



QCD Chiral Phase Diagram from Weak fRG Equation

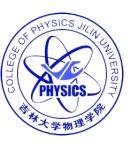
< INT Workshops in Autumn 2025>

Yuepeng Guan

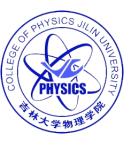
(玥鹏 关)

Center for Theoretical Physics and College of Physics, Jilin University

November 3rd, 2025

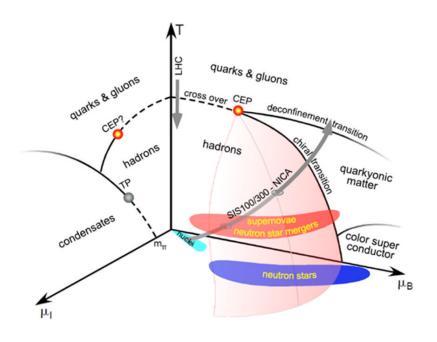


- Introduction
- Functional renormalization group (fRG) setup
 - FRG setups for QCD fermionic potential: LPA'
 - Gluonic sector and running coupling
- Searching for the weak solution of fRG equations
 - Why divergence of 4-fermi matters?
 - Weak form of the RG equations
 - Rankine-Hugoniot condition
 - Method of characteristics
- Results and discussions
- Summary
- References

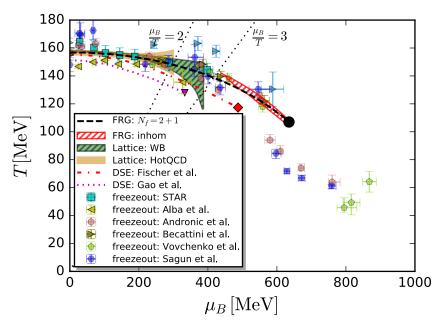


- Introduction
- Functional renormalization group (fRG) setup
 - FRG setups for QCD fermionic potential: LPA'
 - Gluonic sector and running coupling
- Searching for the weak solution of fRG equations
 - Why divergence of 4-fermi matters?
 - Weak form of the RG equations
 - Rankine-Hugoniot condition
 - Method of characteristics
- Results and discussions
- Summary
- References

o Quantum Chromodynamics (QCD) and its (chiral) phase structure



[1] Peter Senger. Probing dense QCD matter in the laboratory—The CBM experiment at FAIR. Phys. Scripta, 95(7):074003, 2020



[2] Wei-jie Fu, Jan M. Pawlowski, and Fabian Rennecke. QCD phase structure at finite temperature and density. Phys. Rev. D, 101(5):054032, 2020.

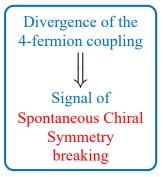
o Renormalization group acrossing the critical scale [3]

E.g.: RG flow of 4-fermion coupling in massless gauged-NJL, with fixed gauge coupling.

Flowing structure and phases:

 $ilde{G}_S(\mu)$ $alpha_s=0$ Broken phase $ilde{G}_S^{\mathrm{cr}}$ Symmetric phase $alpha_s$

Flow w.r.t. RG scale:

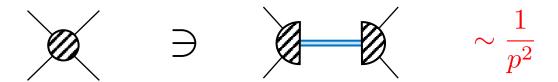


Dynamical bosonization and meson fluctuations

4-fermion coupling?

Chiral susceptibility!

Divergence arised from the massless mode propagation:



Emergence of the mesonic resonances: See, e.g, W.-j. Fu, et al. [2] and J. Braun, et al. [4].

$$\partial_t \phi_k^a(p) = \int_q \partial_t \mathcal{A}_k(q-p,q) \bar{\psi}(q-p) \Gamma^a \psi(q)$$

Enters the flow, tunned to absorb the flow of 4-fermion

o Question:

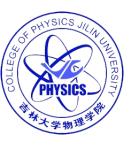
Is the mesonic fluctuations necessary to get into the broken phase?

o "Conclusion" from this work:

No in principle, and yes in practice.

- No: See, e.g, K.-I. Aoki, et al. [5]. Weak solution of fRG.
- Yes: See, e.g W.-J. Fu, et al. [2].
 Mesonic fluctuation and chiral criticality

- In this work:
 - Functional renormalization group (fRG) equation for QCD (fermion) in the medium;
 - Local potential approximation (LPA) and its modification, ladder and non-ladder approximations.
 - Weak solution;
 - Phase diagram in (μ_B, T) -plane.



- Introduction
- Functional renormalization group (fRG) setup
 - FRG setups for QCD fermionic potential: LPA'
 - Gluonic sector and running coupling
- Searching for the weak solution of fRG equations
 - Why divergence of 4-fermi matters?
 - Weak form of the RG equations
 - Rankine-Hugoniot condition
 - Method of characteristics
- Results and discussions
- Summary
- References

o FRG setups for QCD fermionic potential: LPA'

Mean-field approximation

QCD action at UV:

$$S_{\text{bare}}[\Phi] = \int_{x} \left[\frac{1}{4} F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \frac{1}{2\xi} (\partial_{\mu} A_{\mu}^{a})^{2} + \bar{\psi} (\partial \!\!\!/ + ig_{s} A \!\!\!/ - m_{l} - \mu_{q} \gamma_{4}) \psi \right]$$

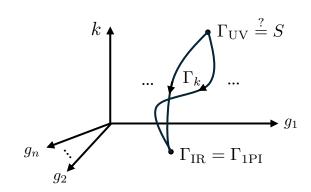
QCD action at IR:

$$\Gamma_{k}[\Phi] = \int_{x} \left[\frac{Z_{k}^{A}}{4} F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \frac{Z_{k}^{A}}{2\xi} (\partial_{\mu} A_{\mu}^{a})^{2} + Z_{k}^{\psi} \bar{\psi} (\partial \!\!\!/ + i g_{s} \!\!\!/ A - \mu_{q} \gamma_{4}) \psi - V_{k}(\psi, \bar{\psi}) \right]$$

• Flow equation of average one-partical effective action (1PIEA)

Wetterich equation [6]:

$$\partial_t \Gamma_k[\Phi] = \frac{1}{2} \operatorname{STr} \left[\left(\Gamma_k^{(2)} + \mathcal{R}_k \right)^{-1} \partial_t \mathcal{R}_k \right]$$



Regulator function: sharp cutoff $t = \log(k/\Lambda)$

$$t = \log(k/\Lambda)$$

$$\begin{split} \mathcal{R}_k^{\psi}(|\boldsymbol{p}|) &= Z_k^{\psi} i \boldsymbol{p} r_k^{\psi}(|\boldsymbol{p}|/k), \\ \mathcal{R}_k^{A}(|\boldsymbol{p}|) &= Z_k^{A} \boldsymbol{p}^2 r_k^{\psi}(|\boldsymbol{p}|/k), \\ r_k^{A} &= r_k^{\psi} = \frac{1}{\theta(|\boldsymbol{p}|/k-1)} - 1. \end{split}$$

$$\partial_t \Gamma_k[\Phi] = -rac{1}{2} \int_{p, ext{shell}} ext{str} \log \Gamma_k^{(2)} \qquad \qquad \partial_t \mathcal{R}_k \ \int_{p, ext{shell}} ext{d}^3 p \int_{p, e$$

Fierz subspace projection $\sigma = \psi \psi$

$$V_k(\psi, \bar{\psi}) \ni (\bar{\psi}\lambda^I\psi)^2 + (\bar{\psi}\lambda^Ii\gamma_5\psi)^2 + \cdots$$
 $V_k(\psi, \bar{\psi}) \equiv V(\sigma; t)$

Large-N leading order

$$\frac{\overrightarrow{\delta}}{\delta \psi^T(-p_{\psi})} \mathcal{V}_k^{\psi} \frac{\overleftarrow{\delta}}{\delta \psi(q_{\psi})} \to 0, \quad \frac{\overrightarrow{\delta}}{\delta \overline{\psi}(p_{\psi})} \mathcal{V}_k^{\psi} \frac{\overleftarrow{\delta}}{\delta \overline{\psi}^T(-q_{\psi})} \to 0,$$

$$\frac{\overrightarrow{\delta}}{\delta \psi^T(-p_{\psi})} \mathcal{V}_k^{\psi} \frac{\overleftarrow{\delta}}{\delta \overline{\psi}^T(-q_{\psi})} \to +\mathbf{1}_{\text{total}} \int_x e^{-i(p_{\psi}-q_{\psi})} \partial_{\sigma} V(\sigma), \quad \frac{\overrightarrow{\delta}}{\delta \overline{\psi}(p_{\psi})} \mathcal{V}_k^{\psi} \frac{\overleftarrow{\delta}}{\delta \psi(q_{\psi})} \to -\mathbf{1}_{\text{total}} \int_x e^{-i(p_{\psi}-q_{\psi})} \partial_{\sigma} V(\sigma).$$

• General structure of the flow equation

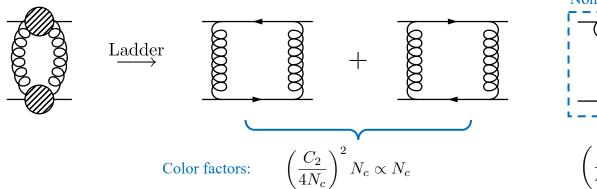
$$\partial_t V(\sigma;t) - \eta_{\psi} \sigma \partial_{\sigma} V(\sigma;t) = -\frac{1}{2} \int_{p,\text{shell}} \text{tr} \left[\log S^{-1}(p_{\psi}^-) + \log \left(S^{(T)}(p_{\psi}^+) \right)^{-1} \right] + \frac{1}{2} \int_{p,\text{shell}} \text{tr}' \log \left\{ \delta^{ab} \delta_{\mu\nu} + \mathcal{A}^{ab}_{\mu\nu} + \mathcal{B}^{ab}_{\mu\nu} \right\}$$

$$- \frac{1}{2} \left\{ \sum_{p,\text{shell}} \nabla \rho_{p} \right\} \left\{ \sum_{p,\text{shell}} \nabla \rho_{p$$

• Truncating the loops: "ladder" and "non-ladder" approximations

$$\operatorname{tr'} \log(1 + \mathcal{A} + \mathcal{B}) = -\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \operatorname{tr'} (\mathcal{A} + \mathcal{B})^n$$

E.g.: (Part of) RG flow of 4-fermion coupling.



• Partial defferential equations [7]

$$\partial_t V(\sigma;t) = -F(\partial_\sigma V, \sigma;t)$$

$$\partial_t = + \frac{1}{2} \left(\frac{1}{2} \right)$$

$$\partial_t V(\sigma; t) - \eta_{\psi} \sigma \partial_{\sigma} V(\sigma; t) = -\frac{1}{2} \int_{p, \text{shell}} \text{tr} \left[\log S^{-1}(p_{\psi}^-) + \log \left(S^{(T)}(p_{\psi}^+) \right)^{-1} \right] + \frac{1}{2} \int_{p, \text{shell}} \text{tr}' \log \left\{ \delta^{ab} \delta_{\mu\nu} + \mathcal{A}^{ab}_{\mu\nu} + \mathcal{B}^{ab}_{\mu\nu} \right\}$$

Ladder:

$$\begin{split} \partial_t V(\sigma;t) &= \eta_{\psi} \sigma \partial_{\sigma} V(\sigma;t) \\ &- T \sum_n \frac{k^3}{2\pi^2} \log \left(\omega_{\psi,n}^2 + (\sqrt{k^2 + \mathcal{M}^2} - \mu_q)^2 \right) \\ &- T \sum_n \frac{k^3}{2\pi^2} \log \left(\omega_{\psi,n}^2 + (\sqrt{k^2 + \mathcal{M}^2} + \mu_q)^2 \right), \end{split}$$

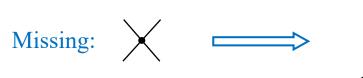
Non-ladder:

$$\partial_t V(\sigma; t) = \eta_{\psi} \sigma \partial_{\sigma} V(\sigma; t) - \frac{1}{2} \left[\operatorname{Flow}_k^{\text{N.L.},-}(\sigma, M_{\psi}) + \operatorname{Flow}_k^{\text{N.L.},+}(\sigma, M_{\psi}) \right].$$

Now, the fermionic sector is ready, leaving gluonic sector (gauge coupling) unknown.

o Gluonic sector and running coupling

• Difficulty: running coupling

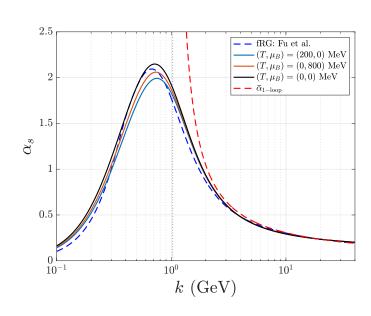


is not accessable...

• (Quark-gluon) gauge coupling as input

Renormalized gauge coupling:

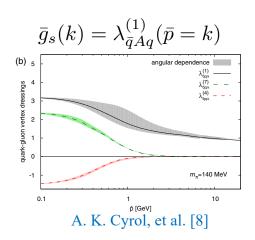
$$\alpha_s = \frac{1}{Z_k^A} \frac{\bar{g}_s^2}{4\pi}$$



Quantitative result of the quark-gluon dressing

Padé approximation to fit the runng coupling [8]:

$$\bar{g}_s(k) = \frac{0.2301 + 0.4411 \, k + 0.3967 \, k^2}{0.0832 + 0.0838 \, k + 0.4502 \, k^2}$$



• Quantitative result of the gluon propagator wave function

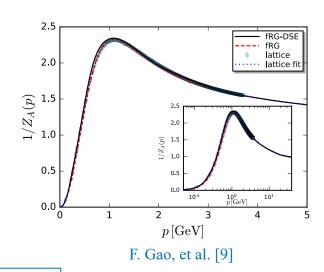
$$Z_k^A = Z_{T,\mu_q}^{\text{trans}}(p=k)$$

HTL approximation to the thermal mass (quark vacuum polarization):

$$Z_{T,\mu_q}^{\text{trans}}(p) = Z_{\text{vac}}(p) + \frac{4\pi}{3}\alpha_S^{\text{HTL}}\left(T^2 + \frac{3}{\pi^2}\mu_q^2\right)\frac{1}{p^2}$$

Gluon dressing at vanishing temperature and quark chemical potential: (see, e.g., F. Gao, et al. [9].)

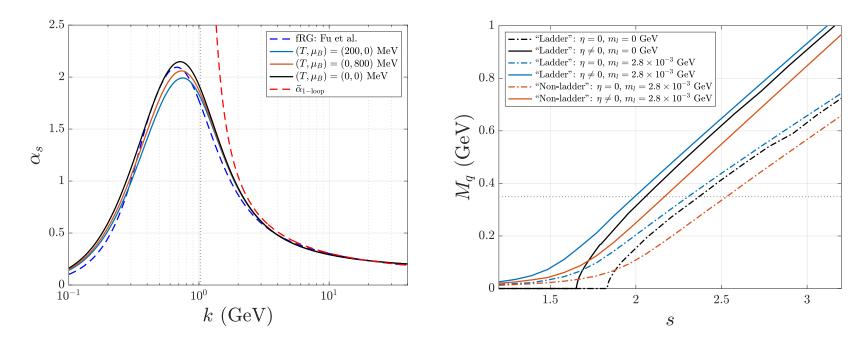
$$\begin{split} Z_{\text{vac}}^{-1}(k^2) \\ &= \frac{k^2 \frac{a^2 + k^2}{b^2 + k^2}}{M_G^2(k^2) + k^2 \left[1 + c \log(d^2 k^2 + e^2 M_G^2(k^2))\right]^{\gamma}} \end{split}$$



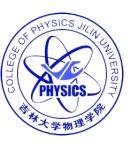
Flavor: (2+1) at physical point.

• Rescale the gauge coupling: controlling IR quantities

$$\alpha_s \to \bar{\alpha}_s = s \cdot \alpha_s$$



PDE closed.



- Introduction
- Functional renormalization group (fRG) setup
 - FRG setups for QCD fermionic potential: LPA'
 - Gluonic sector and running coupling
- Searching for the weak solution of fRG equations
 - Why divergence of 4-fermi matters?
 - Weak form of the RG equations
 - Rankine-Hugoniot condition
 - Method of characteristics
- Results and discussions
- Summary
- References

• Why divergence of 4-fermi matters?

$$\sigma = \bar{\psi}\psi$$

• Center object:

Fermionic potential

$$\partial_t V(\sigma;t) = -F(\partial_\sigma V, \sigma;t)$$

• Definning:

Mass function 4-fermion coupling
$$M(\sigma;t) \equiv \partial_{\sigma}V(\sigma;t), \quad G(\sigma;t) \equiv \partial_{\sigma}^{2}V(\sigma;t)$$

• "Problem" we meet:

$$\begin{array}{c|c} \text{E.g., chiral limit} \\ |G(0^{\pm};t_c^+)| \to \infty & \Longrightarrow \end{array} \begin{cases} M(0^+;t < t_c) \neq M(0^-;t < t_c) \\ \text{Discontinuity} \\ \partial_{\sigma}V(0^+;t < t_c) \neq \partial_{\sigma}V(0^-;t < t_c) \\ \text{Non-analyticity} \end{cases}$$

At some points, flow equation is not defined below the critical scale.

(* Possible solution: divide the field space, e.g.: K.-I. Aoki et al. PTEP, 2013:043B04 [7];

Singularities appears elsewhere @ finite chemical potential or beyond chiral limit. *)

Weak form of the RG equations

Original RG equation vs. weak form of the RG equation

$$\begin{array}{c} \partial_t V(\sigma;t) = -F(\partial_\sigma V,\sigma;t) \\ \text{Deformation:} & \downarrow \partial_\sigma \\ \text{Original RG:} & \partial_t M(\sigma;t) = -\partial_\sigma F(M(\sigma;t),\sigma;t) = -\frac{\partial F}{\partial M} \cdot \frac{\partial M}{\partial \sigma} - \frac{\partial F}{\partial \sigma} \\ \text{"Conservation law"} & \downarrow \\ & \text{Arbitary smooth test function} \\ & \lim_{\sigma \to \pm \infty} \varphi(\sigma;t) = 0, \quad \lim_{t \to -\infty} \varphi(\sigma;t) = 0 \\ \text{Weak RG:} & \int_{-\infty}^0 \mathrm{d}t \int_{-\infty}^\infty \mathrm{d}\sigma \, \left(M\frac{\partial \varphi}{\partial t} + F\frac{\partial \varphi}{\partial \sigma}\right) = -\int_{-\infty}^\infty \mathrm{d}\sigma \, (M\,\varphi)_{t=0} \\ \end{array}$$

Discontinuity is allowed!

Weak solution of the weak RG equation

Mass function satisfies the weak RG equation is the *weak solution*.

- Containing finite numbers of discontinuity *points* (σ -direction);
 - Satisfies the *original RG* elsewhere.

Rankine-Hugoniot condition

Condition for weak solution

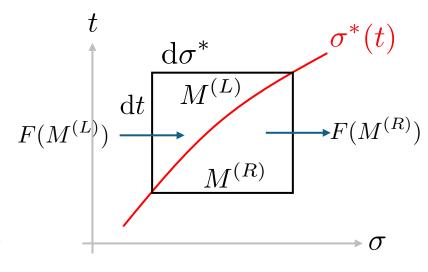
$$\left(M^{(L)} - M^{(R)}\right) d\sigma^* = \left[F(M^{(L)}) - F(M^{(R)})\right] dt.$$

Continuity condition from "conserved charge"

$$dV^{(L/R)}(\sigma^*(t)) = \frac{\partial V}{\partial \sigma} \Big|_{(L/R)} d\sigma^* + \frac{\partial V}{\partial t} \Big|_{(L/R)} dt$$
$$= M^{(L/R)} d\sigma^* - F(M^{(L/R)}) dt.$$

$$dV^{(L)}(\sigma^*(t);t) - dV^{(R)}(\sigma^*(t);t) = 0.$$

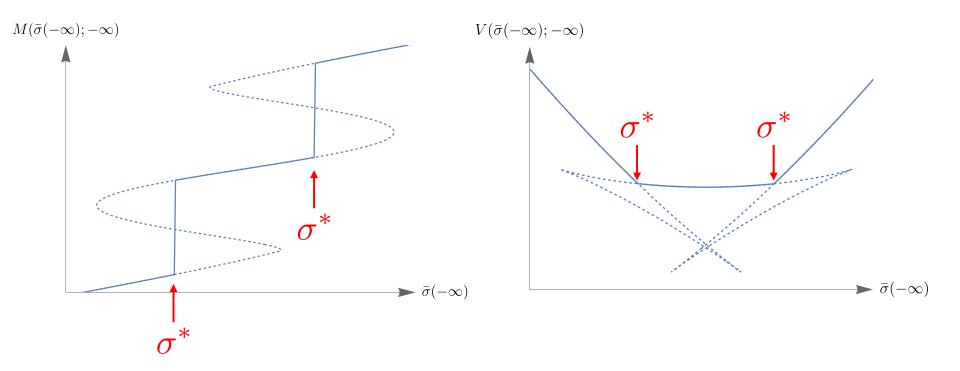
Potential stays continues during the flow.





• Extract weak solution according to RH condition

E.g.: solution of fermionic potential and mass function from NJL-type model @ finite chemical potential [10].



Determines the unique weak solution from a multi-values solution.

Method of characteristics

Method of obtaining the "strong" solution.

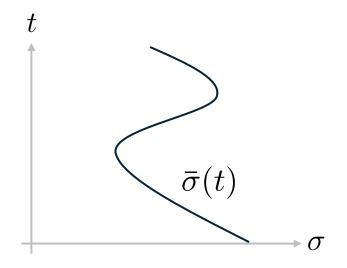
• Characteristic curve in (σ, t) -plane

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{\sigma}(t) = \frac{\partial F(\bar{M}, \bar{\sigma}; t)}{\partial \bar{M}}$$

PDE vs. coupled ODE

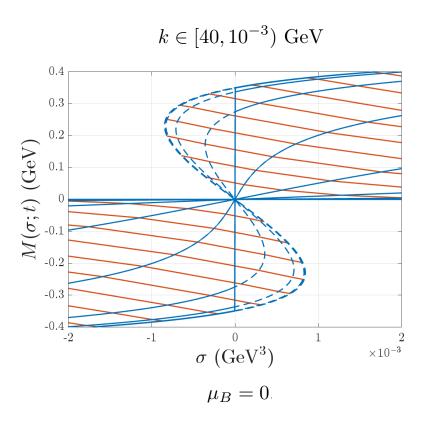
$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{M} = \frac{\partial M(\sigma;t)}{\partial \sigma} \bigg|_{\sigma=\bar{\sigma}} \frac{\mathrm{d}}{\mathrm{d}t}\bar{\sigma} + \frac{\partial M(\bar{\sigma};t)}{\partial t}$$
$$= -\frac{\partial F(M,\sigma;t)}{\partial \sigma} \bigg|_{\sigma=\bar{\sigma}}.$$

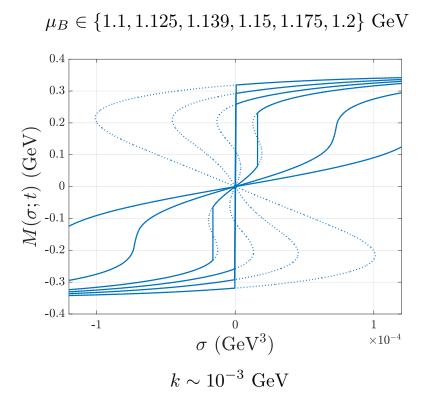
(Also the integral form of fermionic potential.)



$$\begin{cases} \bar{M} = \bar{M}(t) \\ \bar{\sigma} = \bar{\sigma}(t) \end{cases}$$
$$\begin{cases} \bar{\sigma}(0) = \sigma_0 \\ \bar{M}(0) = M_{\Lambda}(\sigma_0) \end{cases}$$

• Examples: laddar w/o. A.D., chiral limit @ T = 10 MeV





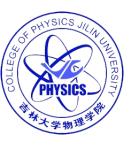
• Strategy in this work

Numerical implement

Two coupled ODE, 5-th Runge-Kutta method with initial condition

$$\bar{\sigma}(0) = \sigma_0, \quad \bar{M}(\bar{\sigma}(0); 0) = m_l$$

We are ready.

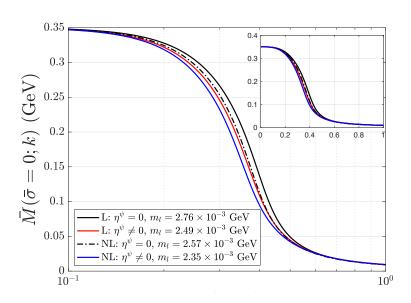


- Introduction
- Functional renormalization group (fRG) setup
 - FRG setups for QCD fermionic potential: LPA'
 - Gluonic sector and running coupling
- Searching for the weak solution of fRG equations
 - Why divergence of 4-fermi matters?
 - Weak form of the RG equations
 - Rankine-Hugoniot condition
 - Method of characteristics
- Results and discussions
- Summary
- References

Quark mass function and parameter fixing

• Quark mass function with p = k

$$M_q(p) = \bar{M}(0; k = p)$$



• Parameter fixing $(\bar{\alpha}_s, m_l)$

$$m_{\sigma} \sim 2\bar{M}(0; \infty) \equiv 2M_q$$

 $m_{\pi}^2 f_{\pi}^2 \sim 2m_l \langle \bar{\psi}\psi \rangle$

where

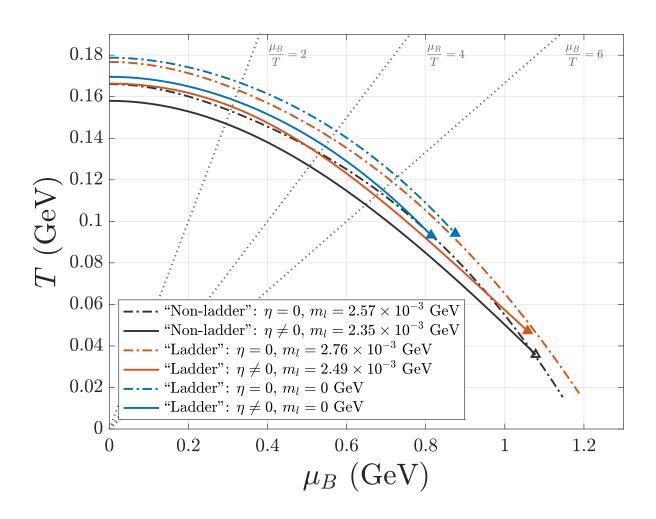
$$f_{\pi}^{2} = \frac{3}{\pi^{2}} \int_{\kappa}^{\Lambda} dp \frac{p^{3} M_{q}(p)}{\left[p^{2} + M_{q}^{2}(p)\right]^{2}} \left[M_{q}(p) - \frac{p}{4} \partial_{p} M_{q}(p)\right]$$

$$\langle \bar{\psi}\psi \rangle = -\frac{N_c}{2\pi^2} \int_{\kappa}^{\Lambda} p^3 \mathrm{d}p \left[\frac{M_q(p)}{p^2 + M_q^2(p)} - \frac{m_l}{p^2 + m_l^2} \right]$$

Case		Parameters	Values	Observables	Values (MeV)
"Ladder"	$\eta_{\psi} = 0$	$m_l \; ({ m MeV})$	0	M_q	350.4
		$ar{lpha}_s$	0.1529		_
		$m_l \; ({ m MeV})$	2.76	M_q	350.2
		$ar{lpha}_s$	0.1493	m_{π}	134.9
				f_{π}	83.2
	$\eta_{\psi} \neq 0$	$m_l \; ({ m MeV})$	0	M_q	351.1
		$ar{lpha}_s$	0.1331		_
		$m_l \; ({ m MeV})$	2.49	M_q	350.1
		$ar{lpha}_s$	0.1294	m_{π}	135.3
				f_{π}	80.0
"Non- ladder"	$\eta_{\psi}=0$	$m_l \; ({ m MeV})$	2.57	M_q	350.3
		\bar{lpha}_s	0.1640	m_{π}	135.0
				f_{π}	80.6
	$\eta_{\psi} \neq 0$	$m_l \; ({ m MeV})$	2.35	M_q	350.3
		\bar{lpha}_s	0.1410	m_{π}	136.2
				f_{π}	78.1

TABLE I. Parameter fixing in the current work. We demonstrate in the case with "ladder" and "non-ladder", with or without quark anomalous dimension, and also the case of the chiral limit in the "ladder" case.

Phase diagram of dynamical chiral symmetry breaking



Quantitative results from the phase diagram

• (Psudo-) Phase transition temperature @ vanishing chemical potential

$$T_c(0) = T_c(\mu_B = 0)$$

• Curvature of the transition temperature line ~ vanishing chemical potential

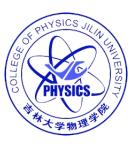
$$\frac{T_c(\mu_B)}{T_c(0)} = 1 - \kappa \left(\frac{\mu_B}{T_c(0)}\right)^2 + \cdots$$

Position of the critical end point (CEP)

$$(T_c, \mu_{B,c})$$

Ca	ases	Observables	Values	
		$m_l = 0$	$T_c(0) \text{ (MeV)}$	178.8
	$\eta_{\psi} = 0$		κ	0.0197
			$(T_c, \mu_{B,c}) \ (\mathrm{MeV})$	(94.16,874.6)
			$T_c(0) \text{ (MeV)}$	176.8
"Ladder"		$m_l \neq 0$	κ	0.0193
Daddel			$(T_c, \mu_{B,c}) \ (\mathrm{MeV})$	-
	$\eta_{\psi} \neq 0$	$m_l = 0$	$T_c(0) \text{ (MeV)}$	169.6
			κ	0.0183
			$(T_c, \mu_{B,c}) \ (\mathrm{MeV})$	(93.31,813.6)
			$T_c(0) \text{ (MeV)}$	166.3
		$m_l \neq 0$	κ	0.0187
_			$(T_c, \mu_{B,c}) \ (\mathrm{MeV})$	(47.22,1058)
	$\eta_{\psi}=0$		$T_c(0) \text{ (MeV)}$	166.1
			κ	0.0176
"Non-ladder"		$m_l \neq 0$	$(T_c, \mu_{B,c}) \ (\mathrm{MeV})$	-
	$\eta_{\psi} \neq 0$		$T_c(0) \text{ (MeV)}$	158.0
			κ	0.0198
			$\begin{array}{c} (T_c, \mu_{B,c}) \\ (\text{MeV}) \end{array}$	(35.85,1078)

TABLE II. Observables related to the QCD phase diagram in Figure 7.

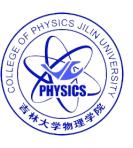


- Introduction
- Functional renormalization group (fRG) setup
 - FRG setups for QCD fermionic potential: LPA'
 - Gluonic sector and running coupling
- Searching for the weak solution of fRG equations
 - Why divergence of 4-fermi matters?
 - Weak form of the RG equations
 - Rankine-Hugoniot condition
 - Method of characteristics
- Results and discussions
- Summary
- References

Summary

- In this work, we revisit the problem of realizing the broken phase in RG method and the QCD phase structure;
- By truncating the IR effective action at the leading order of derivative expansion, we isolate the minimum quarkonic fluctuation we need;
- Utilizing the "ladder" and its beyond, we closed the RG equation at finite temperature and baryon chemical potential;
- Through weak RG formalism, we obtain the weak solution to read off the physical observables;
- We obtain the QCD chiral phase diagram through the dynamical mass:
 - In the vicinity of vanishing baryon chemical potential, the "non-ladder" approx. works well in terms of the phase transition temperature and the curvature of the Tc-line, compared to the other functional approaches;
 - The position of the CEP deviate from those previous approaches, which, in part, is as we expected, indicating the importance of the mesonic fluctuation around the chiral criticality.

Thanks!



- Introduction
- Functional renormalization group (fRG) setup
 - FRG setups for QCD fermionic potential: LPA'
 - Gluonic sector and running coupling
- Searching for the weak solution of fRG equations
 - Why divergence of 4-fermi matters?
 - Weak form of the RG equations
 - Rankine-Hugoniot condition
 - Method of characteristics
- Results and discussions
- Summary
- References

References

- 1. Peter Senger. Probing dense QCD matter in the laboratory—The CBM experiment at FAIR. Phys. Scripta, 95(7):074003, 2020.
- 2. Wei-jie Fu, Jan M. Pawlowski, and Fabian Rennecke. QCD phase structure at finite temperature and density. Phys. Rev. D, 101(5):054032, 2020.
- 3. Ken-Ichi Aoki, Keiichi Morikawa, Jun-Ichi Sumi, Haruhiko Terao, and Masashi Tomoyose. Wilson renormalization group equations for the critical dynamics of chiral symmetry. Prog. Theor. Phys., 102:1151–1162, 1999.
- 4. Jens Braun, Leonard Fister, Jan M. Pawlowski, and Fabian Rennecke. From Quarks and Gluons to Hadrons: Chiral Symmetry Breaking in Dynamical QCD. Phys. Rev. D, 94(3):034016, 2016.
- 5. Ken-Ichi Aoki, Shin-Ichiro Kumamoto, and Daisuke Sato. Weak solution of the non-perturbative renormalization group equation to describe dynamical chiral symmetry breaking. PTEP, 2014(4):043B05, 2014.
- 6. C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993) 90 [1710.05815].
- 7. Ken-Ichi Aoki and Daisuke Sato. Solving the QCD non-perturbative flow equation as a partial differential equation and its application to the dynamical chiral symmetry breaking. PTEP, 2013:043B04, 2013.

References

- 8. Anton K. Cyrol, Mario Mitter, Jan M. Pawlowski, and Nils Strodthoff. Nonperturbative quark, gluon, and meson correlators of unquenched QCD. Phys. Rev. D, 97(5):054006, 2018.
- 9. Fei Gao, Joannis Papavassiliou, and Jan M. Pawlowski. Fully coupled functional equations for the quark sector of QCD. Phys. Rev. D, 103(9):094013, 2021.
- 10. Ken-Ichi Aoki, Shin-Ichiro Kumamoto, and Masatoshi Yamada. Phase structure of NJL model with weak renormalization group. Nucl. Phys. B, 931:105–131, 2018.