Spin-motion correlation in QCD matter

- I. Intro.
- 2. Hydro. limit: shear-induced polarization and its cousin effects
- 3. Beyond hydro.
- 4. Matching to quantum kinetic theory
- 5. Outlook

Institute of Modern Physics (IMP), Lanzhou, Chinese academy of sciences INT Workshop, Aug. 24, 2023

Based on works Baochi Fu, Shuai Liu, Longgang Pang, Huichao Song,YY and Zonglin Mo:

2006.12421,PRD; 2103.09200, JHEP 21., 2103.10403, PRL 21; 2201.12970 and more

Zonglin Mo, Master student from USTC

Motivation

Spin observables probe QCD phase structure.

- Density of spin carriers changes dramatically near Tc.
- Quantum effects may be employed to distinguish different phases.

Review: Becattini, Lisa, Annals Phys. 2020

<u>Spin observables in HIC</u>

- Informative Λ hyperon polarization data
 - Vorticity effect describes the trends of global (phase-space averaged) Λ.

Xin-Nian Wang, Zuo-Tang Liang, PRL 05'; Becattini et al, Annals Phys 13'

• the differential data, i.e. the flow of spin.: intensive study.

STAR PRL 19'; hydro. simulations by many

• Intriguing results on vector meson (kaon, ϕ , J/ ψ) spin density matrix.

e.g. STAR, 2204.02302; ALICE PRL 20', 2204.10171

Mechanism for spin polarization of Fermions

• Rotation polarizes spin:

Landau-Lifshitz volume 5

$$\Delta \epsilon = -\hat{s} \cdot \overrightarrow{\Omega} \to \hat{s} \parallel \overrightarrow{\Omega} \qquad \text{(similar for B-field)}$$

• extensively studied.

Xin-Nian Wang, Zuo-Tang Liang, PRL 05'; Becattini et al, 13'

- \bullet induced-polarization is independent of \hat{p} .
- A different class of mechanisms: spin polarization that is correlated with motion (spin-motion correlation).

Spin Hall effect (SHE)

- implies non-trivial spin current and spin-momentum correlation.
- is instrumental for characterizing topological phases in 2+1 insulators.
 - SHE conductivity is zero for topological matter class A but non-zero for class AII.
- connects to Berry curvature and angular momentum conservation.
 Murakami, Nagaosa, Shou-Cheng Zhang, Science 2003'

Heavy-ion collisions

- We may generalize SHE by replacing electric field by the effective force \overrightarrow{F} such as $T \nabla (\mu/T)$, T-gradient
- Spin transport induced by the gradient of hydro. field (e.g. flow and energy/charge density)?

NB: probing quantum correlation between spin and motion inside proton is one of the main goals of future electron-ion collider.

Simulation by Schenke et al

transverse momentum dependent quark distribution in a polarized proton (fig from EIC white paper)

Hydro. limit

Hydro.(long time and wave-length) limit

- For a generic fluid, conserved densities, e.g, energy and momentum density (related to flow velocity) are only dynamic d.o.f. in this limit.
- Others observables O (including spin polarization) are
 - slaved to the evolution of hydro. modes;
 - expressible in terms of hydro. fields via gradient expansion.
 - Expansion coefficients can be extracted from correlators $\langle O(x)T^{\mu\nu}(x')\rangle$.
- E.g.: the constitutive relation for viscous stress-tensor

$$(T^{\mu\nu})_{\rm vis} \propto \eta \sigma^{\mu\nu}$$

Axial Wigner function

$$\mathcal{A}^{\mu}(t,\vec{x},\vec{p}) = \int d^{3}\vec{y} \, e^{-i\vec{y}\cdot\vec{p}} \left\langle \bar{\psi}(t,\vec{x}-\frac{1}{2}\vec{y}) \gamma^{\mu}\gamma^{5}\psi(t,\vec{x}+\frac{1}{2}\vec{y}) \right\rangle$$

- describes the phase space distribution of spin vector \vec{s} .
- Building blocks for the gradient expansion:

$$\begin{split} \theta &= \partial_{\perp} \cdot u \,, \\ \omega^{\mu} &= \frac{1}{2} \epsilon^{\mu\nu\alpha\lambda} u_{\nu} \partial_{\alpha}^{\perp} u_{\lambda} \,, \qquad \beta^{-1} \partial_{\perp}^{\mu} \beta \,, \\ \sigma^{\mu\nu} &= \frac{1}{2} (\partial_{\perp}^{\mu} u^{\nu} + \partial_{\perp}^{\nu} u^{\mu}) - \frac{1}{3} \Delta^{\mu\nu} \theta \,. \end{split}$$

Tensors from gradient (focus on the neutral fluid)

$$p^{\mu} = \epsilon u^{\mu} + p_{\perp}^{\mu},$$

$$Q^{\mu\nu} = -\frac{p_{\perp}^{\mu}p_{\perp}^{\nu}}{p_{\perp}^{2}} - \frac{1}{3}\Delta^{\mu\nu}, \dots$$

Tensors formed by single particle momentum

e.g.:
$$\mathscr{A}^{\mu} \sim \epsilon^{\mu\nu\alpha\lambda} u_{\nu} Q_{\alpha\rho} \sigma^{\rho}_{\lambda}$$

The derivative expansion

The most general expression consistent with symmetries (for a neutral fluid):

$$\begin{split} u \cdot \mathscr{A} &= \tilde{c}_{\omega} p \cdot \omega \,, \\ \mathscr{A}_{\perp}^{\mu} &= c_{\omega} \omega^{\mu} + c_{T} \epsilon^{\mu\nu\alpha\lambda} u_{\nu} p_{\alpha} \partial_{\lambda} \log \beta + g_{\sigma} \epsilon^{\mu\nu\alpha\lambda} u_{\nu} Q_{\alpha\rho} \sigma^{\rho}_{\ \lambda} + g_{\omega} \, Q^{\mu\nu} \omega_{\nu} \\ \text{vorticity effects} \quad \text{spin Nernst effect} \quad \text{shear-induced polarization} \\ \vec{s} \propto \hat{p} \times \nabla \log T \end{split}$$

- Although allowed by symmetry, flow gradient and momentum quadrupole coupling, has been overlook before.
- All above effects might be non-dissipative (associated coefficients are T-even).

Shuai Liu, YY, 2103.09200; see also 2103.10917 by Becattini et al

• For general fermion mass at one-loop:

$$\mathscr{A}_{\perp}^{\mu} = (-n_{FD}') \left[\omega^{\mu} + \epsilon^{\mu\nu\alpha\lambda} u_{\nu} p_{\alpha} \partial_{\lambda} \log \beta + \frac{-p_{\perp}^{2}}{(p \cdot u)} \epsilon^{\mu\nu\alpha\lambda} u_{\nu} Q_{\alpha\rho} \sigma_{\lambda}^{\rho} \right] + 0 \times Q^{\mu\nu} \omega_{\nu}$$
vorticity effects spin Nernst effect shear-induced polarization

• Consistent with (collisionless) quantum kinetic theory analysis.

Collisional effect: ;Shu Lin & Ziyue Wang, 2206.12573;Wagner,Wickgenannt, Speranza, Rischke, 2208.01955

Shear-induced polarization: an illustration

A standard shear flow profile: $\omega^z \neq 0$, $\sigma^{xy} \neq 0$

Spin polarization along z-direction in phase space from SIP.

1

$$\mathscr{A}_{SIP}^{i} \propto \epsilon^{ikj} Q_{jl} \sigma^{l}_{k}, \qquad Q_{ij} = \hat{p}_{i} \hat{p}_{j} - \frac{1}{3} \delta_{ij}$$

Shear-induced polarization (SIP): imaging anisotropy in a fluid into anisotropy in spin space.

<u>SIP at RHIC</u>

Baochi Fu, Shuai Liu, Longgang Pang, Huichao Song, YY, 2103.10403, PRL 21

- determines the qualitative feature of differential polarization.
- Main uncertainties in quantitative study arise from freeze-out prescription for spin and subsequent hadronic evolution.

<u>SIP at LHC</u>

ALICE collaboration: 2107.11183 PRL;

benchmark calculations by Baochi Fu&Huicaho Song

• Tantalizing evidence for SIP; more efforts are needed.

The observation of SIP in QGP might be its first detection among all kinds of fluid!

Baryonic spin Hall effect probes medium created at lower beam energy

• The proposed observables is sensitive to initial baryon stopping and EoS at finite μ_B . Baochi Fu, Longgang Pang, Huichao Song, YY, 2201.12970.

Experimental analysis is under way (hungry for statistics).
 Studying forward rapidity?

Beyond hydro. limit

Motivation

Fluid	mesoscopy???	parton gas	

• QGP at mesoscopic scale where typical gradient k is too large for vHydro. and too short for pQCD:

- Unexplored regime;
- e.g. Weiyao Ke and YY, • may feature new emergent properties; 2208.01046, PRL 23
- new insights from spin effects? (complementary to the study of jet-medium interaction)
- For small colliding systems or at early stages of a collision, the characteristic gradient can be compare to $au_{mft}^{-1}, l_{mft}^{-1}$.

Retarded correlators

$$G_R \sim \langle \hat{O} \, \hat{T}^{lpha eta} \rangle$$

• describes δO induced by metric perturbation.

 $\delta O(\omega, q) = G_R(\omega, q) h(\omega, q)$

- gives response to initial perturbation $T^{\mu\nu}(t=0,q) = T^{\mu\nu}_{init}(q)$ (can be prepared by turning on $h_{\mu\nu}$ from $t = -\infty$ to t = 0).
- see Weiyao Ke and YY, in preparation for the quantitative expression • Focusing on the induced spin distribution

$$G^{\mu;\alpha\beta} = \int_{\vec{y}} e^{i\vec{y}\cdot\vec{p}} \langle \bar{\psi}(t,\vec{x}-\frac{1}{2}\vec{y}) \gamma^{\mu}\gamma^{5}\psi(t,\vec{x}+\frac{1}{2}\vec{y}) T^{\alpha\beta}(0,0) \rangle$$

Results at finite frequency/gradient

• Correlator
$$G^{\mu;lphaeta}_R(q_0, \vec{q}; \vec{p})$$
 at one loop

Imaginary time formalism: Shuai Liu, YY, 2103.09200, JHEP 21; Complete analysis using Schwinger-Keldysh formalism, Zonglin Mo, YY in preparation.

$$e.g. \quad G^{i,0j}(q_0,\vec{q};\vec{p}) = \frac{i}{2} \frac{\partial n_F}{\partial \epsilon_p} \frac{\vec{v} \cdot \vec{q}}{q_0 - \vec{v} \cdot \vec{q} + i0^+} \epsilon^{ijl} \left(q_l - q_0 v_l\right) + \mathcal{O}(\frac{q_0,q}{T})$$

- In hydro. regime: $\vec{s} \propto \vec{\omega}$.
- Beyond hydro. regime, new feature emerges: rotation induces spin-motion correlation

$$\tau_{\rm mft}^{-1} \ll q \ll \omega \ll T: s^i \propto \frac{2}{3} \tilde{\omega}^i - (v^i v^l - \frac{1}{3} \delta^{il}) \tilde{\omega}_l \quad \tilde{\omega}^i \equiv \epsilon^{ijk} \partial_j (\frac{T_{0k}}{\epsilon + p})$$

Preliminary

generalized vorticity

Quantum kinetic theory

- right tool to describe spin-motion correlation and non-hydro. response.
- Top-down approach (most popular): starting from Dirac action, deriving EOM for independent components of Wigner function see Hidaka et al, 202 1.07644 for the review.
 1

$$W_{ab}(t,\vec{x},\vec{p}) = \int d^{3}\vec{y} \, e^{-i\vec{y}\cdot\vec{p}} \, \langle \psi_{a}(t,\vec{x}+\frac{1}{2}\vec{y}) \, \bar{\psi}_{b}(t,\vec{x}-\frac{1}{2}\vec{y}) \rangle_{(4 \text{ by 4})}$$

• "Bottom-up" approach (hydro-like):

Eqn for "slow" components of W_{ab} + constitutive relation for observables of interests

- reformulated the kinetic theory of Landau Fermi liquid with "bottom-up" approach.
- verified the matching between the proposed kinetic theory and field theory calculations to all orders in perturbation theory for a large class of interacting field theories for linear response to EM field.
- We extend their formalism to a hot plasma and confirm the matching to field theory at one-loop order for both EM and metric perturbation.

Distribution

• We propose the distribution of particle at given spin state as the dynamical d.o.f. of kinetic theory

$$f^{s}(\vec{p}) = W_{ab}(\vec{p}) u_{a,s}(\vec{p}) \bar{u}_{b,s}(\vec{p})$$

or: $f^{V} = (f^{+} + f^{-})/2$, $f^{A} = (f^{+} - f^{-})$

- Kinetic eqn. for f^s takes the Boltzmann form
 - e.g. EM field perturbation (in chiral limit)

$$f_{(0)}^{V} = \frac{n'_{F} \overrightarrow{E} \cdot \overrightarrow{v}}{\omega - \overrightarrow{v} \cdot \overrightarrow{q} + i0^{+}} \qquad f_{(1)}^{A} = \frac{n'_{F} \overrightarrow{v} \cdot \overrightarrow{q} (\overrightarrow{B} \cdot \overrightarrow{v})}{\omega - \overrightarrow{v} \cdot \overrightarrow{q} + i0^{+}}$$

Constitutive relation

 expressing observables in terms of f and external field via gradient expansion, e.g.

• μ^{ij} is related to magnetic dipole moment and can be extracted from vertex functions.

the

$$\mu^{ij}(\vec{p}) = \frac{\epsilon^{ij\kappa}v_k}{2\epsilon_p} + \propto (g-2)$$

• Velocity shift: $\Delta \vec{v} = \partial_{\vec{p}}(\mu^{ij}F_{ij})$.

• Generalized conductivity $\sigma^{i\mu\nu}$ leads to CME and spin Hall effect.

The metric perturbation

(In "TT" gauge $h_{0\mu} = 0, h_{ii} = 0$. The response to a general $h_{\mu\nu}$ can be obtained via diffeomorphism)

$$\mathcal{A}_{(1)}^{i}(\vec{p}) = v^{i}f_{(1)}(\vec{p}) + \mu^{ij}(\vec{p}) \partial_{j}f_{(0)}(\vec{p}) + \Delta v^{i}f_{(0)} + \sigma_{g}^{ijk}\partial_{t}h_{ij}$$

the same as EM response

• σ_g -term gives spin Hall like effect:

$$s^{i} \propto \epsilon^{ijk} v_{j} (v^{l} \partial_{t} h_{lk}) \propto (\vec{v} \times (d\vec{p}/dt))$$

• σ_g^{ijk} can be related to μ^{ij} by imposing Lorentz covariance. (NB: $\nabla_{(i}u_{j)} = \partial_{(i}u_{j)} + \partial_t h_{ij}$): shear-induce polarization implies spin polarization in the presence of gravitation wave.

Discussion

- Kinetic constitutive relation
 - observables is a functional of f^s (and its gradient) but not that of hydro. field.
 - the expansion parameter is $q/T(q/\mu)$ suppressing particleantiparticle mixing (when describing particle distribution, antiparticle contribution can be integrated out).
- In bottom-up formulation, only a few components of the Wigner function are dynamical, other components can be determined via gradient expansion. (following the philosophy of EFT)
- Not covered: kinetic theory from the action and symmetry principle.

Summary and outlook

<u>Summary</u>

- Spin observables probes the QCD phase structure.
 - Shear stress (or more generally hydro. gradient) are important in generating spin-motion correlation.
- New spin effects may emerge beyond hydro. limit.
- "Bottom-up" approach for quantum kinetic theory complements the convention approach.

Ultimate goal: spin structure of QCD systems.

Back-up

Spin transport inside nucleons

Ultimate goal: spin structure of QCD systems. Shanahan-l

Shanahan-Detmold, PRL 18

lattice calculation of shear force

• Berry gauge field: average position of an eigenstate.

$$\vec{a}(\hat{p}) = i \langle u(\vec{p}, \lambda) | \partial_{\vec{p}} | u(\vec{p}, \lambda) \rangle > = \langle \hat{x} \rangle_{u}$$

- Berry curvature: $\vec{b}(\hat{p}) = \nabla \times \vec{a}(\hat{p}) \parallel \lambda \hat{s}$
 - carries topological charge;
 - plays an important role in describing quantum transport.