtGGY4bQtFcVRwGkrGF1P/dYTVZrF4sGMJfUjPBAsZAQbK7VuH9Py/emkVyy5FXcGtEy8jJQgQ71X/Or2Y5JEVBjCsdYdz5XGT7EyjHA6KXQTTSUmIzygHUsFjqj209m5E3RilT4KY2VLGDRTf0+kONJ6HAW2M8JmqBe9qfif10lMeOmnTMjEUEHmi8KEIxOj6e+ozxQlho8twUQxeysiQ6wwMTahgg3BW3x5mTTPKl61Ur07L9WusjjycATHUAYPLqAGN1CHBhAYwTO8wpsjnRfn3fmYt+acbOYQ/sD5/AGKio8R</latexit>

M (R)

<latexit sha1_base64="oCbV1fwgtLIYRq1ZGNGpR8VyM9Q=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBHERUlEqsuiG5cV7AOaWCaTSTt0MgkzN2qJ/RQ3LhRx65e482+cPhbaeuDC4Zx7ufeeIBVcg+N8W0vLK6tr64WN4ubW9s6uXdpr6iRTlDVoIhLVDohmgkvWAA6CtVPFSBwI1goGV2O/dc+U5om8hWHK/Jj0JI84JWCkrl3ygD1CHo6wp3kvJncnXbvsVJwJ8CJxZ6SMZqh37S8vTGgWMwlUEK07rpOCnxMFnAo2KnqZZimhA9JjHUMliZn288npI3xklBBHiTIlAU/U3xM5ibUexoHpjAn09bw3Fv/zOhlEF37OZZoBk3S6KMoEhgSPc8AhV4yCGBpCqOLmVkz7RBEKJq2iCcGdf3mRNE8rbrVSvTkr1y5ncRTQATpEx8hF56iGrlEdNRBFD+gZvaI368l6sd6tj2nrkjWb2Ud/YH3+ACiPk/I=</latexit>

dω→

<latexit sha1_base64="Au+ZV0+4abpuPFtWAFffbWOB1NY=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahvZRESvVYFMSDQgX7gW0sm+2mXbrZhN2NUEL/hRcPinj133jz37htc9DWBwOP92aYmedFnClt299WZmV1bX0ju5nb2t7Z3cvvHzRVGEtCGyTkoWx7WFHOBG1opjltR5LiwOO05Y0up37riUrFQnGvxxF1AzwQzGcEayM9XBVvH5PiTWlS6uULdtmeAS0TJyUFSFHv5b+6/ZDEARWacKxUx7Ej7SZYakY4neS6saIRJiM8oB1DBQ6ocpPZxRN0YpQ+8kNpSmg0U39PJDhQahx4pjPAeqgWvan4n9eJtX/uJkxEsaaCzBf5MUc6RNP3UZ9JSjQfG4KJZOZWRIZYYqJNSDkTgrP48jJpnpadarl6VynULtI4snAEx1AEB86gBtdQhwYQEPAMr/BmKevFerc+5q0ZK505hD+wPn8A2x2PwA==</latexit>

F (M (L))
<latexit sha1_base64="WElWs179JF9zDvHpcvHQaXA5COo=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahvZRESvVYFMSLUMV+YBvLZrtpl242YXcjlNB/4cWDIl79N978N27bHLT1wcDjvRlm5nkRZ0rb9reVWVldW9/Ibua2tnd29/L7B00VxpLQBgl5KNseVpQzQRuaaU7bkaQ48DhteaPLqd96olKxUNzrcUTdAA8E8xnB2kgPV8Wbx6R4V5qUevmCXbZnQMvESUkBUtR7+a9uPyRxQIUmHCvVcexIuwmWmhFOJ7lurGiEyQgPaMdQgQOq3GR28QSdGKWP/FCaEhrN1N8TCQ6UGgee6QywHqpFbyr+53Vi7Z+7CRNRrKkg80V+zJEO0fR91GeSEs3HhmAimbkVkSGWmGgTUs6E4Cy+vEyap2WnWq7eVgq1izSOLBzBMRTBgTOowTXUoQEEBDzDK7xZynqx3q2PeWvGSmcO4Q+szx/kR4/G</latexit>

F (M (R))
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A. Weak solution of the flow equation

We start by considering the following first-order partial
non-linear di!erential equation

ωtV (ε; t) = →F (ωωV,ε; t), (30)

which could be the generalized version of the flow equa-
tions (18) and (20). When flowing the scale down into IR,
the 4-fermi coupling tends to be divergent since it cor-
responds to the chiral susceptibility for dynamical chiral
symmetry breaking of second-order. Here, defining the
mass function and the 4-fermi coupling with respect to
the background field

M(ε; t) ↑ ωωV (ε; t), G(ε; t) ↑ ω2

ωV (ε; t), (31)

the above fact can be translated into

|G(0±; t+c )| ↓ ↔, (32)

when the scale approaches the critical scale tc. Below
the critical scale, the mass function (in the chiral limit)
develops a discontinuity,

M(0→; t) = →M(0+; t) ↗= 0, (33)

which signals the onset of chiral symmetry breaking.
This discontinuity shows up during the integration of

the RG flow and causes the flow to stop at that point.
Also, if the solution of the flow equation shows a discon-
tinuity behavior (33), the solution cannot be described
by the original PDE. In the case of a second-order phase
transition, such a discontinuity appears at ε = 0, whereas
a first-order phase transition, which may occur at finite
chemical potential, involves discontinuities at nonzero
values of ε. Thus, the PDE must be reformulated so
as to accommodate solutions with singularities.

Let us now introduce the weak formulation for the
PDE. To this end, we consider the flow equation for
M(ε; t) instead of that for V (ε; t). Taking derivative
with respect to ε on the both side of eq. (30), we obtain
the PDE of the mass function

ωtM(ε; t) = →ωωF (M(ε; t),ε; t)

= →
ωF

ωM
·
ωM

ωε
→

ωF

ωε
. (34)

This equation is, in general, a conservation law, where
the conserved “charge” is M and the associated “cur-
rent” is F . A typical example of such a conservation
equation is the Burgers equation in hydrodynamics [26].
We integrate the PDE of the mass function multiplied by
an arbitrary smooth function ϑ(ε; t) which satisfies

lim
ω↑±↓

ϑ(ε; t) = 0, lim
t↑+↓

ϑ(ε; t) = 0, (35)

and utilizing the integration by parts, we obtain the fol-
lowing form
∫ ↓

0

dt

∫ ↓

→↓
dε

(
M

ωϑ

ωt
+ F

ωϑ

ωε

)
= →

∫ ↓

→↓
dε (M ϑ)t=0

.

(36)

Since the derivatives with respect to ε and t are trans-
ferred onto the test function ϑ, the solution M is not
required to be di!erentiable. We refer to eq. (36) as the
weak flow equation, and its solution is called the weak so-
lution. For details on the weak solution, see Refs. [14, 27].

B. Rankine-Hugoniot condition

Next, we discuss the requirement of the singularity of
the weak solution M = M(ε; t) following the discussion
of Ref. [14]. Suppose the set of discontinuous points of
the weak solution forms a curve ε↔(t) in the (ε, t) plane,
which divides the weak solution into two regions on dif-
ferent sides, denoted as M (L) and M (R). According to
the conservation law nature of the original equation, if
we take a small area made of the variation of ε↔ and t,
at the boundary of this area we have

(
M (L)

→M (R)

)
dε↔ =

[
F (M (L))→ F (M (R))

]
dt. (37)

This condition is the Rankine–Hugoniot (RH) condition
of the weak solution M(ε; t). For the convenience of find-
ing the weak solution, we shall consider one step fur-
ther. We denote the limit values of the fermionic poten-
tial at the di!erent side of the singularity trajectory ε↔

as V (L) and V (R), and we trace the variation of them
dV (L/R)(ε↔(t)) on the trajectory, which reads from the
original RG equation

dV (L/R)(ε↔(t)) =
ωV

ωε

∣∣∣∣
(L/R)

dε↔ +
ωV

ωt

∣∣∣∣
(L/R)

dt

= M (L/R)dε↔
→ F (M (L/R))dt. (38)

Then, the di!erence between dV (L/R)(ε↔(t); t) vanishes
according to the RH condition (37)

dV (L)(ε↔(t); t)→ dV (R)(ε↔(t); t) = 0. (39)

Since the initial potential continues everywhere within
our setup, this continuity will be kept even after the emer-
gence of the singularity trajectory. Thus we have

V (L)(ε↔(t); t) = V (R)(ε↔(t); t). (40)

Here, we show a schematic example of the weak so-
lution to the weak flow equation in the Nambu–Jona-
Lasinio model at finite density and temperature [15] in
Figure 5. On the left panel of Figure 5, we show the
fermionic potential of the composite operator V (ε; t) at
deep IR, which behaves with two singularity points. Im-
posing the continuity condition of the fermionic poten-
tial, we take the superior values of this potential, and
the weak solution would be obtained as in the right panel.
The method of finding this solution will be introduced in
the next subsection.

• Continuity condition from “conserved charge”

<latexit sha1_base64="QhaWXmnGoOlgmZu6DZZxvnONEzE=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpl272YTdiVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfju5nffuLaiFg94CThfkSHSoSCUbRSA/ulsltx5yCrxMtJGXLU+6Wv3iBmacQVMkmN6Xpugn5GNQom+bTYSw1PKBvTIe9aqmjEjZ/ND52Sc6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjjZ0IlKXLFFovCVBKMyexrMhCaM5QTSyjTwt5K2IhqytBmU7QheMsvr5LWZcWrVqqNq3LtNo+jAKdwBhfgwTXU4B7q0AQGHJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A47uNAw==</latexit>

t

<latexit sha1_base64="tdy5cBUx22e49sInllEMc7AaEZY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWrV2f1mp3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPn/GPLg==</latexit>ω
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A. Weak solution of the flow equation

We start by considering the following first-order partial
non-linear di!erential equation

ωtV (ε; t) = →F (ωωV,ε; t), (30)

which could be the generalized version of the flow equa-
tions (18) and (20). When flowing the scale down into IR,
the 4-fermi coupling tends to be divergent since it cor-
responds to the chiral susceptibility for dynamical chiral
symmetry breaking of second-order. Here, defining the
mass function and the 4-fermi coupling with respect to
the background field

M(ε; t) ↑ ωωV (ε; t), G(ε; t) ↑ ω2

ωV (ε; t), (31)

the above fact can be translated into

|G(0±; t+c )| ↓ ↔, (32)

when the scale approaches the critical scale tc. Below
the critical scale, the mass function (in the chiral limit)
develops a discontinuity,

M(0→; t) = →M(0+; t) ↗= 0, (33)

which signals the onset of chiral symmetry breaking.
This discontinuity shows up during the integration of

the RG flow and causes the flow to stop at that point.
Also, if the solution of the flow equation shows a discon-
tinuity behavior (33), the solution cannot be described
by the original PDE. In the case of a second-order phase
transition, such a discontinuity appears at ε = 0, whereas
a first-order phase transition, which may occur at finite
chemical potential, involves discontinuities at nonzero
values of ε. Thus, the PDE must be reformulated so
as to accommodate solutions with singularities.

Let us now introduce the weak formulation for the
PDE. To this end, we consider the flow equation for
M(ε; t) instead of that for V (ε; t). Taking derivative
with respect to ε on the both side of eq. (30), we obtain
the PDE of the mass function

ωtM(ε; t) = →ωωF (M(ε; t),ε; t)

= →
ωF

ωM
·
ωM

ωε
→

ωF

ωε
. (34)

This equation is, in general, a conservation law, where
the conserved “charge” is M and the associated “cur-
rent” is F . A typical example of such a conservation
equation is the Burgers equation in hydrodynamics [26].
We integrate the PDE of the mass function multiplied by
an arbitrary smooth function ϑ(ε; t) which satisfies

lim
ω↑±↓

ϑ(ε; t) = 0, lim
t↑+↓

ϑ(ε; t) = 0, (35)

and utilizing the integration by parts, we obtain the fol-
lowing form
∫ ↓

0

dt

∫ ↓

→↓
dε

(
M

ωϑ

ωt
+ F

ωϑ

ωε

)
= →

∫ ↓

→↓
dε (M ϑ)t=0

.

(36)

Since the derivatives with respect to ε and t are trans-
ferred onto the test function ϑ, the solution M is not
required to be di!erentiable. We refer to eq. (36) as the
weak flow equation, and its solution is called the weak so-
lution. For details on the weak solution, see Refs. [14, 27].

B. Rankine-Hugoniot condition

Next, we discuss the requirement of the singularity of
the weak solution M = M(ε; t) following the discussion
of Ref. [14]. Suppose the set of discontinuous points of
the weak solution forms a curve ε↔(t) in the (ε, t) plane,
which divides the weak solution into two regions on dif-
ferent sides, denoted as M (L) and M (R). According to
the conservation law nature of the original equation, if
we take a small area made of the variation of ε↔ and t,
at the boundary of this area we have

(
M (L)

→M (R)

)
dε↔ =

[
F (M (L))→ F (M (R))

]
dt. (37)

This condition is the Rankine–Hugoniot (RH) condition
of the weak solution M(ε; t). For the convenience of find-
ing the weak solution, we shall consider one step fur-
ther. We denote the limit values of the fermionic poten-
tial at the di!erent side of the singularity trajectory ε↔

as V (L) and V (R), and we trace the variation of them
dV (L/R)(ε↔(t)) on the trajectory, which reads from the
original RG equation

dV (L/R)(ε↔(t)) =
ωV

ωε

∣∣∣∣
(L/R)

dε↔ +
ωV

ωt

∣∣∣∣
(L/R)

dt

= M (L/R)dε↔
→ F (M (L/R))dt. (38)

Then, the di!erence between dV (L/R)(ε↔(t); t) vanishes
according to the RH condition (37)

dV (L)(ε↔(t); t)→ dV (R)(ε↔(t); t) = 0. (39)

Since the initial potential continues everywhere within
our setup, this continuity will be kept even after the emer-
gence of the singularity trajectory. Thus we have

V (L)(ε↔(t); t) = V (R)(ε↔(t); t). (40)

Here, we show a schematic example of the weak so-
lution to the weak flow equation in the Nambu–Jona-
Lasinio model at finite density and temperature [15] in
Figure 5. On the left panel of Figure 5, we show the
fermionic potential of the composite operator V (ε; t) at
deep IR, which behaves with two singularity points. Im-
posing the continuity condition of the fermionic poten-
tial, we take the superior values of this potential, and
the weak solution would be obtained as in the right panel.
The method of finding this solution will be introduced in
the next subsection.
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• Extract weak solution according to RH condition
E.g.: solution of fermionic potential and mass function from NJL-type model @ finite chemical potential [10].
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Determines the unique weak solution from a multi-values solution.
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oMethod of characteristics
Method of obtainning the “strong” solution.

• Characteristic curve in (𝜎, 𝑡)-plane
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FIG. 5. MY:V (→↑) not V (↑) Schematic sketch of the RH
condition (37) in searching for the weak solution. The right
panel represents the fermionic mass function M(ω̄; t) solved
from the method of characteristics, which will be explained
in Section III C, which shows a multi-valued behavior. The
left panel is the corresponding fermionic potential V (ω̄; t).
Following the discussion in Section III B, we drop the dashed
part in V (ω̄; t), and this results in the solid line in the both
panel, shows the non-analyticity of V (ω̄; t) and discontinuity
of M(ω̄; t).

C. Method of characteristics

Following the method of characteristics, we intro-
duce the characteristic curves ω̄(t) with initial conditions
ω̄(t = 0) = ω0, which satisfy

d

dt
ω̄(t) =

εF (M̄, ω̄; t)

εM̄
, (41)

where M̄ = M(ω̄(t); t). With the introduction of ω̄(t),
we convert the original RG equation into an equivalent
strong form by looking at

d

dt
M̄ =

εM(ω; t)

εω

∣∣∣∣
ω=ω̄

d

dt
ω̄ +

εM(ω̄; t)

εt

= →
εF (M,ω; t)

εω

∣∣∣∣
ω=ω̄

. (42)

The coupled ordinary di!erential equations (ODEs) (41)
and (42) give a set of solutions (ω̄(t),M(ω̄(t); t)) at di!er-
ent scale t with di!erent initial conditions ω̄(t = 0) = ω0

and M(ω̄(0); 0)) = M(ω0; 0)), and they forms a unique
strong solution of the RG equation. The fermionic po-
tential along the characteristic curve is integrated from
the original RG equation

V (ω̄(t); t) = V (ω0; 0) +

∫ t

0

dt→
[
εV

εω̄

dω̄

dt→
+

εV

εt

]

= V (ω0; 0) +

∫ t

0

dt→
[
M̄

dω̄

dt→
→ F (M̄, ω̄; t→)

]
.

(43)

Following the discussion on the previous example of the
RH condition in Figure 5, we select the initial conditions
{ω0} such that the fermionic potential takes the superior
values in the vicinity at each point {ω̄}. Then we trace
the mass function M̄ from the selected initial points, and
we obtain the weak solution like in the right panel of
Figure 5. This completes the current discussion on the

search for the weak RG solution, which preserves the
divergence nature of the 4-fermi coupling in the chiral
broken phase.

IV. NUMERICAL IMPLEMENTS

For the completeness of the current discussion, we
briefly introduce some of the numerical setups in this
work. At the initial RG scale ”, we solve the coupled
ODEs (41) and (42) using the 5-th order Runge-Kutta
method with adaptive step size, with the initial condi-
tion

ω̄(0) = ω0, M̄(ω̄(0); 0) = ml. (44)

The Matsubara frequencies in the flow equation are
summed explicitly up to a large momentum scale, e.g.,
the initial scale ”. At each Runge-Kutta step, we
also couple the flow equation with eq. (43) to solve the
fermionic potential. We search for a wide range of the
initial value of ω0 to fully cover the multi-valued region of
M̄ at each scale t ↑ [→11, 0], and extracting the value of
M̄(0, t) by the linear interpolation of the nearest points
around ω̄ = 0 from the RH condition (37).

V. RESULTS

In this section, we show our numerical results from
solving the flow equations of the fermionic potential (18)
and (20) utilizing the method mentioned in Section III
and Section IV. With the parameters fixed by physical
quantities, we investigate the phase diagram through the
dynamical mass M̄(0;↓).

A. Quark mass function and parameter fixing

We first show the way of parameter fixing within the
current setups. In the current work, we have two free pa-
rameters: the enhancement factor s reflecting the gauge
coupling at the UV scale according to the discussion
around eq. (29), and the light current quark mass ml.
The interior scale or ”QCD is already encoded in the in-
put of the gluon propagator, see the discussion in Sec-
tion IIC. The computation is done in the Landau gauge
ϑ = 0 and k ↑ (0, 40] GeV to match the RG conditions
of the input data.

We fix those two parameters by fitting the physical
quantities of the ω-meson (or ϖ0(770)) mass mω and the
ϱ0-meson mass mε at vanishing temperature and quark
chemical potential, through the following relations

mω ↔ 2M̄(0;↓) ↗ 2Mq, m2

εf
2

ε ↔ 2ml↘ς̄ς≃, (45)

where fε is the pion decay constant and ↘ς̄ς≃ is the light
quark condensate.

• PDE vs. coupled ODE
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FIG. 5. MY:V (→↑) not V (↑) Schematic sketch of the RH
condition (37) in searching for the weak solution. The right
panel represents the fermionic mass function M(ω̄; t) solved
from the method of characteristics, which will be explained
in Section III C, which shows a multi-valued behavior. The
left panel is the corresponding fermionic potential V (ω̄; t).
Following the discussion in Section III B, we drop the dashed
part in V (ω̄; t), and this results in the solid line in the both
panel, shows the non-analyticity of V (ω̄; t) and discontinuity
of M(ω̄; t).

C. Method of characteristics

Following the method of characteristics, we intro-
duce the characteristic curves ω̄(t) with initial conditions
ω̄(t = 0) = ω0, which satisfy

d

dt
ω̄(t) =

εF (M̄, ω̄; t)

εM̄
, (41)

where M̄ = M(ω̄(t); t). With the introduction of ω̄(t),
we convert the original RG equation into an equivalent
strong form by looking at

d

dt
M̄ =

εM(ω; t)

εω

∣∣∣∣
ω=ω̄

d

dt
ω̄ +

εM(ω̄; t)

εt

= →
εF (M,ω; t)

εω

∣∣∣∣
ω=ω̄

. (42)

The coupled ordinary di!erential equations (ODEs) (41)
and (42) give a set of solutions (ω̄(t),M(ω̄(t); t)) at di!er-
ent scale t with di!erent initial conditions ω̄(t = 0) = ω0

and M(ω̄(0); 0)) = M(ω0; 0)), and they forms a unique
strong solution of the RG equation. The fermionic po-
tential along the characteristic curve is integrated from
the original RG equation

V (ω̄(t); t) = V (ω0; 0) +

∫ t

0

dt→
[
εV

εω̄

dω̄

dt→
+

εV

εt

]

= V (ω0; 0) +

∫ t

0

dt→
[
M̄

dω̄

dt→
→ F (M̄, ω̄; t→)

]
.

(43)

Following the discussion on the previous example of the
RH condition in Figure 5, we select the initial conditions
{ω0} such that the fermionic potential takes the superior
values in the vicinity at each point {ω̄}. Then we trace
the mass function M̄ from the selected initial points, and
we obtain the weak solution like in the right panel of
Figure 5. This completes the current discussion on the

search for the weak RG solution, which preserves the
divergence nature of the 4-fermi coupling in the chiral
broken phase.

IV. NUMERICAL IMPLEMENTS

For the completeness of the current discussion, we
briefly introduce some of the numerical setups in this
work. At the initial RG scale ”, we solve the coupled
ODEs (41) and (42) using the 5-th order Runge-Kutta
method with adaptive step size, with the initial condi-
tion

ω̄(0) = ω0, M̄(ω̄(0); 0) = ml. (44)

The Matsubara frequencies in the flow equation are
summed explicitly up to a large momentum scale, e.g.,
the initial scale ”. At each Runge-Kutta step, we
also couple the flow equation with eq. (43) to solve the
fermionic potential. We search for a wide range of the
initial value of ω0 to fully cover the multi-valued region of
M̄ at each scale t ↑ [→11, 0], and extracting the value of
M̄(0, t) by the linear interpolation of the nearest points
around ω̄ = 0 from the RH condition (37).

V. RESULTS

In this section, we show our numerical results from
solving the flow equations of the fermionic potential (18)
and (20) utilizing the method mentioned in Section III
and Section IV. With the parameters fixed by physical
quantities, we investigate the phase diagram through the
dynamical mass M̄(0;↓).

A. Quark mass function and parameter fixing

We first show the way of parameter fixing within the
current setups. In the current work, we have two free pa-
rameters: the enhancement factor s reflecting the gauge
coupling at the UV scale according to the discussion
around eq. (29), and the light current quark mass ml.
The interior scale or ”QCD is already encoded in the in-
put of the gluon propagator, see the discussion in Sec-
tion IIC. The computation is done in the Landau gauge
ϑ = 0 and k ↑ (0, 40] GeV to match the RG conditions
of the input data.

We fix those two parameters by fitting the physical
quantities of the ω-meson (or ϖ0(770)) mass mω and the
ϱ0-meson mass mε at vanishing temperature and quark
chemical potential, through the following relations

mω ↔ 2M̄(0;↓) ↗ 2Mq, m2

εf
2

ε ↔ 2ml↘ς̄ς≃, (45)

where fε is the pion decay constant and ↘ς̄ς≃ is the light
quark condensate.
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• Examples: laddar w/o. A.D., chiral limit @ T = 10 MeV
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• Strategy in this work
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the potential.
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• Numerical implement

Two coupled ODE, 5-th Runge-Kutta method with initial condition
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FIG. 5. MY:V (→↑) not V (↑) Schematic sketch of the RH
condition (37) in searching for the weak solution. The right
panel represents the fermionic mass function M(ω̄; t) solved
from the method of characteristics, which will be explained
in Section III C, which shows a multi-valued behavior. The
left panel is the corresponding fermionic potential V (ω̄; t).
Following the discussion in Section III B, we drop the dashed
part in V (ω̄; t), and this results in the solid line in the both
panel, shows the non-analyticity of V (ω̄; t) and discontinuity
of M(ω̄; t).

C. Method of characteristics

Following the method of characteristics, we intro-
duce the characteristic curves ω̄(t) with initial conditions
ω̄(t = 0) = ω0, which satisfy

d

dt
ω̄(t) =

εF (M̄, ω̄; t)

εM̄
, (41)

where M̄ = M(ω̄(t); t). With the introduction of ω̄(t),
we convert the original RG equation into an equivalent
strong form by looking at

d

dt
M̄ =

εM(ω; t)

εω

∣∣∣∣
ω=ω̄

d

dt
ω̄ +

εM(ω̄; t)

εt

= →
εF (M,ω; t)

εω

∣∣∣∣
ω=ω̄

. (42)

The coupled ordinary di!erential equations (ODEs) (41)
and (42) give a set of solutions (ω̄(t),M(ω̄(t); t)) at di!er-
ent scale t with di!erent initial conditions ω̄(t = 0) = ω0

and M(ω̄(0); 0)) = M(ω0; 0)), and they forms a unique
strong solution of the RG equation. The fermionic po-
tential along the characteristic curve is integrated from
the original RG equation

V (ω̄(t); t) = V (ω0; 0) +

∫ t

0

dt→
[
εV

εω̄

dω̄

dt→
+

εV

εt

]

= V (ω0; 0) +

∫ t

0

dt→
[
M̄

dω̄

dt→
→ F (M̄, ω̄; t→)

]
.

(43)

Following the discussion on the previous example of the
RH condition in Figure 5, we select the initial conditions
{ω0} such that the fermionic potential takes the superior
values in the vicinity at each point {ω̄}. Then we trace
the mass function M̄ from the selected initial points, and
we obtain the weak solution like in the right panel of
Figure 5. This completes the current discussion on the

search for the weak RG solution, which preserves the
divergence nature of the 4-fermi coupling in the chiral
broken phase.

IV. NUMERICAL IMPLEMENTS

For the completeness of the current discussion, we
briefly introduce some of the numerical setups in this
work. At the initial RG scale ”, we solve the coupled
ODEs (41) and (42) using the 5-th order Runge-Kutta
method with adaptive step size, with the initial condi-
tion

ω̄(0) = ω0, M̄(ω̄(0); 0) = ml. (44)

The Matsubara frequencies in the flow equation are
summed explicitly up to a large momentum scale, e.g.,
the initial scale ”. At each Runge-Kutta step, we
also couple the flow equation with eq. (43) to solve the
fermionic potential. We search for a wide range of the
initial value of ω0 to fully cover the multi-valued region of
M̄ at each scale t ↑ [→11, 0], and extracting the value of
M̄(0, t) by the linear interpolation of the nearest points
around ω̄ = 0 from the RH condition (37).

V. RESULTS

In this section, we show our numerical results from
solving the flow equations of the fermionic potential (18)
and (20) utilizing the method mentioned in Section III
and Section IV. With the parameters fixed by physical
quantities, we investigate the phase diagram through the
dynamical mass M̄(0;↓).

A. Quark mass function and parameter fixing

We first show the way of parameter fixing within the
current setups. In the current work, we have two free pa-
rameters: the enhancement factor s reflecting the gauge
coupling at the UV scale according to the discussion
around eq. (29), and the light current quark mass ml.
The interior scale or ”QCD is already encoded in the in-
put of the gluon propagator, see the discussion in Sec-
tion IIC. The computation is done in the Landau gauge
ϑ = 0 and k ↑ (0, 40] GeV to match the RG conditions
of the input data.

We fix those two parameters by fitting the physical
quantities of the ω-meson (or ϖ0(770)) mass mω and the
ϱ0-meson mass mε at vanishing temperature and quark
chemical potential, through the following relations

mω ↔ 2M̄(0;↓) ↗ 2Mq, m2

εf
2

ε ↔ 2ml↘ς̄ς≃, (45)

where fε is the pion decay constant and ↘ς̄ς≃ is the light
quark condensate.

We are ready.
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FIG. 5. MY:V (→↑) not V (↑) Schematic sketch of the RH
condition (37) in searching for the weak solution. The right
panel represents the fermionic mass function M(ω̄; t) solved
from the method of characteristics, which will be explained
in Section III C, which shows a multi-valued behavior. The
left panel is the corresponding fermionic potential V (ω̄; t).
Following the discussion in Section III B, we drop the dashed
part in V (ω̄; t), and this results in the solid line in the both
panel, shows the non-analyticity of V (ω̄; t) and discontinuity
of M(ω̄; t).

C. Method of characteristics

Following the method of characteristics, we intro-
duce the characteristic curves ω̄(t) with initial conditions
ω̄(t = 0) = ω0, which satisfy

d

dt
ω̄(t) =

εF (M̄, ω̄; t)

εM̄
, (41)

where M̄ = M(ω̄(t); t). With the introduction of ω̄(t),
we convert the original RG equation into an equivalent
strong form by looking at

d

dt
M̄ =

εM(ω; t)

εω

∣∣∣∣
ω=ω̄

d

dt
ω̄ +

εM(ω̄; t)

εt

= →
εF (M,ω; t)

εω

∣∣∣∣
ω=ω̄

. (42)

The coupled ordinary di!erential equations (ODEs) (41)
and (42) give a set of solutions (ω̄(t),M(ω̄(t); t)) at di!er-
ent scale t with di!erent initial conditions ω̄(t = 0) = ω0

and M(ω̄(0); 0)) = M(ω0; 0)), and they forms a unique
strong solution of the RG equation. The fermionic po-
tential along the characteristic curve is integrated from
the original RG equation

V (ω̄(t); t) = V (ω0; 0) +

∫ t

0

dt→
[
εV

εω̄

dω̄

dt→
+

εV

εt

]

= V (ω0; 0) +

∫ t

0

dt→
[
M̄

dω̄

dt→
→ F (M̄, ω̄; t→)

]
.

(43)

Following the discussion on the previous example of the
RH condition in Figure 5, we select the initial conditions
{ω0} such that the fermionic potential takes the superior
values in the vicinity at each point {ω̄}. Then we trace
the mass function M̄ from the selected initial points, and
we obtain the weak solution like in the right panel of
Figure 5. This completes the current discussion on the

search for the weak RG solution, which preserves the
divergence nature of the 4-fermi coupling in the chiral
broken phase.

IV. NUMERICAL IMPLEMENTS

For the completeness of the current discussion, we
briefly introduce some of the numerical setups in this
work. At the initial RG scale ”, we solve the coupled
ODEs (41) and (42) using the 5-th order Runge-Kutta
method with adaptive step size, with the initial condi-
tion

ω̄(0) = ω0, M̄(ω̄(0); 0) = ml. (44)

The Matsubara frequencies in the flow equation are
summed explicitly up to a large momentum scale, e.g.,
the initial scale ”. At each Runge-Kutta step, we
also couple the flow equation with eq. (43) to solve the
fermionic potential. We search for a wide range of the
initial value of ω0 to fully cover the multi-valued region of
M̄ at each scale t ↑ [→11, 0], and extracting the value of
M̄(0, t) by the linear interpolation of the nearest points
around ω̄ = 0 from the RH condition (37).

V. RESULTS

In this section, we show our numerical results from
solving the flow equations of the fermionic potential (18)
and (20) utilizing the method mentioned in Section III
and Section IV. With the parameters fixed by physical
quantities, we investigate the phase diagram through the
dynamical mass M̄(0;↓).

A. Quark mass function and parameter fixing

We first show the way of parameter fixing within the
current setups. In the current work, we have two free pa-
rameters: the enhancement factor s reflecting the gauge
coupling at the UV scale according to the discussion
around eq. (29), and the light current quark mass ml.
The interior scale or ”QCD is already encoded in the in-
put of the gluon propagator, see the discussion in Sec-
tion IIC. The computation is done in the Landau gauge
ϑ = 0 and k ↑ (0, 40] GeV to match the RG conditions
of the input data.

We fix those two parameters by fitting the physical
quantities of the ω-meson (or ϖ0(770)) mass mω and the
ϱ0-meson mass mε at vanishing temperature and quark
chemical potential, through the following relations

mω ↔ 2M̄(0;↓) ↗ 2Mq, m2

εf
2

ε ↔ 2ml↘ς̄ς≃, (45)

where fε is the pion decay constant and ↘ς̄ς≃ is the light
quark condensate.
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FIG. 6. Quark mass function M̄(0; k) with respect to the
RG scale k at the vacuum. We identify this mass function
with the momentum argument as stated in eq. (46).

To compute the value of fω and →ω̄ω↑, we read o! the
quark mass function through the following identification

Mq(p) = M̄(0; k = p), (46)

i.e., the replacement of the momentum argument with
the RG scale k. We show the corresponding mass func-
tion Mq(p) with p ↓ [ε,”] = [10→3, 40] GeV in Figure 6
for the “ladder” and “non-ladder” type of flow equa-
tion with/without the quark anomalous dimension at the
physical point.

Then, the pion decay constant fω is given by the re-
duced Pagels-Stokar formula

f2

ω =
3

ϑ2

∫
!

ε
dp

p3Mq(p)[
p2 +M2

q (p)
]2

[
Mq(p)↔

p

4
ϖpMq(p)

]
,

(47)

and the light quark condensate is given by

→ω̄ω↑ = ↔
Nc

2ϑ2

∫
!

ε
p3dp

[
Mq(p)

p2 +M2
q (p)

↔
ml

p2 +m2

l

]
.

(48)

Then, we fix the constituent quark mass Mq = Mq(0) ↗
350 MeV and scale the current quark mass, then the
parameter is chosen as in Table I. We emphasize that
the adoption of the Pagels-Stokar formula (47) brings in
a sizable systematic error in the evaluation of the pion
mass. For example, in the case of “non-ladder” with
quark anomalous dimension, the value of fω deviates
from the experimental value f ex

ω ↗ 92.1 by about 15.2%.
This systematic error also comes due to the truncation
scheme we adopt in the current work, thus, we show our
result as both a benchmark and a demonstration.

Case Parameters Values Observables
Values
(MeV)

“Ladder”

ωω = 0

ml (MeV) 0 Mq 350.4
ε̄s 0.1529

ml (MeV) 2.76 Mq 350.2
ε̄s 0.1493 mε 134.9

fε 83.2

ωω →= 0

ml (MeV) 0 Mq 351.1
ε̄s 0.1331

ml (MeV) 2.49 Mq 350.1
ε̄s 0.1294 mε 135.3

fε 80.0

“Non-
ladder”

ωω = 0
ml (MeV) 2.57 Mq 350.3

ε̄s 0.1640 mε 135.0
fε 80.6

ωω →= 0
ml (MeV) 2.35 Mq 350.3

ε̄s 0.1410 mε 136.2
fε 78.1

TABLE I. Parameter fixing in the current work. We demon-
strate in the case with “ladder” and “non-ladder”, with or
without quark anomalous dimension, and also the case of the
chiral limit in the “ladder” case.

B. Phase diagrams

In Figure 7, we show our result of the QCD phase di-
agram in the (T, µB) plane, with the di!erent parameter
choices listed in Table I. In the chiral limit (ml = 0),
the phase boundary is observed at Mq = 0, reflecting
the second-order phase transition nature in the lower µB

region. At the physical point, the phase transition then
becomes the crossover type. We characterize the phase
transition temperature line (Tc-line) by the maximum of
the quantity ↔ϖTMq at fixed baryon chemical potential,
which is a similar quantity to the thermal susceptibility
defined by the quark condensate ϱT = ↔ϖT#l, since the
latter encountered with complicated subtraction schemes
and special numerical treatment, which beyond the scope
of the current work. We then summarize the phase tran-
sition temperature at vanished baryon chemical potential
Tc(0), the curvature ε of the Tc-line around µB = 0, and
the critical end point (CEP) (Tc, µB,c) in Table II. The
curvature ε is defined by the following expansion

Tc(µB)

Tc(0)
= 1↔ ε

(
µB

Tc(0)

)2

+ · · · . (49)

Compared with the phase diagrams obtained from
the bosonized fRG approach [10] and the DSE ap-
proaches [5, 28], the results in this work show the fol-
lowing characteristic behaviors:

• The position of the CEP is far in the chiral limit of
the “ladder” case, which becomes more severe when
the current quark mass comes in. Also, we cannot
even observe the signal of the second or first order
phase transition in the cases at the physical point
without the quark anomalous dimension down to
the temperature range around 10 MeV.
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FIG. 6. Quark mass function M̄(0; k) with respect to the
RG scale k at the vacuum. We identify this mass function
with the momentum argument as stated in eq. (46).

To compute the value of fω and →ω̄ω↑, we read o! the
quark mass function through the following identification

Mq(p) = M̄(0; k = p), (46)

i.e., the replacement of the momentum argument with
the RG scale k. We show the corresponding mass func-
tion Mq(p) with p ↓ [ε,”] = [10→3, 40] GeV in Figure 6
for the “ladder” and “non-ladder” type of flow equa-
tion with/without the quark anomalous dimension at the
physical point.

Then, the pion decay constant fω is given by the re-
duced Pagels-Stokar formula

f2

ω =
3

ϑ2

∫
!

ε
dp

p3Mq(p)[
p2 +M2

q (p)
]2

[
Mq(p)↔

p

4
ϖpMq(p)

]
,

(47)

and the light quark condensate is given by

→ω̄ω↑ = ↔
Nc

2ϑ2

∫
!

ε
p3dp

[
Mq(p)

p2 +M2
q (p)

↔
ml

p2 +m2

l

]
.

(48)

Then, we fix the constituent quark mass Mq = Mq(0) ↗
350 MeV and scale the current quark mass, then the
parameter is chosen as in Table I. We emphasize that
the adoption of the Pagels-Stokar formula (47) brings in
a sizable systematic error in the evaluation of the pion
mass. For example, in the case of “non-ladder” with
quark anomalous dimension, the value of fω deviates
from the experimental value f ex

ω ↗ 92.1 by about 15.2%.
This systematic error also comes due to the truncation
scheme we adopt in the current work, thus, we show our
result as both a benchmark and a demonstration.

Case Parameters Values Observables
Values
(MeV)

“Ladder”

ωω = 0

ml (MeV) 0 Mq 350.4
ε̄s 0.1529

ml (MeV) 2.76 Mq 350.2
ε̄s 0.1493 mε 134.9

fε 83.2

ωω →= 0

ml (MeV) 0 Mq 351.1
ε̄s 0.1331

ml (MeV) 2.49 Mq 350.1
ε̄s 0.1294 mε 135.3

fε 80.0

“Non-
ladder”

ωω = 0
ml (MeV) 2.57 Mq 350.3

ε̄s 0.1640 mε 135.0
fε 80.6

ωω →= 0
ml (MeV) 2.35 Mq 350.3

ε̄s 0.1410 mε 136.2
fε 78.1

TABLE I. Parameter fixing in the current work. We demon-
strate in the case with “ladder” and “non-ladder”, with or
without quark anomalous dimension, and also the case of the
chiral limit in the “ladder” case.

B. Phase diagrams

In Figure 7, we show our result of the QCD phase di-
agram in the (T, µB) plane, with the di!erent parameter
choices listed in Table I. In the chiral limit (ml = 0),
the phase boundary is observed at Mq = 0, reflecting
the second-order phase transition nature in the lower µB

region. At the physical point, the phase transition then
becomes the crossover type. We characterize the phase
transition temperature line (Tc-line) by the maximum of
the quantity ↔ϖTMq at fixed baryon chemical potential,
which is a similar quantity to the thermal susceptibility
defined by the quark condensate ϱT = ↔ϖT#l, since the
latter encountered with complicated subtraction schemes
and special numerical treatment, which beyond the scope
of the current work. We then summarize the phase tran-
sition temperature at vanished baryon chemical potential
Tc(0), the curvature ε of the Tc-line around µB = 0, and
the critical end point (CEP) (Tc, µB,c) in Table II. The
curvature ε is defined by the following expansion

Tc(µB)

Tc(0)
= 1↔ ε

(
µB

Tc(0)

)2

+ · · · . (49)

Compared with the phase diagrams obtained from
the bosonized fRG approach [10] and the DSE ap-
proaches [5, 28], the results in this work show the fol-
lowing characteristic behaviors:

• The position of the CEP is far in the chiral limit of
the “ladder” case, which becomes more severe when
the current quark mass comes in. Also, we cannot
even observe the signal of the second or first order
phase transition in the cases at the physical point
without the quark anomalous dimension down to
the temperature range around 10 MeV.

• Parameter fixing
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FIG. 5. MY:V (→↑) not V (↑) Schematic sketch of the RH
condition (37) in searching for the weak solution. The right
panel represents the fermionic mass function M(ω̄; t) solved
from the method of characteristics, which will be explained
in Section III C, which shows a multi-valued behavior. The
left panel is the corresponding fermionic potential V (ω̄; t).
Following the discussion in Section III B, we drop the dashed
part in V (ω̄; t), and this results in the solid line in the both
panel, shows the non-analyticity of V (ω̄; t) and discontinuity
of M(ω̄; t).

C. Method of characteristics

Following the method of characteristics, we intro-
duce the characteristic curves ω̄(t) with initial conditions
ω̄(t = 0) = ω0, which satisfy

d

dt
ω̄(t) =

εF (M̄, ω̄; t)

εM̄
, (41)

where M̄ = M(ω̄(t); t). With the introduction of ω̄(t),
we convert the original RG equation into an equivalent
strong form by looking at

d

dt
M̄ =

εM(ω; t)

εω

∣∣∣∣
ω=ω̄

d

dt
ω̄ +

εM(ω̄; t)

εt

= →
εF (M,ω; t)

εω

∣∣∣∣
ω=ω̄

. (42)

The coupled ordinary di!erential equations (ODEs) (41)
and (42) give a set of solutions (ω̄(t),M(ω̄(t); t)) at di!er-
ent scale t with di!erent initial conditions ω̄(t = 0) = ω0

and M(ω̄(0); 0)) = M(ω0; 0)), and they forms a unique
strong solution of the RG equation. The fermionic po-
tential along the characteristic curve is integrated from
the original RG equation

V (ω̄(t); t) = V (ω0; 0) +

∫ t

0

dt→
[
εV

εω̄

dω̄

dt→
+

εV

εt

]

= V (ω0; 0) +

∫ t

0

dt→
[
M̄

dω̄

dt→
→ F (M̄, ω̄; t→)

]
.

(43)

Following the discussion on the previous example of the
RH condition in Figure 5, we select the initial conditions
{ω0} such that the fermionic potential takes the superior
values in the vicinity at each point {ω̄}. Then we trace
the mass function M̄ from the selected initial points, and
we obtain the weak solution like in the right panel of
Figure 5. This completes the current discussion on the

search for the weak RG solution, which preserves the
divergence nature of the 4-fermi coupling in the chiral
broken phase.

IV. NUMERICAL IMPLEMENTS

For the completeness of the current discussion, we
briefly introduce some of the numerical setups in this
work. At the initial RG scale ”, we solve the coupled
ODEs (41) and (42) using the 5-th order Runge-Kutta
method with adaptive step size, with the initial condi-
tion

ω̄(0) = ω0, M̄(ω̄(0); 0) = ml. (44)

The Matsubara frequencies in the flow equation are
summed explicitly up to a large momentum scale, e.g.,
the initial scale ”. At each Runge-Kutta step, we
also couple the flow equation with eq. (43) to solve the
fermionic potential. We search for a wide range of the
initial value of ω0 to fully cover the multi-valued region of
M̄ at each scale t ↑ [→11, 0], and extracting the value of
M̄(0, t) by the linear interpolation of the nearest points
around ω̄ = 0 from the RH condition (37).

V. RESULTS

In this section, we show our numerical results from
solving the flow equations of the fermionic potential (18)
and (20) utilizing the method mentioned in Section III
and Section IV. With the parameters fixed by physical
quantities, we investigate the phase diagram through the
dynamical mass M̄(0;↓).

A. Quark mass function and parameter fixing

We first show the way of parameter fixing within the
current setups. In the current work, we have two free pa-
rameters: the enhancement factor s reflecting the gauge
coupling at the UV scale according to the discussion
around eq. (29), and the light current quark mass ml.
The interior scale or ”QCD is already encoded in the in-
put of the gluon propagator, see the discussion in Sec-
tion IIC. The computation is done in the Landau gauge
ϑ = 0 and k ↑ (0, 40] GeV to match the RG conditions
of the input data.

We fix those two parameters by fitting the physical
quantities of the ω-meson (or ϖ0(770)) mass mω and the
ϱ0-meson mass mε at vanishing temperature and quark
chemical potential, through the following relations

mω ↔ 2M̄(0;↓) ↗ 2Mq, m2

εf
2

ε ↔ 2ml↘ς̄ς≃, (45)

where fε is the pion decay constant and ↘ς̄ς≃ is the light
quark condensate.

where
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FIG. 6. Quark mass function M̄(0; k) with respect to the
RG scale k at the vacuum. We identify this mass function
with the momentum argument as stated in eq. (46).

To compute the value of fω and →ω̄ω↑, we read o! the
quark mass function through the following identification

Mq(p) = M̄(0; k = p), (46)

i.e., the replacement of the momentum argument with
the RG scale k. We show the corresponding mass func-
tion Mq(p) with p ↓ [ε,”] = [10→3, 40] GeV in Figure 6
for the “ladder” and “non-ladder” type of flow equa-
tion with/without the quark anomalous dimension at the
physical point.

Then, the pion decay constant fω is given by the re-
duced Pagels-Stokar formula

f2

ω =
3

ϑ2

∫
!

ε
dp

p3Mq(p)[
p2 +M2

q (p)
]2

[
Mq(p)↔

p

4
ϖpMq(p)

]
,

(47)

and the light quark condensate is given by

→ω̄ω↑ = ↔
Nc

2ϑ2

∫
!

ε
p3dp

[
Mq(p)

p2 +M2
q (p)

↔
ml

p2 +m2

l

]
.

(48)

Then, we fix the constituent quark mass Mq = Mq(0) ↗
350 MeV and scale the current quark mass, then the
parameter is chosen as in Table I. We emphasize that
the adoption of the Pagels-Stokar formula (47) brings in
a sizable systematic error in the evaluation of the pion
mass. For example, in the case of “non-ladder” with
quark anomalous dimension, the value of fω deviates
from the experimental value f ex

ω ↗ 92.1 by about 15.2%.
This systematic error also comes due to the truncation
scheme we adopt in the current work, thus, we show our
result as both a benchmark and a demonstration.

Case Parameters Values Observables
Values
(MeV)

“Ladder”

ωω = 0

ml (MeV) 0 Mq 350.4
ε̄s 0.1529

ml (MeV) 2.76 Mq 350.2
ε̄s 0.1493 mε 134.9

fε 83.2

ωω →= 0

ml (MeV) 0 Mq 351.1
ε̄s 0.1331

ml (MeV) 2.49 Mq 350.1
ε̄s 0.1294 mε 135.3

fε 80.0

“Non-
ladder”

ωω = 0
ml (MeV) 2.57 Mq 350.3

ε̄s 0.1640 mε 135.0
fε 80.6

ωω →= 0
ml (MeV) 2.35 Mq 350.3

ε̄s 0.1410 mε 136.2
fε 78.1

TABLE I. Parameter fixing in the current work. We demon-
strate in the case with “ladder” and “non-ladder”, with or
without quark anomalous dimension, and also the case of the
chiral limit in the “ladder” case.

B. Phase diagrams

In Figure 7, we show our result of the QCD phase di-
agram in the (T, µB) plane, with the di!erent parameter
choices listed in Table I. In the chiral limit (ml = 0),
the phase boundary is observed at Mq = 0, reflecting
the second-order phase transition nature in the lower µB

region. At the physical point, the phase transition then
becomes the crossover type. We characterize the phase
transition temperature line (Tc-line) by the maximum of
the quantity ↔ϖTMq at fixed baryon chemical potential,
which is a similar quantity to the thermal susceptibility
defined by the quark condensate ϱT = ↔ϖT#l, since the
latter encountered with complicated subtraction schemes
and special numerical treatment, which beyond the scope
of the current work. We then summarize the phase tran-
sition temperature at vanished baryon chemical potential
Tc(0), the curvature ε of the Tc-line around µB = 0, and
the critical end point (CEP) (Tc, µB,c) in Table II. The
curvature ε is defined by the following expansion

Tc(µB)

Tc(0)
= 1↔ ε

(
µB

Tc(0)

)2

+ · · · . (49)

Compared with the phase diagrams obtained from
the bosonized fRG approach [10] and the DSE ap-
proaches [5, 28], the results in this work show the fol-
lowing characteristic behaviors:

• The position of the CEP is far in the chiral limit of
the “ladder” case, which becomes more severe when
the current quark mass comes in. Also, we cannot
even observe the signal of the second or first order
phase transition in the cases at the physical point
without the quark anomalous dimension down to
the temperature range around 10 MeV.
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FIG. 6. Quark mass function M̄(0; k) with respect to the
RG scale k at the vacuum. We identify this mass function
with the momentum argument as stated in eq. (46).

To compute the value of fω and →ω̄ω↑, we read o! the
quark mass function through the following identification

Mq(p) = M̄(0; k = p), (46)

i.e., the replacement of the momentum argument with
the RG scale k. We show the corresponding mass func-
tion Mq(p) with p ↓ [ε,”] = [10→3, 40] GeV in Figure 6
for the “ladder” and “non-ladder” type of flow equa-
tion with/without the quark anomalous dimension at the
physical point.

Then, the pion decay constant fω is given by the re-
duced Pagels-Stokar formula

f2

ω =
3

ϑ2

∫
!

ε
dp

p3Mq(p)[
p2 +M2

q (p)
]2

[
Mq(p)↔

p

4
ϖpMq(p)

]
,

(47)

and the light quark condensate is given by

→ω̄ω↑ = ↔
Nc

2ϑ2

∫
!

ε
p3dp

[
Mq(p)

p2 +M2
q (p)

↔
ml

p2 +m2

l

]
.

(48)

Then, we fix the constituent quark mass Mq = Mq(0) ↗
350 MeV and scale the current quark mass, then the
parameter is chosen as in Table I. We emphasize that
the adoption of the Pagels-Stokar formula (47) brings in
a sizable systematic error in the evaluation of the pion
mass. For example, in the case of “non-ladder” with
quark anomalous dimension, the value of fω deviates
from the experimental value f ex

ω ↗ 92.1 by about 15.2%.
This systematic error also comes due to the truncation
scheme we adopt in the current work, thus, we show our
result as both a benchmark and a demonstration.

Case Parameters Values Observables
Values
(MeV)

“Ladder”

ωω = 0

ml (MeV) 0 Mq 350.4
ε̄s 0.1529

ml (MeV) 2.76 Mq 350.2
ε̄s 0.1493 mε 134.9

fε 83.2

ωω →= 0

ml (MeV) 0 Mq 351.1
ε̄s 0.1331

ml (MeV) 2.49 Mq 350.1
ε̄s 0.1294 mε 135.3

fε 80.0

“Non-
ladder”

ωω = 0
ml (MeV) 2.57 Mq 350.3

ε̄s 0.1640 mε 135.0
fε 80.6

ωω →= 0
ml (MeV) 2.35 Mq 350.3

ε̄s 0.1410 mε 136.2
fε 78.1

TABLE I. Parameter fixing in the current work. We demon-
strate in the case with “ladder” and “non-ladder”, with or
without quark anomalous dimension, and also the case of the
chiral limit in the “ladder” case.

B. Phase diagrams

In Figure 7, we show our result of the QCD phase di-
agram in the (T, µB) plane, with the di!erent parameter
choices listed in Table I. In the chiral limit (ml = 0),
the phase boundary is observed at Mq = 0, reflecting
the second-order phase transition nature in the lower µB

region. At the physical point, the phase transition then
becomes the crossover type. We characterize the phase
transition temperature line (Tc-line) by the maximum of
the quantity ↔ϖTMq at fixed baryon chemical potential,
which is a similar quantity to the thermal susceptibility
defined by the quark condensate ϱT = ↔ϖT#l, since the
latter encountered with complicated subtraction schemes
and special numerical treatment, which beyond the scope
of the current work. We then summarize the phase tran-
sition temperature at vanished baryon chemical potential
Tc(0), the curvature ε of the Tc-line around µB = 0, and
the critical end point (CEP) (Tc, µB,c) in Table II. The
curvature ε is defined by the following expansion

Tc(µB)

Tc(0)
= 1↔ ε

(
µB

Tc(0)

)2

+ · · · . (49)

Compared with the phase diagrams obtained from
the bosonized fRG approach [10] and the DSE ap-
proaches [5, 28], the results in this work show the fol-
lowing characteristic behaviors:

• The position of the CEP is far in the chiral limit of
the “ladder” case, which becomes more severe when
the current quark mass comes in. Also, we cannot
even observe the signal of the second or first order
phase transition in the cases at the physical point
without the quark anomalous dimension down to
the temperature range around 10 MeV.
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FIG. 6. Quark mass function M̄(0; k) with respect to the
RG scale k at the vacuum. We identify this mass function
with the momentum argument as stated in eq. (46).

To compute the value of fω and →ω̄ω↑, we read o! the
quark mass function through the following identification

Mq(p) = M̄(0; k = p), (46)

i.e., the replacement of the momentum argument with
the RG scale k. We show the corresponding mass func-
tion Mq(p) with p ↓ [ε,”] = [10→3, 40] GeV in Figure 6
for the “ladder” and “non-ladder” type of flow equa-
tion with/without the quark anomalous dimension at the
physical point.

Then, the pion decay constant fω is given by the re-
duced Pagels-Stokar formula

f2

ω =
3

ϑ2

∫
!

ε
dp

p3Mq(p)[
p2 +M2

q (p)
]2

[
Mq(p)↔

p

4
ϖpMq(p)

]
,

(47)

and the light quark condensate is given by

→ω̄ω↑ = ↔
Nc

2ϑ2

∫
!

ε
p3dp

[
Mq(p)

p2 +M2
q (p)

↔
ml

p2 +m2

l

]
.

(48)

Then, we fix the constituent quark mass Mq = Mq(0) ↗
350 MeV and scale the current quark mass, then the
parameter is chosen as in Table I. We emphasize that
the adoption of the Pagels-Stokar formula (47) brings in
a sizable systematic error in the evaluation of the pion
mass. For example, in the case of “non-ladder” with
quark anomalous dimension, the value of fω deviates
from the experimental value f ex

ω ↗ 92.1 by about 15.2%.
This systematic error also comes due to the truncation
scheme we adopt in the current work, thus, we show our
result as both a benchmark and a demonstration.

Case Parameters Values Observables
Values
(MeV)

“Ladder”

ωω = 0

ml (MeV) 0 Mq 350.4
ε̄s 0.1529

ml (MeV) 2.76 Mq 350.2
ε̄s 0.1493 mε 134.9

fε 83.2

ωω →= 0

ml (MeV) 0 Mq 351.1
ε̄s 0.1331

ml (MeV) 2.49 Mq 350.1
ε̄s 0.1294 mε 135.3

fε 80.0

“Non-
ladder”

ωω = 0
ml (MeV) 2.57 Mq 350.3

ε̄s 0.1640 mε 135.0
fε 80.6

ωω →= 0
ml (MeV) 2.35 Mq 350.3

ε̄s 0.1410 mε 136.2
fε 78.1

TABLE I. Parameter fixing in the current work. We demon-
strate in the case with “ladder” and “non-ladder”, with or
without quark anomalous dimension, and also the case of the
chiral limit in the “ladder” case.

B. Phase diagrams

In Figure 7, we show our result of the QCD phase di-
agram in the (T, µB) plane, with the di!erent parameter
choices listed in Table I. In the chiral limit (ml = 0),
the phase boundary is observed at Mq = 0, reflecting
the second-order phase transition nature in the lower µB

region. At the physical point, the phase transition then
becomes the crossover type. We characterize the phase
transition temperature line (Tc-line) by the maximum of
the quantity ↔ϖTMq at fixed baryon chemical potential,
which is a similar quantity to the thermal susceptibility
defined by the quark condensate ϱT = ↔ϖT#l, since the
latter encountered with complicated subtraction schemes
and special numerical treatment, which beyond the scope
of the current work. We then summarize the phase tran-
sition temperature at vanished baryon chemical potential
Tc(0), the curvature ε of the Tc-line around µB = 0, and
the critical end point (CEP) (Tc, µB,c) in Table II. The
curvature ε is defined by the following expansion

Tc(µB)

Tc(0)
= 1↔ ε

(
µB

Tc(0)

)2

+ · · · . (49)

Compared with the phase diagrams obtained from
the bosonized fRG approach [10] and the DSE ap-
proaches [5, 28], the results in this work show the fol-
lowing characteristic behaviors:

• The position of the CEP is far in the chiral limit of
the “ladder” case, which becomes more severe when
the current quark mass comes in. Also, we cannot
even observe the signal of the second or first order
phase transition in the cases at the physical point
without the quark anomalous dimension down to
the temperature range around 10 MeV.
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oPhase diagram of dynamical chiral symmetry breaking
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oQuantitative results from the phase diagram

• (Psudo-) Phase transition temperature @ vanishing chemical potential
<latexit sha1_base64="PqKDHsXlGYYy8oqDhggAk1PHZFo=">AAACAHicbZDLSgMxFIYz9VbrbdSFCzfBIrSbMiNS3QilblxW6EVohyGTZtrQJDMkGaEM3fgqblwo4tbHcOfbmGlnoa0/BD7+cw4n5w9iRpV2nG+rsLa+sblV3C7t7O7tH9iHR10VJRKTDo5YJB8CpAijgnQ01Yw8xJIgHjDSCya3Wb33SKSikWjraUw8jkaChhQjbSzfPmn7uOJU4Q3MYMATv2nYqfp22ak5c8FVcHMog1wt3/4aDCOccCI0ZkipvuvE2kuR1BQzMisNEkVihCdoRPoGBeJEeen8gBk8N84QhpE0T2g4d39PpIgrNeWB6eRIj9VyLTP/q/UTHV57KRVxoonAi0VhwqCOYJYGHFJJsGZTAwhLav4K8RhJhLXJrGRCcJdPXoXuRc2t1+r3l+VGM4+jCE7BGagAF1yBBrgDLdABGMzAM3gFb9aT9WK9Wx+L1oKVzxyDP7I+fwBCC5Oj</latexit>

Tc(0) = Tc(µB = 0)

• Curvature of the transition temperature line ~ vanishing chemical potential
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FIG. 6. Quark mass function M̄(0; k) with respect to the
RG scale k at the vacuum. We identify this mass function
with the momentum argument as stated in eq. (46).

To compute the value of fω and →ω̄ω↑, we read o! the
quark mass function through the following identification

Mq(p) = M̄(0; k = p), (46)

i.e., the replacement of the momentum argument with
the RG scale k. We show the corresponding mass func-
tion Mq(p) with p ↓ [ε,”] = [10→3, 40] GeV in Figure 6
for the “ladder” and “non-ladder” type of flow equa-
tion with/without the quark anomalous dimension at the
physical point.

Then, the pion decay constant fω is given by the re-
duced Pagels-Stokar formula

f2

ω =
3

ϑ2

∫
!

ε
dp

p3Mq(p)[
p2 +M2

q (p)
]2

[
Mq(p)↔

p

4
ϖpMq(p)

]
,

(47)

and the light quark condensate is given by

→ω̄ω↑ = ↔
Nc

2ϑ2

∫
!

ε
p3dp

[
Mq(p)

p2 +M2
q (p)

↔
ml

p2 +m2

l

]
.

(48)

Then, we fix the constituent quark mass Mq = Mq(0) ↗
350 MeV and scale the current quark mass, then the
parameter is chosen as in Table I. We emphasize that
the adoption of the Pagels-Stokar formula (47) brings in
a sizable systematic error in the evaluation of the pion
mass. For example, in the case of “non-ladder” with
quark anomalous dimension, the value of fω deviates
from the experimental value f ex

ω ↗ 92.1 by about 15.2%.
This systematic error also comes due to the truncation
scheme we adopt in the current work, thus, we show our
result as both a benchmark and a demonstration.

Case Parameters Values Observables
Values
(MeV)

“Ladder”

ωω = 0

ml (MeV) 0 Mq 350.4
ε̄s 0.1529

ml (MeV) 2.76 Mq 350.2
ε̄s 0.1493 mε 134.9

fε 83.2

ωω →= 0

ml (MeV) 0 Mq 351.1
ε̄s 0.1331

ml (MeV) 2.49 Mq 350.1
ε̄s 0.1294 mε 135.3

fε 80.0

“Non-
ladder”

ωω = 0
ml (MeV) 2.57 Mq 350.3

ε̄s 0.1640 mε 135.0
fε 80.6

ωω →= 0
ml (MeV) 2.35 Mq 350.3

ε̄s 0.1410 mε 136.2
fε 78.1

TABLE I. Parameter fixing in the current work. We demon-
strate in the case with “ladder” and “non-ladder”, with or
without quark anomalous dimension, and also the case of the
chiral limit in the “ladder” case.

B. Phase diagrams

In Figure 7, we show our result of the QCD phase di-
agram in the (T, µB) plane, with the di!erent parameter
choices listed in Table I. In the chiral limit (ml = 0),
the phase boundary is observed at Mq = 0, reflecting
the second-order phase transition nature in the lower µB

region. At the physical point, the phase transition then
becomes the crossover type. We characterize the phase
transition temperature line (Tc-line) by the maximum of
the quantity ↔ϖTMq at fixed baryon chemical potential,
which is a similar quantity to the thermal susceptibility
defined by the quark condensate ϱT = ↔ϖT#l, since the
latter encountered with complicated subtraction schemes
and special numerical treatment, which beyond the scope
of the current work. We then summarize the phase tran-
sition temperature at vanished baryon chemical potential
Tc(0), the curvature ε of the Tc-line around µB = 0, and
the critical end point (CEP) (Tc, µB,c) in Table II. The
curvature ε is defined by the following expansion

Tc(µB)

Tc(0)
= 1↔ ε

(
µB

Tc(0)

)2

+ · · · . (49)

Compared with the phase diagrams obtained from
the bosonized fRG approach [10] and the DSE ap-
proaches [5, 28], the results in this work show the fol-
lowing characteristic behaviors:

• The position of the CEP is far in the chiral limit of
the “ladder” case, which becomes more severe when
the current quark mass comes in. Also, we cannot
even observe the signal of the second or first order
phase transition in the cases at the physical point
without the quark anomalous dimension down to
the temperature range around 10 MeV.

• Position of the critical end point (CEP)
<latexit sha1_base64="CQ58dOcPZXyFxGF6JGpi46fJGEc=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBahQimJSPVY6sVjhX5BG8Jmu22X7iZhd1Moof/EiwdFvPpPvPlv3LY5aOuDgcd7M8zMC2LOlHacbyu3tb2zu5ffLxwcHh2f2KdnbRUlktAWiXgkuwFWlLOQtjTTnHZjSbEIOO0Ek4eF35lSqVgUNvUspp7Ao5ANGcHaSL5tl5o+KaO+SPy0Xibza98uOhVnCbRJ3IwUIUPDt7/6g4gkgoaacKxUz3Vi7aVYakY4nRf6iaIxJhM8oj1DQyyo8tLl5XN0ZZQBGkbSVKjRUv09kWKh1EwEplNgPVbr3kL8z+slenjvpSyME01Dslo0TDjSEVrEgAZMUqL5zBBMJDO3IjLGEhNtwiqYENz1lzdJ+6biVivVp9tirZ7FkYcLuIQSuHAHNXiEBrSAwBSe4RXerNR6sd6tj1VrzspmzuEPrM8ftTmSbw==</latexit>

(Tc, µB,c)
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FIG. 7. QCD phase diagrams in terms of the phase boundary
(Tc-lines) of second-order (chiral limit) or crossover (physical
point) within the parameter setups in Table I. The positions
of the CEP in each case are marked by triangle markers.

• Tc(0) of the “ladder” cases are slightly high com-
pared to the results from other functional methods
with (2 + 1)-flavor, e.g., around 155 MeV [5]. The
case of “non-ladder” with quark anomalous dimen-
sion works relatively well with Tc(0) = 158.0 MeV.

• Curvatures ω of the “ladder” cases are high com-
pared wit, e.g., ω = 0.0150(7) [5]. We infer that
this di!erence originates from the quark vacuum
polarization contribution to the gluon propagator,
indicating that the HTL mass → µ2

q is too large
compared to the quantitative approaches.

From the above observations, we state that the mesonic
fluctuations play a subleading role compared with the
quantitative correction to the gluonic loop, including the
“non-ladder” types of diagrams around µB = 0. Mean-
while, the mesonic fluctuations become necessary in real-
izing the chiral criticality with moderate baryon chemical
potential.

VI. SUMMARY AND CONCLUSION

In this paper, we study the QCD phase diagram with-
out explicitly taking into account the mesonic fluctua-
tions through the weak solution of the fRG equation.
We extend the derivation of the QCD flow equation
for the fermionic potential in Ref. [17] within the LPA’
to the finite temperature and quark chemical poten-
tial, and coupled with the gluon propagator evaluated
from other functional methods. To solve the flow equa-
tion with the minimum quarkonic fluctuation, we utilize

the method of characteristics, search for the weak so-
lution that contains non-analyticity explicitly, reflecting
the spontaneous symmetry breaking of the εPT in terms
of the fermionic potential Vk(ϑ, ϑ̄). From the solution

Cases Observables Values

“Ladder”

ωω = 0

ml = 0
Tc(0) (MeV) 178.8

ε 0.0197
(Tc, µB,c)
(MeV)

(94.16,874.6)

ml →= 0
Tc(0) (MeV) 176.8

ε 0.0193
(Tc, µB,c)
(MeV)

-

ωω →= 0

ml = 0
Tc(0) (MeV) 169.6

ε 0.0183
(Tc, µB,c)
(MeV)

(93.31,813.6)

ml →= 0
Tc(0) (MeV) 166.3

ε 0.0187
(Tc, µB,c)
(MeV)

(47.22,1058)

“Non-ladder”

ωω = 0

ml →= 0

Tc(0) (MeV) 166.1
ε 0.0176

(Tc, µB,c)
(MeV)

-

ωω →= 0
Tc(0) (MeV) 158.0

ε 0.0198
(Tc, µB,c)
(MeV)

(35.85,1078)

TABLE II. Observables related to the QCD phase diagram in
Figure 7.

of the fermionic mass function M(ϖ; t), we then read o!
the result of the QCD phase diagram with two flavors
of quarks. After comparing the result with other contin-
uous functional methods encountered with the mesonic
fluctuations, we find that the critical temperature and
the curvature of the Tc-line around vanishing chemical
serve reasonable results, while the prediction of the chi-
ral criticality deviate from those approaches by a large
amount, which, in part, is as we expected.
In the current work, we revisit the well-studied prob-

lem of the QCD phase diagram with light flavors and
discuss the role of the mesonic fluctuation from another
point of view. Also, we show the improvement of the
“non-ladder” approximation scheme in the QCD phase
transition around the vicinity of the vanishing baryon
chemical potential.
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• In this work, we revisit the problem of realizing the broken phase in RG method and 
the QCD phase structure;

• By truncating the IR effective action at the leading order of derivative expansion, we 
isolate the minimum quarkonic fluctuation we need;

• Utilizing the “ladder” and its beyond, we closed the RG equation at finite temperature 
and baryon chemical potential;

• Through weak RG formalism, we obtain the weak solution to read off the physical 
observables;

• We obtain the QCD chiral phase diagram through the dynamical mass:
• In the vicinity of vanishing baryon chemical potential, the “non-ladder” approx. works well in terms of 

the phase transition temperature and the curvature of the Tc-line, compared to the other functional 
approaches;

• The position of the CEP deviate from those previous approaches, which, in part, is as we expected, 
indicating the importance of the mesonic fluctuation around the chiral criticality. 
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