

Constraining Nuclear Symmetry Energy from Converting Neutron Star EoS into HI Collisions

Nanxi Yao ICASU, University of Illinois, Urbana-Champaign

In collaboration with: A. Sorensen, D. Oliinychenko, V. Dexheimer and J. Noronha-Hostler

Using HIC to constrain NS EOS

- "Determination of the equation of state of dense matter." Danielewicz et al. Science 298 (2002), pp. 1592-1596.
 - Analyzes flow of matter in nuclear collision to determine P(ρ/ρ_0)
 - Constrains the EOS of symmetric nuclear matter and thus $E_{sym}(\rho)$ which has been parametrized by asymmetric energy term with strong and weak density dependence respectively
 - Obtain predictions for EOS of neutron stars
- Can we use NS EOS to constrain HIC EOS?

Introduction

- Previous studies: EOS of NS with mass >2.6 M_{\odot} not consistent with HIC data (F. J. Fattoyev et al. Phys. Rev. C **102**, 065805)
 - Mystery object of 2.5 M_{\odot} , maybe is NS or BH
 - (R. Abbott et al 2020 ApJL **896** L44)
 - Assumed hadronic degrees of freedom
 - no large bump at the c_s^2
- Cold neutron stars (NS) equations of state (EOS) can sustain heavy neutron stars over 2 M_{\odot}
 - Need large, rapid rise in the speed of sound (c_s^2)
- Possible a large bump of c_s^2 at $2n_0 \sim 3n_0$ shown within SMASH (D. Oliinychenko, A. Sorensen, V. Koch, and L. McLerran, 2022)
- We want to investigate this with different NS EOS: are the nuclear matter EOSs from astrophysics consistent with heavy-ion collision observables in the range rho < 4.0rho_0?

Example of Neutron Star EOS

- A steep rise in c_s^2 at intermediate densities
 - associated with higher-order repulsive terms in the description of the strong force among nucleons and hyperons
 - Quarkyonic matter, deconfinement crossover phase transition, new hadronic degrees of freedom
- Easily create a family of EoSs that reach M $\geq 2.5 M_{\odot}$, either by implementing a narrow peak at low n_B or a wide peak at higher n_B
- EOS 1 extreme heavy NS
- EOS 2&3 -consistent with most of the experimental data

H. Tan, J. Noronha-Hostler, and N. Yunes, Phys. Rev. Lett. 125, 261104 (2020)

HIC vs Neutron Star

 Cold NS are at T=0 and contain few positively charged particles

$$Y_Q = Z / A$$

- Z=# of protons, A=# of nucleons $(Y_Q \leq 0.2)$
 - EOS is also probed in heavy-ion collisions (HIC) but for nearly symmetric nuclear matter ($Y_o \sim 0.39$).

FIG. 7. Particle populations for neutron-star matter with globally conserved electric charge, at T = 0.

- J. Roark and V. Dexheimer. PRC 98 (2018).
- Use particle distributions for neutron star to get proton fraction (charge fraction)

Nuclear Symmetry Energy Expansion

- Energy per nucleon E(n, δ) is the most basic term used to obtain EOS of NS, regardless of model used
 - n \equiv baryon number density, $\delta \equiv$ isospin asymmetry
 - $-\delta = 1-2 Y_Q$
- $E(n, \delta)$ has a symmetry energy term E_{sym} which quantifies the energy needed to make nuclear matter more neutron rich

•
$$E_{sym}(\mathbf{n},\delta) = E_{asym} - \left(\frac{E_{sym,0}}{3} + \frac{L_{sym}}{3}\left(\frac{n_B}{n_0} - 1\right) + \frac{k_{sym}}{18}\left(\frac{n_B}{n_0} - 1\right)^2 + \frac{J_{sym}}{162}\left(\frac{n_B}{n_0} - 1\right)^3\right)\delta^2$$

- Magnitude of the symmetry energy: $E_{sym}(n = n_{sat})$, 31.7 \pm 3.2 MeV¹
- Slope: $L_{sym} \equiv 3n \frac{dE_{sym}}{dn} | n = n_{sat}$, 58.7 ± 28.1 MeV¹ or 106 ± 37 MeV, PREXII
- Curvature: $K_{sym} \equiv 9n^2 \frac{d^2 E_{sym}}{dn^2} | n = n_{sat}, -120^{+80}_{-100} \text{ MeV}^2$

- Skewness:
$$J_{sym} \equiv 27n^3 \frac{d^3 E_{sym}}{dn^3} | n = n_{sat}, 300 \pm 500 \text{ MeV}^3$$

¹M. Oertel et al. Rev. Mod. Phys. 89, 015007 (2017) ²W.-J. Xie et al, Astrophys. J. 899, 4 (2020) ³I, TEWS et al. Astrophys. J. 848, 105 (2017)

Nuclear Symmetry Energy Expansion

 For HIC, we do not have perfectly symmetry nuclear matter

 $-Y_{HIC}=0.39$

- $Y_Q(n_B)$ dependence on baryon density
- Thus, we obtain the asymmetric energy density for HIC from symmetric energy density through a double expansion:
 - We vary Y_{HIC} to study the dependence of EOS on Y_{HIC}

$$\epsilon_{HIC} = \epsilon_{NS} - 4 \left[E_{sym,0} + \frac{L_{sym}}{3} \left(\frac{n_B}{n_0} - 1 \right) + \frac{K_{sym}}{18} \left(\frac{n_B}{n_0} - 1 \right)^2 + \frac{J_{sym}}{162} \left(\frac{n_B}{n_0} - 1 \right)^3 \right] \left[(\boldsymbol{Y}_{HIC} - \boldsymbol{Y}_{\boldsymbol{Q}}(\boldsymbol{n}_B)) + (\boldsymbol{Y}_{\boldsymbol{Q}}^2(\boldsymbol{n}_B) - \boldsymbol{Y}_{HIC}^2) \right] n_B$$

¹N. Yao, D. Oliinychenko, A. Sorensen, V. Dexheimer and J. Noronha-Hostler in preparation

Subtraction of leptons

- To obtain pure nucleon energy density, we subtract lepton's Fermi contribution
- Low density NS EOS from SLY2
- Minor effect at high baryon density but important to get correct binding energy at n_{sat}

Algorithm of obtaining HIC EOS at T=0

Y_Q dependence on density

- Varying E_{sym}, L_{sym}, K_{sym}
- For $n_B < n_{sat}$, since Y_Q would diverge, we use a transition function tanh so that Y_O converges to 0

Courtesy M. Mendes, F. J. Fattoyev, A. Cumming, and C. Gale

$$Y_Q \cong \frac{64}{3\pi^2 n_{sat}(3x+1)} \left(\frac{E_{sym} + L_{sym}x + \frac{1}{2}K_{sym}x^2}{\hbar c}\right)^3$$

- Proof of principle: converted EOS from SLY2 with known symmetry energy coefficients
- Shows range of applicability of the Y_Q expansion

N. Yao, D. Oliinychenko, A. Sorensen, V. Dexheimer and J. Noronha-Hostler in preparation

Results: Converted EOS

- Bump is preserved
- Different Y_{HIC} slices: The converted EOS with lower Y_{HIC} is more similar to original NS EOS
- If from quarkyonic matter, then YQ expansion doesn't really work at high density

N. Yao, D. Oliinychenko, A. Sorensen, V. Dexheimer and J. Noronha-Hostler in preparation

Results: Constrained Coefficients

N. Yao, D. Oliinychenko, A. Sorensen, V. Dexheimer and J. Noronha-Hostler in preparation

- Smaller L_{sym} is preferred
- A few L_{sym} >100 MeV data points
- K_{sym} is constrained from -200 to 50 MeV

Nanxi Yao

500

0

SMASH results

N. Yao, D. Oliinychenko, A. Sorensen, V. Dexheimer and J. Noronha-Hostler in preparation

- SMASH: a new hadronic transport approach to provide descriptions of heavy-ion reactions at low and intermediate beam energy
 - Input: converted HIC EOS from NS EOS
 - Compare HIC observables simulated from SMASH with experimental data
 - Au + Au collisions
- Parametrized c_s^2 based on our EOS
- EOS with sharp rise at $2\rho_0$ is favored by the flow data
- Preliminary momentumdependent potential needed

Nanxi Yao

Conclusion & Outlook

- Converted HIC EOS preserves the large rise of c_s^2
- Constrained the symmetry energy coefficients further
- Proof of principle once momentum dependent potential is implemented in SMASH, we can check with experimental data
- Strangeness?
- Compare with different data consider hydro?

SMASH results

