Cosmological Constraints on Light (but Massive) Relics

UW Institute for Nuclear Theory 2022

W. Linda Xu
UC Berkeley/LBNL

with Nick Deporzio, Julian Muñoz, & Cora Dvorkin
Harvard

[2006.09395, 2006.09380 & 2107.09664]
Light but Massive Relics

Particles that were in thermal contact with SM at early universe, were relativistic at decoupling, but behaves like matter today.
Light but Massive Relics

Particles that were in thermal contact with SM at early universe, were relativistic at decoupling, but behaves like matter today.

Two categories:

- Neutrinos
- Not Neutrinos
Light but Massive Relics

Particles that were in thermal contact with SM at early universe, were relativistic at decoupling, but behaves like matter today.

Two categories:

- **Neutrinos**
 - Last piece of the SM
 - Massive, but unresolved

- **Not Neutrinos**

New particles! Ubiquitous in SM Extensions
Light but Massive Relics

Particles that were in thermal contact with SM at early universe, were relativistic at decoupling, but behaves like matter today.

Two categories:

Neutrinos
- Last piece of the SM
- Massive, but unresolved

Not Neutrinos
- New particles!
- Ubiquitous in SM Extensions
Light but Massive Relics

Particles that were in thermal contact with SM at early universe, were relativistic at decoupling, but behaves like matter today.

Two categories:

- Neutrinos
 - Last piece of the SM
 - Massive, but unresolved
- Not Neutrinos (LiMRs)
 - New particles!
 - Ubiquitous in SM Extensions
Light but Massive Relics (LiMRs)

- Mass m_X
- (present-day) Temperature $T_X^{(0)}$
- Thermalized dofs g_X
LiMRs: but why?

- They could exist
LiMRs : but why?

- They could exist
- We could find them
LiMRs: the Light part

\[g_{*S}^{(dec)} \propto (T_X^0)^{-3} \]

[Deporzio, WLX, Münoz, Dvorkin 2006.09380]
LiMRs: the Light part

\[g^{(\text{dec})}_{*S} \propto (T^0_X)^{-3} \]

Minimal extensions \(\implies T^0_X \geq 0.91 \, \text{K}. \)

[Deporzo, WLX, Múnoz, Dvorkin 2006.09380]
LiMRs: the Light part

$$\Delta N_{\text{eff}} \propto g_X (T_X^0)^4$$

[Deporzio, WLX, Múnoz, Dvorkin 2006.09380]
LiMRs: the Light part

$$\Delta N_{\text{eff}} \propto g_X (T_X^0)^4$$

Planck $\Delta N_{\text{eff}} \leq 0.36 \implies T^0_{\text{Weyl}} \leq 1.5$ K
CMB-S4 $\Delta N_{\text{eff}} \leq 0.06 \implies T^0_{\text{Weyl}} \leq 0.96$ K

[95% CL]

[Deporzio, WLX, Múnoz, Dvorkin 2006.09380]
LiMRs : the Massive part

Stuff that clusters ↔ Stuff that expands

Neutrinos & LiMRs
LiMRs: the Massive part

Galaxies are biased tracers

\[P_g \propto b P_m(k, z) \]

\[\delta_m = \delta_{cb} + \delta_\nu + \delta_X \]
Galaxies are biased tracers of clustering matter

\[P_g \propto b \frac{P_m}{P_{cb}(k, z)} \]

\[\delta_m = \delta_{cb} + \delta_\nu + \delta_X \]
LiMRs : the Massive part

\[\omega_X \propto g_X m_X (T_X^{(0)})^3 \]
LiMRs : the Massive part

$$\omega_X \propto g_X m_X (T_X^{(0)})^3$$

$$k_{fs,X} \propto \frac{m_X / T_X^{(0)}}{\sqrt{1 + z}}$$
LiMRs: the Massive part

$$\omega_X \propto g_X m_X (T_{X}^{(0)})^3$$

$$k_{fs,X} \propto \frac{m_X/T_{X}^{(0)}}{\sqrt{1 + z}}$$

[WLX, Műnoz, Dvorkin 2107.09664]
LiMRs : the Massive part

\[\delta_g \equiv b_1 \delta_{cb} + b_2 \delta_{cb}^2 + b_3 G_2 \]

\[\delta_{cb} = (1 - f_\nu - f_X) \delta_m \]
LiMRs: one caveat

\[N_{\text{eff}} \propto g_X(T_X^0)^4 \quad k_{f_{s,X}} \propto m_X/T_X^{(0)} \quad \omega_X \propto g_X m_X (T_X^{(0)})^3 \]
LiMRs: one caveat

\[N_{\text{eff}} \propto g_X (T_X^0)^4 \quad k_{f s, X} \propto m_X / T_X^{(0)} \quad \omega_X \propto g_X m_X (T_X^{(0)})^3 \]

\[\omega_X \propto N_{\text{eff}} k_{f s, X} \]

\[\implies 1 \text{ axis of degeneracy within } \{ g_X, m_X, T_X^{(0)} \} \]
LiMRs: one caveat

\[N_{\text{eff}} \propto g_X (T^0_X)^4 \quad k_{f s, X} \propto m_X / T^0_X \quad \omega_X \propto g_X m_X (T^0_X)^3 \]

\[\implies 1 \text{ axis of degeneracy within} \{ g_X, m_X, T^0_X \} \]

Cast to equivalent “neutrinos” \(\{ m_X, T^0_X, g_X \} \rightarrow \{ m_{eq}, T_{eq}^0, 2 \} \)

\[m_{eq} = m_X \left(\frac{g_X}{2} \right)^{1/4} c_1^{\gamma/4} c_2^\gamma \quad T_{eq}^0 = T^0_X \left(\frac{g_X}{2} \right)^{1/4} c_1^{\gamma/4} \]

\[c_1 = \frac{8}{7}, \quad c_2 = \frac{7}{6}, \quad \gamma = \begin{cases} 0 & \text{fermion} \\ 1 & \text{boson} \end{cases} \]
Data/Experiments

- Markov Chain Monte Carlo
 \[\{ \omega_b, \omega_{cdm}, h, n_s, A_s, \tau, \sum m_\nu \} + \{ m_X, T_X^{(0)} \} \]

- \{ Scalar, Weyl, Vector, Dirac \}

- Planck 2018 TT+TE+EE +Lensing
- CFHTLens
- BOSS DR 12 (CLASS-PT)

[Chudaykin, Ivanov, Philcox, Simonović, 2004.10607]
Results

So, have we found anything?
Results

So, have we found anything?
No(t yet), but...

![Graph showing $T_{X}^{(0)}$ at fixed m_X (95% CL)]

W. Linda Xu
Cosmological Constraints on Light (but Massive) Relics 2107.09664

[WLX, Múnoz, Dvorkin 2107.09664]
Results: what we know now

\[T_X = 0.91 \, \text{K} \]

<table>
<thead>
<tr>
<th>(m_X) (95% CL)</th>
<th>Scalar</th>
<th>11.2 eV</th>
<th>Weyl</th>
<th>2.26 eV</th>
<th>Vector</th>
<th>1.58 eV</th>
<th>Dirac</th>
<th>1.06 eV</th>
</tr>
</thead>
</table>

[WLX, Múnoz, Dvorkin 2107.09664]
Or equivalently...

<table>
<thead>
<tr>
<th>m_X (95% CL)</th>
<th>Scalar</th>
<th>Weyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.91 K</td>
<td>11.2 eV</td>
<td>0.79 K</td>
</tr>
<tr>
<td>1.04 K</td>
<td>2.65 eV</td>
<td>0.91 K</td>
</tr>
<tr>
<td>1.08 K</td>
<td>2.23 eV</td>
<td>0.94 K</td>
</tr>
<tr>
<td>1.22 K</td>
<td>1.76 eV</td>
<td>1.08 K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m_X (95% CL)</th>
<th>Vector</th>
<th>Dirac</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.77 K</td>
<td>7.91 eV</td>
<td>0.67 K</td>
</tr>
<tr>
<td>0.88 K</td>
<td>1.87 eV</td>
<td>0.76 K</td>
</tr>
<tr>
<td>0.91 K</td>
<td>1.58 eV</td>
<td>0.79 K</td>
</tr>
<tr>
<td>1.04 K</td>
<td>1.24 eV</td>
<td>0.91 K</td>
</tr>
</tbody>
</table>
Results: what we know now

Scalar
- 11.2 eV
- Weyl [Viel et al. '05]
- Weyl [Osato et al. '16]
- Weyl [P18+BOSS-BAO+WLens]
- Weyl [P18+BOSS-FS+WLens]

Vector
- Dirac

Prior results

This work

[WLX, Mūnoz, Dvorkin 2107.09664]
Results: what we know now & what we can learn from it

Light gravitinos in gauge-mediated SUSY breaking

\[m_{3/2} = \frac{\langle F \rangle}{\sqrt{3}M_{pl}}, \quad T_{3/2} \approx 0.95 \text{ K}, \quad g_{3/2,\text{eff}} = 2 \]

\[m_{3/2} \leq 1.91 \text{ eV} \implies \sqrt{\langle F \rangle} \leq 63.5 \text{ TeV} \]
Results: where we’re going next

Better data coming soon!
Data/Experiments: Round 2

- Fisher Forecasts
Data/Experiments: Round 2

- Fisher Forecasts
- Planck, CMB-S4 + τ
- LSS Single Tracers:
 - BOSS
 $\mathcal{O}(100)/\Delta z/\text{deg}^2$ LRGs
 - DESI
 $\mathcal{O}(1000)/\Delta z/\text{deg}^2$ ELGs
 - Euclid
 $\mathcal{O}(5000)/\Delta z/\text{deg}^2$ H$_\alpha$s
Results

[Weyl Fermion, $g_X = 2$

DESI+Planck

Planck Only

DESI Only

[Deporzio, WLX, Múnoz, Dvorkin 2006.09380, Minimal temperature $T_X = 0.91$ K]
Results

N_{eff}

σ_{g_X}

ω_{cdm}

$[\text{Deporzio, WLX, Muñoz, Dvorkin 2006.09380, Minimal temperature } T_X \text{ = 0.91 K}]$
Results

Detectible at 3σ

N_{eff}

ω_{cdm}

σ_{g_X}

10^{-2} 10^{-1} 10^0 10^1

m_X [eV]

10^2 10^1 10^0

$g_X = 2$

Weyl Fermion,

DESI+Planck

Planck Only

DESI Only

3σ Threshold

[Deporzio, WLX, Múnoz, Dvorkin 2006.09380, Minimal temperature $T_X = 0.91$ K]
Results: what we can look forward to

Scalar, \(g_X = 1 \)

Weyl Fermion, \(g_X = 2 \)

Vector, \(g_X = 2 \)

Dirac Fermion, \(g_X = 4 \)

[Deporzio, WLX, Mţuoz, Dvorkin 2006.09380]
Results: what we can look forward to

\[T_X = 0.91 \text{ K} \]

<table>
<thead>
<tr>
<th>(m_X) (95% CL)</th>
<th>BOSS + Planck Constraints</th>
<th>Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalar</td>
<td>11.2 eV</td>
<td>9.6 eV</td>
</tr>
<tr>
<td>Weyl</td>
<td>2.26 eV</td>
<td>1.90 eV</td>
</tr>
<tr>
<td>Vector</td>
<td>1.58 eV</td>
<td>1.37 eV</td>
</tr>
<tr>
<td>Dirac</td>
<td>1.06 eV</td>
<td>0.86 eV</td>
</tr>
</tbody>
</table>
Results: what we can look forward to

\[T_X = 0.91 \, \text{K} \]

<table>
<thead>
<tr>
<th>(m_X) (99% CL)</th>
<th>DESI + Planck</th>
<th>DESI + CMB-S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalar</td>
<td>1.96 eV</td>
<td>1.14 eV</td>
</tr>
<tr>
<td>Weyl</td>
<td>1.20 eV</td>
<td>0.78 eV</td>
</tr>
<tr>
<td>Vector</td>
<td>0.90 eV</td>
<td>0.58 eV</td>
</tr>
<tr>
<td>Dirac</td>
<td>0.61 eV</td>
<td>All masses</td>
</tr>
</tbody>
</table>
Results: what we can look forward to

\[T_X = 0.91 \text{ K} \]

<table>
<thead>
<tr>
<th></th>
<th>(m_X) (99% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESI + Planck</td>
<td>DESI + CMB-S4</td>
</tr>
<tr>
<td>Scalar</td>
<td>1.96 eV</td>
</tr>
<tr>
<td>Weyl</td>
<td>1.20 eV</td>
</tr>
<tr>
<td>Vector</td>
<td>0.90 eV</td>
</tr>
<tr>
<td>Dirac</td>
<td>0.61 eV</td>
</tr>
</tbody>
</table>

Also: 3σ discovery potential for GMSB gravitinos at

\[m_{3/2} \geq 0.77 \text{ eV or } \sqrt{F} \geq 40 \text{ TeV} \]

2σ at all masses
Results: what we can look forward to

[Deporzio, WLX, Múnoz, Dvorkin 2006.09380]

W. Linda Xu

Cosmological Constraints on Light (but Massive) Relics
Results & where we’ve landed

Dark sectors are worth studying, in whole or in part

- Compelling reasons to care about LiMRs
- If so, cosmological data is uniquely powerful
- The first set of comprehensive constraints
 + better things to come
Results & where we’ve landed

Dark sectors are worth studying, in whole or in part

What’s next?

- Generalize the framework (+ annihilations, decays...)
- Develop model applications + follow-up plans
 - what are the compelling targets to search for?
 - how do we identify them if we detect something?
Thank you!