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Baryon Number (B) Carrier
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https://en.wikipedia.org/wiki/Quark

• Textbook picture of a proton 
• Lightest baryon with strictly conserved baryon number 
• Each valence quark carries 1/3 of baryon number 
• Proton lifetime >1034 years 
• Quarks are connected by gluons

• Alternative picture of a proton 
• Proposed at the Dawn of QCD in 1970s
• A Y-shaped gluon junction topology carries baryon number (B=1)
• The topology number is the strictly conserved number
• Quarks do not carry baryon number
• Valence quarks are connected to the end of the junction 

[1]: Artru, X.; String Model with Baryons: Topology, Classical Motion. Nucl. Phys. B 85, 442–460 (1975).
[2]: Rossi, G. C. & Veneziano, G. A; Possible Description of Baryon Dynamics in Dual and Gauge Theories. Nucl. Phys. B 123, 507–545 (1977)
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Model implementations of baryons at RHIC
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• Many of the models used for 
heavy-ion collisions at RHIC 
(HIJING, AMPT, UrQMD) have 
implemented a nonperturbative 
baryon stopping mechanism
V. Topor Pop, et al, Phys. Rev. C 70, 064906 (2004)
Zi-Wei Lin, et al, Phys. Rev. C 72, 064901 (2005)
M. Bleicher, et al, J.Phys.G 25, 1859-1896 (1999)

• Baryon Stopping
• Theorized to be an effective mechanism of 

stopping baryons in 𝑝𝑝 and 𝐴𝐴
D. Kharzeev, Physics Letters B 378, 238-246 (1996)

• Specific rapidity  dependence is 
predicted: 

2003 RBRC Workshop on “Baryon Dynamics at RHIC”

“Science, however, is never 
conducted as a popularity 
contest...” --- Michio Kaku

BUT citations ARE

D. Kharzeev, Physics Letters B 378, 238-246 (1996)
“Can gluons trace baryon number?”

𝑝 = ~𝑒!"!#
 𝛼#	~=0.5  



Measurements of quark electric charges
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Scattering cross section 𝜎	∝ 𝑒$%
(2/3)2+(1/3)2+(1/3)2=2/3
(2/3)2+(2/3)2+(1/3)2=1
(1/3)2+(1/3)2+(1/3)2=1/3

PDG

Riordan, Science 1992



Measurements of quark baryon number?
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• Textbook picture of a proton 
• Lightest baryon with strictly conserved baryon number 
• Each valence quark carries 1/3 of baryon number 
• Proton lifetime >1034 years 
• Quarks are connected by gluons

• Alternative picture of a proton 
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• A Y-shaped gluon junction topology carries baryon number (B=1)
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[1]: Artru, X.; String Model with Baryons: Topology, Classical Motion. Nucl. Phys. B 85, 442–460 (1975).
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• Each valence quark carries 1/3 of baryon number 
• Proton lifetime >1034 years 
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• Proposed at the Dawn of QCD in 1970s
• A Y-shaped gluon junction topology carries baryon number (B=1)
• The topology number is the strictly conserved number
• Quarks do not carry baryon number
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• Neither of these postulations has been verified experimentally 

[1]: Artru, X.; String Model with Baryons: Topology, Classical Motion. Nucl. Phys. B 85, 442–460 (1975).
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Quark Distribution and Charge Transport
Quark components at low-x is 
proportional to valence quarks Q/B*Z/A ratio in UrQMD à 1 for large A

8

PDG

What we know

x



Three approaches toward tracking the origin 
of the baryon number

1. STAR Method:
Charge (Q) stopping vs baryon (B) 
stopping: 
if valence quarks carry Q and B, 
Q=B at middle rapidity 

2. Kharzeev-STAR Method:
If gluon topology (J) carries B as one 
unit, it should show scaling according 
to Regge theory 

3. Artru Method: 
In g+Au collision, rapidity asymmetry 
can reveal the origin 

9

D. Brandenburg, N. Lewis, P. Tribedy, 
Z. Xu, arXiv:2205.05685

Proposed to use double ratio 
in Zr+Zr and Ru+Ru isobar 
collisions to cancel al the 
detector effects, the signal 
is at the level of 10-3

𝑝 = ~𝑒!"!#
 𝛼#	~=0.5  



Double ratios between Ru+Ru and Zr+Zr collisions

5Yang Li Quark Matter 2022

Outlook:
○ Extract freeze-out 

parameters from fully 
corrected spectra. 

○ Study connections 
between charge stopping 
and baryon stopping.

○ The double ratios of 𝜋+/𝜋−
and 𝑝/ ҧ𝑝 are larger than 1. Due 
to extra charge in Ru?

○ The double ratios of 𝐾−/𝐾+ is 
consistent with unity within 
uncertainties.

10

From baryon stopping: 
B*(DZ/A)~=2x10-3

Charge stopping: 
DQ ~=1x10-3



Identified hadron spectra to low momentum
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Separate charge and baryon transports
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Baryon number transportCharge number transport

UrQMD matches data on charge stopping better in peripheral; better on baryon stopping in central 
              overpredicts charge stopping in central; underpredicts baryon stopping in peripheral

Tommy Tsang (KSU) for STAR,  APS GHP 2023



Baryon stopping in UrQMD
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Baryon number transportCharge number transport
M. Bleicher, et al., JPG 25 (1999); hep-ph/9909407



Ratio of baryon over charge transports 

• Experimental data: 
More baryon transported to C.O.M 
than charge by about 
a factor of 2 

• Model simulations: 
Less baryon transported to C.O.M 
frame than charge 

• Pure geometry:  
with neutron skin predicts the right 
centrality dependence (Trento) 

14

Tommy Tsang (KSU) for STAR,  APS GHP 2023



Low-energy baryon rapidity loss

15

The average close to beam rapidity 
(limiting Fragmentation)
does not reflect the “tail” at high rapidity

BRAHMS 2009



Quantifying baryon number transport
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STAR, Phys. Rev. C 79 (2009) 34909; 96 (2017) 44904 
D. Brandenburg, N. Lewis, P. Tribedy, Z. Xu, arXiv:2205.05685

• RHIC Beam Energy Scan (BES-I) 
span large range of rapidity shift 

• Exponential with slope of 
𝛼& 	=0.61±0.03

• Consistent with the baryon 
junction transport by gluons: 
𝛼&~=0.5+D 
D~=0.1
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Quantifying baryon number transport

• Striking scaling for all centralities 
and collision beam energies 
from central A+A to p+p 

• Expect slope to change if stopping 
is through multiple scattering of 
quarks 

• New heavy-ion simulation requires 
baryon junction to match data

17

C. Shen and B. Schenke, Phys. Rev. C,105 (2022), 064905.



What do we know about e+p collisions?
• RHIC nuclear energy is at a sweet spot
• U+U, Au+Au, O+O, Cu+Au, Cu+Cu, He3+Au,  

d+Au,p+Au, p+p
• LHC and HERA energy are too high with small 

baryon excess (<1%)
• Isobar collisions at EIC with low Q2 and low-pt 

PID to study the charge and baryon 
transports

18

Artru & Mekhfi, NPA 1991
“unpolarized and polarized electroproduction of fast baryons

Slope b~=1 at y=2.5
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Measurement of the Baryon-Antibaryon Asymmetry in 
Photoproduction at HERA  
C. Adloff et al. (H1 Collaboration), ICHEP 1998 

D. Brandenburg, N. Lewis, P. Tribedy, Z. Xu, arXiv:2205.05685;
Henry Klest (SBU) HERA data 



What do we know about µ+p collisions

20
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which , in addition , is flavour independen t .  
T o  summaris e ,  we therefore predict a Q

2 
,fodepe.nden:t dif ference 

F� - F� , but a Q
2 

dependen:t ratio F�/F� - both oppos ite to s imple­
minded expectations from perturbative QCD . 
4 .  Protons from knocked-out diquarks 
If  there is a smal l  diquark in the proton , there wi l l  be an extra 
contribution to the spectrum of produced protons , and other baryons , 
from the directly knocked-out diquarks . In other model s ,  all forward 
protons are as sumed to come from diquark-ant:Ldiquark pairs created 
in the colour f ield of a knocked-out quark . It is known experimen­
tally7 )  though that there are considerably more protons than anti­
protons not only in the target but a l so in the current fragmentation 
region . The difference drops with growing Q2 ,, in support of the di­
quark picture . S imilar observations of " too many" protons have been 
reported in large-pT baryon production in hadron collisions 8 l ,  which 
has been explained as a diquark effect9 )  

Fig . 3  Ratio o f  proton 
( ant:Lproton) multipli­
c i ty to the overal l  % 
positive ( negative) 
multipl icity in µp 
scattering according 
to Ref . 7  ( EMC ) . Part 20 of the difference bet­
ween p and p might be 
explained by the di­
quark process in the 
upper reaction , whi le 
large-Q2 events come 
from knocked-out 

16 

12 

4 

x8 > 0,2 W2> 100 GeV2 
0 p/h. • jl/h-

quarks , as shown in 
the lower reaction . 
The two processes 
give rise to comple­
tely dif ferent p-p 
correlations . 

0 '-----'-"-'--'--'-'..L..Uu.__...__. 
10 20 40 100 0.2 (GeV2) 200 

5 .  Diquarks in nuc lei and the EMC effect 
Finally , I would l ike to mention a recent paper of mine 1 0 l about the 
EMC effec t .  There I noted that a diquark inside dense nuclear matter 
is disturbed by dozens of external two-quark forces - both repulsive 
and attractive - which make it gJtaW. If the diquark radius grows by 
0 . 5- 2 % per nearby external quark , the crucial <r�> grows by 20- 1 0 0 %  
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a symmetry between the ratios p/h + and p/ h "  d isappears , in agreement with the 

idea that s ince no flavour is favoured , then proton and antiproton have an equal 

chance to be the faster of the pair. 

One should notice the general decrease at large z o f  both p/h + and p/ h "  

ratios . In particular this is true for xB < 0 . 05 where <W 2 >  = 220 GeV 2 so 

that the contribution from target fragments to the proton sample , which wa s 

characterised by a s trong decrease ( Fig . 3a ) ,  can be neglected . Th is general 

trend can be s imply explained by the fact that a comparatively higher fraction 

of the jet energy is taken during the proton-antiproton pair creation, thus a 

relative suppression of leading (high z) baryons results . 

For xB > 0 . 2 ,  the mean value of W2 i s  

130  GeV 2• To avoid the contamination from 

target fragments , only values of W2 larger 

than 100 GeV 2 were kept in Fig . 3d . The 

asymmetry of Fig . 3b is  now shifted towards 

the highest values o f  z .  Th is would mean 

that in a j e t  initiated by a proton 

valence quark, the created proton will  not 

be only faster than the antiproton but also 

faster than the positive mesons , i . e .  i t  

h a s  a high probab il ity to contain the 

init ial quark . 

At this point it should be noted that , 

if they were significantly contributing, 

protons coming from scattering on diquark 

c lusters (higher twi s t ) lO) would also 

present such behaviours as those of  

Figs . 2 and 3d . However those protons 

must exhibit a s trong decrease with Q 2, 

which is obviously not the case as shown 

by Fig . 4 and their contribution to our 

sample can be excluded . 
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x 0  > 0.2 
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0 p/h+ • ji/h 

0 ���������� 
10 20 40 100 200 

Fig .  4 - The ratio of the proton 
(antiproton) multiplicity to the 
overall pos itive (negative) 
hadron mul tiplicity as a function 
of q2 for w2 > 100 GeV2 and XB > 0 . 2 .  

Fredriksson, “Hello Diquark, Goodbye Gluon!”, 
Moriond 1984 
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Benchouk (EMC), ISMD1984

Same plot, opposite conclusion!

EMC, PLB 103 (1981) 388; 
last cited in 1992



What do we know about µ+p (d) collisions4 3 8  

ward protons in events, where already a proton in 
the forward hemisphere is observed, than in normal 
events. In order to check this prediction, the ratio 

F = <r tp(y  < _ 1)>A/<ng(, < _ 1)>B 

of the average multiplicities of protons with a rapidity 
Y~ms<- 1 for two classes of events was computed. 
Class A consists of the events where a proton with 
a rapidity Ycms>0.5 was identified, and class B con- 
sists of all accepted events (including those of class 
A). The central Ycms region is excluded here to obtain 
a clear separation between the forward and backward 
hemisphere. The ratio F is practically insensitive to 
the apparatus acceptance. In the data, F is found to 
be 0.82_+0.11 (0.88_+0.16) for the H2(D2) target. The 
small deviation from unity can be understood by a 
reduction of additional baryon-antibaryon pair pro- 
duction in the fragmentation process, also in the 
backward hemisphere, when a large fraction of the 
momentum is already taken away by a fast proton. 
This effect is, with F=0.95_+0.02 (0.87_+0.05), well 
reproduced by the Lund model, which does not con- 
tain any special diquark scattering mechanism. Thus 
the simplest version of such a diquark model is not 
supported by the data. 

4 Average multiplicities 

The increase of the average multiplicities of charged 
hadrons with W is a well known phenomenon and 
has also been observed in this experiment [16]. Fig- 
ure 5 shows, separately for each target, the average 
multiplicities of backward (xv<0) and forward (xv 
> 0) going protons and antiprotons as a function of 
W. These multiplicities were determined by integrat- 
ing the XF distributions over the intervals accessible 
to the measurement as shown in Fig. 3. 

The multiplicities follow the same W dependence 
for both targets. A rise with Wean be seen for antipro- 
tons in both hemispheres and for forward going pro- 
tons, whilst no clear W dependence for protons in 
the backward hemisphere is observed. The Lurid 
model (histogram in Fig. 5) reproduces well the W 
dependence of the data, except that it predicts a small 
rise for backward going protons. As already seen in 
Figs. 3 and 4, the Lund model predicts a higher yield 
of backward going protons from hydrogen than from 
deuterium, an effect which is less pronounced in the 
data. 

Figure 6 shows the ratio of average multiplicities 
of protons and antiprotons from the deuterium to 
the hydrogen target as a function of xBj. The ratio 
of the total cross sections for scattering on neutrons 
to scattering on protons is strongly x,j  dependent 
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Fig. 5a-d. Average multiplicities from the H2 (full circles) and the 
D2 target (open circles) vs. W for backward protons a, backward 
antiprotons b, forward protons c and forward antiprotons d. The 
histograms show the Lund model predictions (full line: H 2 target, 
dashed line: D2 target, full line only where both are the same) 

[17], giving rise to the presumption that a difference 
in the fragmentation might also show up as a function 
of XB~. The data points in Fig. 6 are consistent with 
one for protons in the forward hemisphere. For back- 
ward going protons they are below one for small xBj 
and rise up to one. For antiprotons the data points 
are above one for small x~j and drop down to one 
at XB/~0.2, while the Lund model predicts a value 
of one for all values of XBj. 

5 Correlations 

In this section we discuss first the global correlations 
in the production ofpp, p~ and/~/5 pairs and secondly 
investigate some differential distributions of those 
pairs. 

In contrast to the single particle acceptances, 

21W2  (GeV2)

EMC, ZPC 35 (1987) 433

6           10        14         18
Fig. 5a-d. Average multiplicities from the H2 (full circles) and the D2 
target (open circles) vs. W for backward protons a, backward 
antiprotons b. The histograms show the Lund model predictions (full 
line: H2 target, dashed line: D2 target, full line only where both are 
the same) 

the Lund model (JETSET62) predicts a higher yield of backward 
going protons from hydrogen than from deuterium, an effect which is 
less pronounced in the data. 

Diquark Lund model predicts a flavor dependence 
of backward proton production (20%) 
while data shows little-to-no dependence 

Total citations: 19
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Similar technique used by LHC photonuclear measurements:
ATLAS Collaboration, Phys. Rev. C 104, 014903 (2021)  and CMS Collaboration, arXiv:2204.13486 (2022)

For data collected in 2017, Au + Au collisions at 𝑠𝑁𝑁 = 54.4 GeV, trigger did not 
require coincidence in both sides of the detector

3/30/2023 Nicole Lewis, DIS 2023 7

J. D. Brandenburg, N. Lewis,
P. Tribedy, Z. Xu, arXiv:2205.05685 (2022)

Photonuclear Events Are Selected With Rapidity Gaps

BeAGLE: W. Wang, et al PRD 106, 012007 (2022)



Rapidity asymmetry in photon-
nucleus collision
• Selection of photon+Au collisions from 

Au+Au at 54.4GeV ultra-peripheral 
collisions 
• Antiproton shows flat rapidity 

distribution 
• Proton shows the characteristic 

asymmetry increase toward nucleus side 
• Slope is closer to the slope of the beam 

energy dependence 
• PYTHIA shows much larger slope 

Nicole Lewis (BNL) for STAR, DIS2023
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Three approaches toward tracking the origin 
of the baryon number

1. STAR Method:
Charge (Q) stopping vs baryon (B) 
stopping: 
if valence quarks carry Q and B, 
Q=B at middle rapidity 
B/Q=2

2. Kharzeev-STAR Method:
If gluon topology (J) carries B as one unit, 
it should show scaling according to 
Regge theory 
aB=0.61

3. Artru Method: 
In g+Au collision, rapidity asymmetry can 
reveal the origin 
aB(A+A)=0.61< aB(g+A)=1.1< aB(PYTHIA)

24

𝑝 = ~𝑒!"!#
 𝛼#	~=0.5  



What do we know about pp collisions?Compare Q vs. B
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HERWIG: net-charge vs. net-baryon transport

• The first red circle is at 2, out of scale. 25

ALICE, PRL105 (2010)

𝑟𝑒𝑑	𝑐𝑢𝑟𝑣𝑒	𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡	𝑤𝑖𝑡ℎ	𝛼!	=0.6 

HERWIG and PYTHIA:  𝛼!	~=1.6-2.5
Negative (pbar>p) at LHC energy 

Rongrong Ma (BNL)



26

• Scaling at certain x range, 
quarks behave as point-like 
particles 
• Evolution with x due to gluons 
• At DIS (high Q2>1 GeV2)

Bjorken Scaling for quarks
PDG



Conclusions and Perspectives
• Baryon number is a strictly conserved 

quantum number, 
keeps the Universe as is

• We did not know what its carrier is;
It has not been experimentally verified one 
way or the other until now

• RHIC Beam Energy Scans provide unique 
opportunity in studying baryon number 
transport over large unit of rapidity 

• RHIC Isobar collisions provide unique 
opportunity in studying charge and baryon 
transport 

• Experimental verification of the simplest 
QCD topology

• Baryon junction (if exists) is a non-
perturbative object 
• Need small Q2 and low-momentum hadron 

particle identification

𝑄3 ≤ 1	𝐺𝑒𝑉3
 
          p/k/p PID 𝑝4 ≥ ~100	𝑀𝑒𝑉 

• Isobar collisions to measure baryon and 
charge transport (quark transports), EMC 
1987 

               Zr/Ru; Li7/Be7

• EIC can measure the baryon junction 
distribution function

• Explore other signatures at EIC 27



Questions for discussion: what about fluctuations?

28

Asakawa, Heinz, Muller, PRL 85 (2000) 2072 V. Koch, arXiv:0810.2520

Is the statement confirmed by LQCD? 
If YES, does it rule out gluon junction 
or can both scenarios co-exist? 
Is this confirmed by experiments? 
If YES, 
how do we reconcile all experimental results? 

Brought up by a student at Chirality workshop in Beijing in 07/2023
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the simplest QCD topology
B=1


