Coupled Boltzmann Equations for Quarkonia and Heavy Flavor

Xiaojun Yao

University of Washington

Collaborators: Steffen A. Bass, Bruno Scheihing-Hitschfeld, Weiyao Ke, Thomas Mehen, Berndt Müller, Yingru Xu

INT Program INT-22-3: Heavy Flavor Production in Heavy-Ion and Elementary Collisions

Institute for Nuclear Theory, University of Washington Seattle, Oct. 20, 2022

Quarkonium as Probe of Quark-Gluon Plasma

- Heavy quarkonium as probe of QGP:
 - Static screening: suppression of color attraction —> melting at high T, states of different sizes have different melting T —> thermometer

 Dissociation: induced by in-medium dynamical processes, can happen even below melting T

- Recombination: unbound heavy quark pair forms quarkonium, can happen below melting T, crucial for charmonium phenomenology and theory consistency
- Cold nuclear matter effect, feed-down contributions

- What are coupled Boltzmann equations? Inputs?
- Why do we use them?
- How do they work compared with experimental data?

XY, W.Ke, Y.Xu, S.A. Bass, B.Müller 2004.06746

Open heavy quark antiquark $C_{Q\bar{Q}}$: HQ scattering; $C_{Q\bar{Q}}^+$: recombination; $C_{Q\bar{Q}}^-$: dissociation $(\frac{\partial}{\partial t} + \dot{x}_Q \cdot \nabla_{x_Q} + \dot{x}_{\bar{Q}} \cdot \nabla_{x_{\bar{Q}}}) f_{Q\bar{Q}}(x_Q, p_Q, x_{\bar{Q}}, p_{\bar{Q}}, t) = C_{Q\bar{Q}} - C_{Q\bar{Q}}^+ + C_{Q\bar{Q}}^-$ Each quarkonium state, nl = 1S, 2S,1P etc.

Open heavy quark antiquark $C_{Q\bar{Q}}$: HQ scattering; $C_{Q\bar{Q}}^+$: recombination; $C_{Q\bar{Q}}^-$: dissociation $(\frac{\partial}{\partial t} + \dot{x}_Q \cdot \nabla_{x_Q} + \dot{x}_{\bar{Q}} \cdot \nabla_{x_{\bar{Q}}}) f_{Q\bar{Q}}(x_Q, p_Q, x_{\bar{Q}}, p_{\bar{Q}}, t) = C_{Q\bar{Q}} - C_{Q\bar{Q}}^+ + C_{Q\bar{Q}}^-$

Open heavy quark antiquark $C_{Q\bar{Q}}$: HQ scattering; $C_{Q\bar{Q}}^+$: recombination; $C_{Q\bar{Q}}^-$: dissociation $(\frac{\partial}{\partial t} + \dot{x}_Q \cdot \nabla_{x_Q} + \dot{x}_{\bar{Q}} \cdot \nabla_{x_{\bar{Q}}}) f_{Q\bar{Q}}(x_Q, p_Q, x_{\bar{Q}}, p_{\bar{Q}}, t) = C_{Q\bar{Q}} - C_{Q\bar{Q}}^+ + C_{Q\bar{Q}}^-$ Each quarkonium state, nl = 1S, 2S,1P etc.

 $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = C_{nls}^{+} - C_{nls}^{-}$ Correlated recombination $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = C_{nls}^{+} - C_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = C_{nls}^{+} - C_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = C_{nls}^{+} - C_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = C_{nls}^{+} - C_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = C_{nls}^{+} - C_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = C_{nls}^{+} - C_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = C_{nls}^{+} - C_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = C_{nls}^{+} - C_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = C_{nls}^{+} - C_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = C_{nls}^{+} - C_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = C_{nls}^{+} - C_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = C_{nls}^{+} - C_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = C_{nls}^{+} - C_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = C_{nls}^{+} - C_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = C_{nls}^{+} - C_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = C_{nls}^{+} - C_{nls}^{-}$ $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_{x}) f_{nls}(x, p, t) = C_{nls}^{+} - C_{nls}^{-} + C$

Uncorrelated recombination

Correlated v.s. Uncorrelated Recombination

- Correlated recombination: heavy quark pair from same initial hard vertex / dissociation
- Uncorrelated recombination: heavy quark pair from different initial hard vertices; crucial contribution to charmonium production; important for charmonium but negligible for bottomonium
- Recombination in most transport calculations: uncorrelated
- $\propto f_Q f_{\bar{Q}}$ $\propto f_{
 m onia}^{
 m (eq)}$
- How to incorporate correlated recombination in semiclassical transport? Need 2-particle distribution

Open heavy quark antiquark $C_{Q\bar{Q}}$: HQ scattering; $C_{Q\bar{Q}}^+$: recombination; $C_{Q\bar{Q}}^-$: dissociation $(\frac{\partial}{\partial t} + \dot{x}_Q \cdot \nabla_{x_Q} + \dot{x}_{\bar{Q}} \cdot \nabla_{x_{\bar{Q}}}) f_{Q\bar{Q}}(x_Q, p_Q, x_{\bar{Q}}, p_{\bar{Q}}, t) = C_{Q\bar{Q}} - C_{Q\bar{Q}}^+ + C_{Q\bar{Q}}^-$ Each quarkonium state, nl = 1S, 2S,1P etc. $(\frac{\partial}{\partial t} + \dot{x} \cdot \nabla_x) f_{nls}(x, p, t) = C_{nls}^+ - C_{nls}^$ $f_{Q\bar{Q}}(x_Q, p_Q, x_{\bar{Q}}, p_{\bar{Q}}, t) \neq f_Q(x_Q, p_Q, t) f_{\bar{Q}}(x_{\bar{Q}}, p_{\bar{Q}}, t)$

Can handle both correlated and uncorrelated recombination

 $C_{Q\bar{Q}} = C_Q + C_{\bar{Q}}$ Each independently interact with medium: (1) Potential between pair screened (2) Potential depends on color, average over

We use "Lido" for open heavy flavor transport: diffusion + radiation

W.Ke, Y.Xu, S.A.Bass, PRC 98, 064901 (2018)

Derivation of Quarkonium Boltzmann Equation from Open Quantum System

- Heavy $Q\bar{Q}$ pair + QGP evolve together, trace out QGP $\mathrm{Tr}_{\mathrm{QGP}}\left(U(t)(\rho_{Q\bar{Q}}(0)\otimes\rho_{\mathrm{QGP}})U^{\dagger}(t)\right)$
- Lindblad-like equation in quantum optical limit (weak coupling between system and environment —> relaxation is longest time scale)

$$\rho_S(t) = \rho_S(0) - i \Big[t H_S + \sum_{a,b} \sigma_{ab}(t) L_{ab}, \rho_S(0) \Big] + \sum_{a,b,c,d} \gamma_{ab,cd} \Big(L_{ab} \rho_S(0) L_{cd}^{\dagger} - \frac{1}{2} \{ L_{cd}^{\dagger} L_{ab}, \rho_S \} \Big)$$

• Use pNRQCD to write down operators, apply Wigner transform and semiclassical expansion (crucial to justify quantum optical limit, see XY, 2102.01736)

Derivation of Quarkonium Boltzmann Equation from Open Quantum System

- Heavy $Q\bar{Q}$ pair + QGP evolve together, trace out QGP $\mathrm{Tr}_{\mathrm{QGP}}\left(U(t)(\rho_{Q\bar{Q}}(0)\otimes\rho_{\mathrm{QGP}})U^{\dagger}(t)\right)$
- Lindblad-like equation in quantum optical limit (weak coupling between system and environment —> relaxation is longest time scale)

$$\rho_{S}(t) = \rho_{S}(0) - i \Big[tH_{S} + \sum_{a,b} \sigma_{ab}(t)L_{ab}, \rho_{S}(0) \Big] + \sum_{a,b,c,d} \gamma_{ab,cd} \Big(L_{ab}\rho_{S}(0)L_{cd}^{\dagger} - \frac{1}{2} \{ L_{cd}^{\dagger}L_{ab}, \rho_{S} \} \Big)$$

Static screening

 Use pNRQCD to write down operators, apply Wigner transform and semiclassical expansion (crucial to justify quantum optical limit, see XY, 2102.01736)

$$\frac{\partial}{\partial t} f_{nl}(\boldsymbol{x}, \boldsymbol{k}, t) + \frac{\boldsymbol{k}}{2M} \cdot \nabla_{\boldsymbol{x}} f_{nl}(\boldsymbol{x}, \boldsymbol{k}, t) = \mathcal{C}_{nl}^{+}(\boldsymbol{x}, \boldsymbol{k}, t) - \mathcal{C}_{nl}^{-}(\boldsymbol{x}, \boldsymbol{k}, t)$$
Becombination Dissociation

T.Mehen, XY, 1811.07027, 2009.02408

Dissociation & Recombination Terms

$$\frac{\partial}{\partial t}f_{nl}(\boldsymbol{x},\boldsymbol{k},t) + \frac{\boldsymbol{k}}{2M} \cdot \nabla_{\boldsymbol{x}}f_{nl}(\boldsymbol{x},\boldsymbol{k},t) = \mathcal{C}_{nl}^{+}(\boldsymbol{x},\boldsymbol{k},t) - \mathcal{C}_{nl}^{-}(\boldsymbol{x},\boldsymbol{k},t)$$

$$\begin{aligned} \mathcal{C}_{nl}^{-}(\boldsymbol{x},\boldsymbol{k},t) &= g^{2} \frac{T_{F}}{N_{c}} \sum_{i_{1},i_{2}} \int \frac{d^{3} p_{\mathrm{cm}}}{(2\pi)^{3}} \frac{d^{3} p_{\mathrm{rel}}}{(2\pi)^{3}} \frac{d^{4} q}{(2\pi)^{4}} (2\pi)^{4} \delta^{3}(\boldsymbol{k}-\boldsymbol{p}_{\mathrm{cm}}+\boldsymbol{q}) \delta\Big(E_{nl}-\frac{p_{\mathrm{rel}}^{2}}{M}-q_{0}\Big) \\ &\times \langle \psi_{nl}|r_{i_{1}}|\Psi_{\boldsymbol{p}_{\mathrm{rel}}}\rangle \langle \Psi_{\boldsymbol{p}_{\mathrm{rel}}}|r_{i_{2}}|\psi_{nl}\rangle \left[g_{E}^{++}\right]_{i_{1}i_{2}}^{>}(q_{0},\boldsymbol{q})f_{nl}(\boldsymbol{x},\boldsymbol{k},t) \\ \mathcal{C}_{nl}^{+}(\boldsymbol{x},\boldsymbol{k},t) &= g^{2} \frac{T_{F}}{N_{c}} \sum_{i_{1},i_{2}} \int \frac{d^{3} p_{\mathrm{cm}}}{(2\pi)^{3}} \frac{d^{3} p_{\mathrm{rel}}}{(2\pi)^{3}} \frac{d^{4} q}{(2\pi)^{4}} (2\pi)^{4} \delta^{3}(\boldsymbol{k}-\boldsymbol{p}_{\mathrm{cm}}-\boldsymbol{q}) \delta\Big(E_{nl}-\frac{p_{\mathrm{rel}}^{2}}{M}+q_{0}\Big) \\ &\times \langle \psi_{nl}|r_{i_{1}}|\Psi_{\boldsymbol{p}_{\mathrm{rel}}}\rangle \langle \Psi_{\boldsymbol{p}_{\mathrm{rel}}}|r_{i_{2}}|\psi_{nl}\rangle \left[g_{E}^{--}\right]_{i_{2}i_{1}}^{>}(q_{0},\boldsymbol{q})f_{O}(\boldsymbol{x},\boldsymbol{p}_{\mathrm{cm}},\boldsymbol{r}=0,\boldsymbol{p}_{\mathrm{rel}},t) \end{aligned}$$

Chromoelectric Field Correlator

Dissociation: final-state interaction

Recombination: initial-state interaction

$$[g_E^{\pm\pm}]^{>}(p) = \int \mathrm{d}^4 x \, e^{ip \cdot x} [g_E^{\pm\pm}]^{>}(x,0)$$

For total reaction rates, integrating over final momentum leads to setting $R_1 \rightarrow R_2$

This object is what we learn from experimental data, like HQ diffusion coefficient

Two Temperature Regimes

- Quantum optical limit (low T)
- Quantum Brownian motion (high T)

Compare w/ LHC Data on Upsilon at 5.02 TeV

Coulomb potential —> no bottomonium mass change at finite T (see R. Larsen's talk) Initial conditions: momentum: Pythia + nPDF EPPS16; position: Trento, binary collision 2+1D viscous hydro calibrated; HQ dynamics calibrated Bottomonium: 1S, 2S, 3S, 1P, 2P; no recombination for 3S, 2P Feed-down networks

with cross-talk (correlated) recombination

without cross-talk recombination

e.g. no $2S \rightarrow 1S$, $1S \rightarrow 1P$ etc

Uncertainty of nPDF and nPDF at RHIC Energy

Double Ratio and Flow Observables

Experimental Test of Correlated Recombination

Traditional sequential suppression argument based on hierarchy of binding energy or size $-> R_{AA}(2S) \sim R_{AA}(1P)$, since their binding energies are close

Correlated recombination rates (2S—>unbound—>1P) ~ (1P—>unbound—>2S) because of similar binding energy, but primordial production cross section

$$\frac{\sigma_{1P}}{\sigma_{2S}} \sim 4.5$$

Conclusions

- Coupled Boltzmann equations for open and hidden heavy flavors: Boltzmann equation for quarkonium is derived from open quantum system, valid for both weakly-coupled and strongly-coupled QGPs, see review 2102.01736
- Bottomonium phenomenology: nPDF uncertainty cancels in double ratio observables; importance of correlated recombination —> experimental test; opportunities at RHIC and LHC; include 3S recombination in future
- Joint experimental, phenomenological and theoretical (lattice) efforts to understand QGP properties from quarkonium production
 - Understand chromoelectric field correlators: gauge invariant, encode properties of QGP
 - Lattice/analytic calculations, phenomenological Bayesian analysis from experimental data (like what is done for HQ diffusion)

Conclusions

- At NLO, they differ by temperature independent
 constant
 Y.Burnier, M.Laine, J.Langelage, L.Mether, 1006.0867
 T.Binder, K.Mukaida, B.Scheihing-Hitschfeld, XY, 2107.03945
- In axial gauge, the two would seem to be the same —> problem of axial gauge when infinite Wilson lines are involved B.Scheihing-Hitschfeld, XY, 2205.04477
- Nonperturbatively, not much is known about the correlator for quarkonium
- Go to Bruno Scheihing-Hitschfeld's talk for details 19

