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Overview

Introduction to nuclear resonances / Gamow states

Non-Hermitian methods

« Complexscaling

« Berggren basis

Eigenvector continuation (EC) as a reduced basis method
«  Resonance EC (narrow-to-broad)

* Extrapolating across threshold (bound-to-resonance)

Results for °He and ®Be



120

Motivation 7]
, P e |
}‘;’ | NO BINDING = “o . 50N _bsa
= W
g = i
c ivted Experiment:
*g W Stable nuclei
o CAUTION Known nuclei
NO BINDING Theory:
- [ Drip lines

0 -' T T T T T T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

Neutron number

 Studying drip lines (edges of stability)

« Exotic decay modes / cluster radioactivity
e.g.: 223Ra » C + 209Pb

« Broad resonances
e.g.: ’B, 8C, °N or 4n



What are resonances?

Resonances are peaks of the scattering cross section observed in experiments:

T (a) Neutrons off iridium T 200 — (b) m* off protons
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What are resonances?
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Gamow states

Solutions of the time-independent
Schrodinger equation
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Complex-scaling method (CSM)

transform r — re'® for some ¢ > argp
Or equivalently k > ke~ (since [r, k] = |[r e'®, k e™¢| = i)
Need to be careful as ¢ too large might cause V(r) to diverge
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Extension to few-body systems

Choice of coordinate system: All of them can be expressed as linear
transformations = CSM is implemented via

A
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Complex-scaling in various bases

Finite-volume (FV) basis with a simple lattice
discretization can be complex-scaled trivially.
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E has dependence on box size L but converges
at L — oo.

Lischer-type formalism can be employed to
derive a correction term
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Complex-scaling in various bases

In harmonic oscillator (HO) basis, r — re'? is equivalent to w —» we ™2

This can be seen from the eigenfunctions
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Berggren basis

Straight line contour — Curved contour

fffffff mk o Generator potential gives basis poles
S0 0 00 0 | 1= Y 1BXBI + ) IRXRI + [ dk k)0,
B R ¢
””””””””””””””””””””””””””””” The poles offload some weight off the
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Berggren basis + shell model = Gamow shell
model (GSM)

Complex-scaled contour for comparison
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Non-Hermitian QM

Either method breaks the PT-symmetry = H # H' (non-Hermitian)

Transpose symmetry is still preserved = H = H' (complex & symmetric)

». use “c-product” in place of the inner product

W1l) = (W 1) = f dx 11 (%) ()

!

no-complex conjugation

Beware of self-orthogonal states: (|y) = 0
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Eigenvector continuation (EC) as a reduced
basis method (RBM)

“Learn” the subspace explored by eigenvectors

Exactly calculate few eigenvectors [(c;)) (training points)

Build a reduced basis {|¢;)}

Orthonormalize {|y(c;))} via Gram-Schmidt or SVD

- —
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Construct H(cpey) and project onto subspace

Hgc(cnew) ij = ((pilH(Cnew)l §0j>

Motivation: Extremal eigenvectors only
explore a small subspace of the large Hilbert
space, to a good approximation.

Diagonalize Hgc(cpew) instead of H(cpew)

HEC(Cnew)|¢(Cnew) YEc = EEC(Cnew)llp(Cnew) )EC
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Resonance EC

Narrow-to-broad extrapolation for a 2-body
toy model

V(ir) = c[—Se‘T2/3 -+ 28""2/10]

Beyond the contour, reduced basis
outperforms the original basis!

Reason: Any information about the original
basis (contour + poles) is lost after the
projection.
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Resonance EC

target

The projected matrix elements

(Wi|H|p;) = +z JdE

do not depend on the contour c = cq,Cy due
to the Cauchy integral theorem.

Extrapolation with ¢; should work = so
should c,.

15



Training in 15" quadrant
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Complexify ¢ to move the pole into the 15t
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and pick a random sample in the
neighborhood.

Somewhat similar to recent work by
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Bound states and resonances across the

threshold

A bound state can become a resonance (and vice versa) across the threshold when a parameter is tuned
(eg: acoupling constantcin H = Hy + cV).

Exceptional point at p = 0 (threshold)
“Universal” behavior near threshold: p = tia/c — ¢,

bound state
(large c)

3

bound state
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unitarity cut

resonance
(small ¢)

L
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Naive bound-to-resonance EC
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The orthonormalization transformation

{lw:)} = {|p;)} does not affect this. Re E
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More on exceptional points

p = tia/c — ¢

Both eigenvectors and eigenvalues coincide at
p=20

(in contrast to degeneracy)

EC is known to breakdown across singularities

Square-root-like Reimann surface with a branch
point singularity atp = 0
19



Bound/virtual-to-resonance EC

(HEC)ij = (l/)i|H(CneW)|l/Jj> € R still holds.

T T e S Rl Tl Cannot use CSM for virtual states. Calculation
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Complex—augmented EC (CA-EC)

Problem: Interior region can be emulated by training vectors, but asymptotic region cannot.

d? [(1+1)
l@ —2uV(r) - —5—+ le Uy (r) =
- interior ] ) asymptotic region
. region
dominated by 2uV(r) + l(l;;l) \ dominated by p?

Fix: Augment the EC basis by taking the complex conjugate of the training vectors.
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Complex—augmented EC (CA-EC)

Complex conjugation of training states results in p = pe 2! or E —» Ee~4?.

They are now much closer to the target resonance.
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Bound-to-resonance extrapolation results:

SHe

Im E (MeV) Im E (MeV)

Im E (MeV)
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*He + n 4+ n system

Core-nucleon interaction = Woods-Saxon
fitted to *He-n phase shifts

n-n interaction = regularized contact
interaction in (§,T) = (0,1) channel
(S=0,T=1r|V|IS=0,T=1,r)=c f(r)

parameter to

Top: Naive EC with 10 training states  be varied

Middle: CA-EC with 3 training states
Bottom: CA-EC with 10 training states
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ImE

Bound-to-resonance extrapolation results:

0.0

-0.2 F
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Re E

Similar interaction as before, but for a “He +
p + p system

= works well enough for Coulomb
interaction (not short-ranged)

Next goal: Attempt 7N (5 proton emitter)
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Backup: BV2R in p-space
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Backup: What are resonances?

Resonances are peaks of the scattering cross section observed in experiments:

T (a) Neutrons off iridium T 200]_ (b) m* off protons
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Some nuclei created in the lab are observed to be unbound resonances (e.g. 270, 280).

Also occur as metastable states of many nuclei (e.g. 'Be) encountered in decay chains.
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