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Topology and Quantum Criticality under Weak-Measurement or Decoherence

Quantum systems become classical, through “decoherence”

A pure density matrix becomes “mixed”, through “decoherence”

Two symmetry conditions:

“Doubled” symmetry condition: the environment is “measuring” 
quantities that are symmetric under symmetry G (like energy density), 
Form of density matrix invariant under GL and GR actions separately. 

“diagonal” symmetry condition: the environment is weakly measuring 
quantities that are not symmetric under symmetry G, but the outcomes 
are averaged over with symmetric probability.



Topology and Quantum Criticality under Weak-Measurement or Decoherence

Quantum systems become classical, through “decoherence”

A pure density matrix becomes “mixed”, through “decoherence”

Two symmetry conditions:

The original ket-state is symmetric under Z2 transformation X;

The original density matrix is symmetric under a doubled symmetry, 
Z2

L and Z2
R

The decohered density matrix is only invariant under the diagonal
subgroup of Z2

L and Z2
R (simultaneous left and right action X)
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For a symmetric quantum many-body state with Hamiltonian H, …



Topology and Quantum Criticality under Weak-Measurement or Decoherence

For a symmetric quantum many-body state with Hamiltonian H, the 
effect of decoherence is mapped to interactions between two temporal 
boundaries.

The form of the interaction Lint, can be determined by the symmetry 
conditions, i.e. either “doubled symmetry”, or “diagonal symmetry”.

If the system has a Lorentz invariance in the IR, the problem of 
temporal boundary, can be mapped to the problem of spatial boundary. 
The effect of decoherence is mapped to interactions between two 
spatial boundaries, restricted by the symmetry conditions.



Topology and Quantum Criticality under Weak-Measurement or Decoherence

For a symmetric quantum many-body state with Hamiltonian H, the 
effect of decoherence is mapped to interactions between two temporal 
boundaries.

Two classes of problems of nontrivial and universal boundary physics: 
(1) symmetry protected topological states with topologically protected 
boundary; space-time rotation leads to “strange correlator” (You, et.al. 
arXiv:1312.0626). 
(2) Decoherence effects on quantum criticality can be mapped to 
boundary criticality (Garratt, et.al. arXiv:2207.09476)
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For 1+1d quantum critical points under weak-measurements, please 
refer to Garratt, et.al. arXiv:2207.09476: decoherence is mapped to the 
(0+1)d boundary/defect of 1+1d CFT. 

We focus on 2+1d critical states under decoherence. This problem is 
mapped to the boundary criticality of 2+1d CFT.

Boundary properties of a 
D-dim (classical) phase 
transition, assume D is 
large:

Bulk order

Bulk disorder

ordinary
Boundary order,
extraordinary
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Boundary properties of a 
D-dim (classical) phase 
transition, assume D is 
large:

Bulk order

Bulk disorder

ordinary
Boundary order,
extraordinary

For the “ordinary” boundary condition, the correlation function at the 
boundary still decays with a power-law, but the boundary scaling 
dimension is much bigger than the bulk.

r = 0

ε > 0 Bulk: 

ordinary 
Boundary:

For large-D
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Boundary properties of a 
D-dim (classical) phase 
transition, assume D is 
large:

Bulk order

Bulk disorder

ordinary
Boundary order,
extraordinary

This phase diagram is problematic when D=3 (bulk is 2+1d, boundary 
is 1+1d): For systems with continuous symmetry, there cannot be a 
D=2 order without the bulk order (Mermin-Wagner theorem). 

When the bulk is critical, 
the boundary is not a 
“local” D=2 system. New 
result: Extraordinary-log
boundary (Metlitski, 
arXiv:2009.05119) Bulk order

Bulk disorder

ordinaryExtraordinary-log
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When the bulk is critical, 
the boundary is not a 
“local” D=2 system. New 
result: Extraordinary-log
boundary (Metlitski, 
arXiv:2009.05119) Bulk order

Bulk disorder

ordinaryExtraordinary-log

In the extraordinary-log boundary phase, the correlation function 
between the order parameter is “almost long ranged” (even more so 
when we consider a D=2 defect in the D=3 bulk)

r = 0

ε < 0
Bulk: 

Extraordinary
-log boundary
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Back to our problem. We assume the system is a 2+1d O(N) Wilson-
Fisher fixed point, and the weak measurement is done on quantities 
that are fully symmetric, then the density matrix should have the 
“doubled” symmetry

Ordinary observable quantities involves a trace of the 
density matrix, which glues the two temporal boundaries 
at τ = 0 / β; due to the trace, decoherence becomes a 
“defect problem” with a slab of defect inserted at τ = 0 / β
(subtlety: this requires some post-selection) 
Extraordinary-log still holds for a D=2 defect inserted in a
D=3 bulk (Krishnan, Metlitski, arXiv:2301.05728).

τ = 0 / β
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Back to our problem. We assume the system is a 2+1d O(N) Wilson-
Fisher fixed point, and the weak measurement is done on quantities 
that are fully symmetric, then the density matrix should have the 
“doubled” symmetry

The simplest defect term Sint that meets 
the symmetry criteria is just an extra 
mass term: 
Then depending on the sign of ε…

ε
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We can also consider quantities nonlinear with the density matrix, 
such as the VN entanglement entropy, or Renyi entropy. For example, 
the second Renyi entropy is mapped to evaluating the following 
partition function and free energy:

The second Renyi entropy is mapped to evaluating partition 
function/free energy with nonlocal interaction in space-time between 
two defect slabs. 



Topology and Quantum Criticality under Weak-Measurement or Decoherence

We can also consider quantities nonlinear with the density matrix, 
such as the VN entanglement entropy, or Renyi entropy. For example, 
the second Renyi entropy is mapped to evaluating the following 
partition function and free energy:

A plethora of possibilities, such as spontaneous breaking of double 
symmetry to diagonal symmetry, which is a quantum information 
transition which leads to singularity in the Renyi entropy. 
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Sometimes it is convenient to literally consider a doubled system, 
through the “Choi-Jamiolkowski isomorphism”

A lattice example: toric code under 
decoherence. The decoherence can 
drive a “pair anyon condense” phase 
transition in the “doubled” system, 
dual to spontaneous breaking from 
the doubled symmetry to diagonal 
symmetry. See also Bao, et.al 
arXiv:2301.05687

The decoherence is mapped to the “interaction” between the doubled 
systems.
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“Strange correlator” was proposed/conjectured as a simple tool to 
diagnose a bulk wave function (with periodic boundary condition): is 
it a trivial insulator or topological insulator/SPT state? (You, et.al. 
arXiv:1312.0626)

|Ω> is a trivial symmetric state, |Ψ> is the wave function we need to 
diagnose. O is an order parameter that transforms nontrivially under 
the symmetry; 
The prediction is that, the strange correlator C(r) should be 
“nontrivial” in the limit of large r, i.e. either long range or quasi long 
range (power-law) correlated, for 1d or 2d nontrivial SPT state |Ψ>.
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The strange correlator C(r) should be “nontrivial” in the limit of large 
r, i.e. either long range or quasi long range (power-law) correlated, for 
1d or 2d nontrivial SPT state |Ψ>. (You, et.al. arXiv:1312.0626)

This result can be shown explicitly for noninteracting fermionic TIs, 
and for a large class of bosonic SPT states (using NLSM description of 
SPT states). Also tested for various lattice systems (1d and 2d AKLT-
like states, interacting TI, etc.), using different numerical methods by 
other groups.
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A simple 1d SPT model protected by the Z2 x Z2 symmetry; the two Z2
symmetries correspond to Ising symmetries on the even and odd sites 
of the 1d lattice. In order to be more general, we move away from the 
“commuting” limit by turning on h.

We choose the trivial state

For the 1d SPT states, the type-I strange correlator is related to the 
well-known string order operator of the Haldane phase. 



Topology and Quantum Criticality under Weak-Measurement or Decoherence

Since we are going to talk about systems under decoherence/WM, we 
need to generalize the form of the strange correlator to density matrix; 
there are two natural generalizations:

Like the previous section, decoherence is mapped to interactions 
between two boundaries. We can use either form of generalizations to 
define a “symmetry protected topological ensemble (SPTE)”.

τ τx x
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We would like to “weakly” measure the Zi operators for even sites i. 
But we consider all measurement outcomes without any pos-
selection/bias. This gives the SPE a Z2 x ZL

2 x ZR
2

We still move away from the “commuting” 
limit, by considering a Hamiltonian

For h = 1/2, and small p (“strength” of 
measurement), type-I strange correlator is 
rendered short-ranged, but type-II strange 
correlator is still robustly long ranged. 

Type-II strange correlator “remembers” that the system was once a 
pure SPT state.
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We would like to “weakly” measure the Zi operators for even sites i. 
But we consider all measurement outcomes without any pos-
selection/bias. This gives the SPE a Z2 x ZL

2 x ZR
2

We still move away from the “commuting” 
limit, by considering a Hamiltonian

For h = 1/2, and small p (“strength” of 
measurement), type-I strange correlator is 
rendered short-ranged, but type-II strange 
correlator is still robustly long ranged. 

Type-II strange correlator “remembers” that the system was once a 
pure SPT state. For large-h, both type-I and II strange correlator 
will be trivial. 
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For many bosonic SPT states, we can actually write down their
explicit wave functions: (Xu, Senthil, arXiv:1301.6172)
2d example: a 2d SPT state with U(1) x U(1) symmetry. 

Again, if we rotate space-time, this (2+0)d wave function can be 
viewed as the action of a (1+1)d Luttinger liquid with U(1)ϕ x U(1)θ
symmetry:
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2d example: a 2d SPT state with U(1) x U(1) symmetry, whose 
boundary is 

Evaluating type-I and type-II strange correlators, reduce to evaluating 
correlation functions of two interacting copies of (1+1)d Luttinger liquid. 
For example, if the decohered density matrix has symmetry U(1) x U(1)L

x U(1)R:

This interaction renders the combinations θ- ~ θ - θ’ and ϕ- gapped and 
short-ranged, but leaves θ+ and ϕ+ gapless, this leads to trivial type-I 
strange correlator, but nontrivial type-II strange correlator, which
implies mixed anomaly of U(1) x U(1)L x U(1)R.



Summary and Outlook:

Topology and Quantum Criticality under Weak-Measurement or Decoherence

The effects of decoherence and WM can be mapped to the problem of 
boundaries; 
The WM can drastically change the observed correlation functions of 
a QCP; 
Many new phenomena can occur if we compute quantities nonlinear 
with density matrix;
we also design quantities (type-I and II SC) that can diagnose a mixed 
state ensemble and define symmetry protected topological ensembles. 

Related works: 
de Groot et.al. arXiv:2112.04483, Garratt, et.al. arXiv:2207.09476, 
Bao, et.al arXiv:2301.05687, Ma, Wang, arXiv:2209.02723, Zhang, 
Qi, Bi, arXiv:2210.17485



Summary and Outlook:

Topology and Quantum Criticality under Weak-Measurement or Decoherence

(1) Interplay of two boundary effects caused by WM: topological 
boundary and boundary criticality; 
Interplay between bulk critical modes and physical topological 
boundary (Grover, Vishwanath, 2012; Zhang, Wang, 2018; Jian, et.al. 
2020 and many others)

(2) weak-measurement on deconfined QCP and spin liquids with 
fractionalizations (briefly discussed in arXiv:2301.05238, Lee, Jian, 
Xu, but a lot more to do). 


