Eletroweak Parton Distribution Functions & Applications at High-Energy Muon Colliders

Keping Xie

Pittsburgh Partcile-physics, Astrophysics, and Cosmology Center, Department of Physics and Astronomy, University of Pittsburgh, PA 15260, USA

INT WORKSHOP INT-22-83W Parton Distributions and Nucleon Structure September 14, 2022

Based on work with T. Han and Y. Ma 2007.14300, 2103.09844, 2106.01393

Why muon colliders?

- Leptons are the ideal probes of short-distance physics
 - Cleaner background comparing to hadron colliders
 - High-energy physics probed with much smaller collider energy

• Electron colliders

- \bullet A glorious past: discovery of charm, $\tau,$ and gluon
- Important future: Precision EW constraints on BSM physicss, Higgs physics

• Muon colliders

- $\bullet\,$ A s-channel Higgs factory: Higgs production enhanced by $m_{\mu}^2/m_e^2\sim 40000$
 - Direct measurements on y_{μ} and Γ_{H}
- Multi-TeV muon colliders: Less radiations then electron
 - $\bullet~$ Center of mass energy $3-15~{\rm TeV}$ and the more speculative $E_{\rm cm}=30~{\rm TeV}$
 - New particle mass coverage $M \sim (0.5-1) E_{
 m cm}$
 - Great accuracies for WWH, WWHH, $H^{'3}$, H^{4}
 - [See Snowmass WPs, 2203.08033, 2203.07964, Report 2209.01318.]

Muon Collider Physics Potential Pillars

Direct search of heavy particles

SUSY-inspired, WIMP, VBF production, 2->1

High rate indirect probes Higgs single and selfcouplings, rare Higgs decays, exotic decays High energy probes

A possible high-energy muon collider

Size and Benchmarks [Ankenbrandt et al., arXiv:physics/9901022]

Integrated luminosity: $\mathscr{L}=(E_{\rm cm}/10~{\rm TeV})^2 imes 10~{\rm ab}^{-1}$ [The Muon Smasher's Guide, 2103.14043]

$\sqrt{s} [\text{TeV}]$	1	3	6	10	14	30	50	100
\mathcal{L}_{int}^{opt} [ab ⁻¹]	0.2	1	4	10	20	90	250	1000
$\mathcal{L}_{int}^{con} [ab^{-1}]$	0.2	1	4	10	10	10	10	10

Vector boson fusions vs. annihilations

[Han, Ma, KX, 2007.14300]

[Han, Ma, KX, 2103.09844]

General features:

- The annihilations decrease as 1/s.
- \bullet ISR needs to be considered, which can give over 10% enhancement.
- The fusions increase as $\ln(s)$, which take over at high energies.
- The large collinear logarithm $\ln \left(Q^2/m_\ell^2 \right)$ needs to be resummed.
- $W^+ W^-$ as a reference to separate high-energy EW and low-energy QED/QCD

Q: How to treat parton properly at high energies when W/Z become active?

EW physics at high energies

• At high energies, every particle become massless

$$\frac{v}{E}: \frac{v}{100 \text{ TeV}} \sim \frac{\Lambda_{\text{QCD}}}{100 \text{ GeV}}, \ \frac{v}{E}, \frac{m_t}{E}, \frac{M_W}{E} \to 0!$$

- The splitting phenomena dominate due to large log enhancement
- $\bullet\,$ The EW symmetry is restored: $SU(2)_L \times U(1)_Y$ unbroken
- Goldstone Boson Equivalence:

$$\boldsymbol{\varepsilon}_{L}^{\mu}(k) = rac{E}{M_{W}}(\boldsymbol{\beta}_{W}, \hat{k}) \simeq rac{k^{\mu}}{M_{W}} + \mathscr{O}(rac{M_{W}}{E})$$

The violation terms is power counted as $v/E \to \rm QCD$ higher twist effects $\Lambda_{\rm QCD}/Q$ [Cuomo, Wulzer, 1703.08562; 1911.12366].

- We mainly focus on the splitting phenomena, which can be factorized and resummed as the EW PDFs in the ISR, and the Fragementaions/Parton Shower in the FRS.
- Other interesting aspects: the polarized EW boson scattering, top-Yukawa coupling effect

Factorization of the EW splittings

$$\begin{split} \mathrm{d}\boldsymbol{\sigma} &\simeq \mathrm{d}\boldsymbol{\sigma}_X \times \mathrm{d}\mathscr{P}_{A \to B+C} \,, \quad E_B \approx z E_A, \quad E_C \approx \bar{z} E_A, \quad k_T \approx z \bar{z} E_A \boldsymbol{\theta}_{BC} \\ & \frac{\mathrm{d}\mathscr{P}_{A \to B+C}}{\mathrm{d}z \mathrm{d}k_T^2} \simeq \frac{1}{16\pi^2} \frac{z \bar{z} |\mathscr{M}^{(\mathrm{split})}|^2}{(k_T^2 + \bar{z} m_B^2 + z m_C^2 - z \bar{z} m_A^2)^2}, \quad \bar{z} = 1 - z \end{split}$$

- The dimensional counting: $|\mathscr{M}^{(\mathrm{split})}|^2 \sim k_T^2$ or m^2
- To validate the fractorization formalism
 - The observable σ should be infra-red safe
 - Leading behavior comes from the collinear splitting

[Ciafaloni et al., hep-ph/0004071; 0007096; Bauer, Webber et al., 1703.08562; 1808.08831]

[Manohar et al., 1803.06347; Han, Chen, Tweedie, 1611.00788]

PDFs and Fragmentations (parton showers)

Initial state radiation (ISR): PDFs [Bauer et al., 1703.08562; 1808.08831, Manohar et al., 1808.08831, Han, Ma, KX, 2007.14300],

$$f_B(z,\mu^2) = \sum_A \int_z^1 \frac{\mathrm{d}\xi}{\xi} f_A(\xi) \int_{m^2}^{\mu^2} \mathrm{d}\mathscr{P}_{A \to B+C}(z/\xi,k_T^2)$$
$$\frac{\mathrm{d}f_B(z,\mu^2)}{\mathrm{d}\mu^2} = \sum_A \int_z^1 \frac{\mathrm{d}\xi}{\xi} \frac{\mathrm{d}\mathscr{P}_{A \to B+C}(z/\xi,\mu^2)}{\mathrm{d}z\mathrm{d}k_T^2} f_A(\xi,\mu^2)$$

- The leading order splitting gives the effective *W* approximation (EWA) [Kane, Repko, Rolnick, PLB1984, Dawson, NPB1985, Chanowitz, Gaillard, NPB1985]
- $W_L(Z_L)$ capture the remnants of EWSB, governed by power correction $\mathscr{O}(M_Z^2/Q^2)$ to the Goldstone Equivalence.
- Final state radiation (FSR): Fragmentations [Bauer et al., 1806.10157; Han, Ma, KX, 2203.11129] or parton showers [Han et al., 1611.00788]

$$\Delta_A(t) = \exp\left[-\sum_B \int_{t_0}^t \mathrm{d}t' \int \mathrm{d}z \frac{\mathrm{d}\mathscr{P}_{A \to B+C}(z,t')}{\mathrm{d}z \mathrm{d}t'}\right]$$

Parton inside of a lepton

Equivalent photon approximation (EPA) [Fermi, Z. Phys. 29, 315 (1924), von Weizsacker, Z. Phys. 88, 612 (1934] Treat photon as a parton constituent in the lepton [Williams, Phys. Rev. 45, 729 (1934)]

$$\sigma(\ell^{-} + a \to \ell^{-} + X) = \int \mathrm{d}x f_{\gamma/\ell} \hat{\sigma}(\gamma a \to X)$$

$$f_{\gamma/\ell, \text{EPA}}(x_{\gamma}, Q^{2}) = \frac{\alpha}{2\pi} \frac{1 + (1 - x_{\gamma})^{2}}{x_{\gamma}} \ln \frac{Q^{2}}{m_{\ell}^{2}}$$

Extra terms to Improve: [Budnev, Ginzburg, Meledin, Serbo, Phys. Rept. (1975)], [Frixione, Mangano, Nason, Ridolfi, 9310350] Photon fusions and annihilations with initial state radiations

Effective W approximation (EWA) [Kane, Repko, Rolnick, PLB1984, Dawson, NPB1985, Chanowitz, Gaillard, NPB1985]

$$\underbrace{\ell^+/\bar{\nu}_\ell}_{\ell^+} \qquad \underbrace{\gamma/Z/W}_{\gamma/Z/W} \qquad \underbrace{\gamma/Z/W}_{\gamma/Z/W}$$

The novel features of the EWA

• The EW PDFs must be polarized due to the chiral nature of the EW theory

$$\begin{split} f_{V_{+}/A_{+}} &\neq f_{V_{-}/A_{-}}, & f_{V_{+}/A_{-}} \neq f_{V_{-}/A_{+}}, \\ \hat{\sigma}(V_{+}B_{+}) &\neq \hat{\sigma}(V_{-}B_{-}), & \hat{\sigma}(V_{+}B_{-}) \neq \hat{\sigma}(V_{-}B_{+}) \end{split}$$

We are not able to factorize the cross sections in an unporlarized form.

$$\boldsymbol{\sigma} \neq f_{V/A} \hat{\boldsymbol{\sigma}}(VB), \ f_{V/A} = \frac{1}{2} \sum_{\boldsymbol{\lambda}, s_1} f_{V_{\boldsymbol{\lambda}}/A_{s_1}}, \ \hat{\boldsymbol{\sigma}}(VB) = \frac{1}{4} \sum_{\boldsymbol{\lambda}, s_2} \hat{\boldsymbol{\sigma}}(V_{\boldsymbol{\lambda}}B_{s_2})$$

• The interference gives the mixed PDFs

 $f_{\gamma Z} \sim \langle \Omega | A^{\mu \nu} Z_{\mu \nu} | \Omega \rangle + \text{h.c.},$

similarly for f_{hZ_L} .

• Bloch-Nordsieck theorem violation due to the non-cancelled divergence in $f \rightarrow f' V$: cutoff M_V/Q [Han, Ma, KX, 2007.14300] or fully inclusive observables [Formal, Manohar, Waalewijn, 1802.08687]

$$\begin{split} f_1 &= \frac{1}{2}(f_{\rm V}+f_e) \sim \frac{\alpha_W}{2\pi}\log, \\ f_3 &= \frac{1}{2}(f_{\rm V}-f_e) \sim \frac{\alpha_W}{2\pi}\log^2. \end{split}$$

Go beyond the EPA/EWA

We have been doing:

• "Effective W Approx." (EWA)

[Kane, Repko, Rolnick, PLB 148 (1984) 367]

[Dawson, NPB 249 (1985) 42]

We complete:

• Above $\mu_{\rm QCD}$: QED \otimes QCD

q,g become active [Han, Ma, KX, 2103.09844]

• Above $\mu_{\rm EW} = M_Z$: EW \otimes QCD EW partons emerge [Han, Ma, KX, 2007.14300]

In the end, every content is a parton, i.e. the full SM PDFs.

The PDF evolution: DGLAP

• The DGLAP equations

$$\frac{\mathrm{d}f_i}{\mathrm{d}\log Q^2} = \sum_I \frac{\alpha_I}{2\pi} \sum_j P^I_{ij} \otimes f_j$$

• The initial conditions

$$f_{\ell/\ell}(x, m_{\ell}^2) = \delta(1-x)$$

• Three regions and two matchings

•
$$m_{\ell} < Q < \mu_{\rm QCD}$$
: QED
• $Q = \mu_{\rm QCD} \lesssim 1 \text{ GeV}$: $f_q \propto P_{q\gamma} \otimes f_{\gamma}, f_g = 0$ [Simplified. Non-pert. parameterization.]
• $\mu_{\rm QCD} < Q < \mu_{\rm EW}$: QED \otimes QCD
• $Q = \mu_{\rm EW} = M_Z$: $f_v = f_t = f_W = f_Z = f_{\gamma Z} = 0$
• $Q > \mu_{\rm EW}$: EW \otimes QCD.
 $\begin{pmatrix} f_B \\ f_{W^3} \\ f_{BW^3} \end{pmatrix} = \begin{pmatrix} c_W^2 & s_W^2 & -2c_W s_W \\ s_W^2 & c_W^2 & 2c_W s_W \\ c_W s_W & -c_W s_W & c_W^2 - s_W^2 \end{pmatrix} \begin{pmatrix} f_\gamma \\ f_Z \\ f_{\gamma Z} \end{pmatrix}$

- $\bullet\,$ We work in the (B,W) basis.
- Double logs are retained through [Bauer, Ferland, Webber, 1703.08562.]

$$f_3 = \frac{\alpha_W}{2\pi} \log \int_x^{1-M_V/Q} \mathrm{d}z P_{ff} \otimes (f_v - f_e) \sim \frac{\alpha_W}{2\pi} \log^2$$

Same physics as the Rapidity RGE [Manohar, Waalewijn 1802.08687]

The QED OCD PDFs for lepton colliders

Electron beam:

- Scale unc. 10% for $f_{g/e}$ [2103.09844]
- $\mu_{
 m QCD}$ unc. 15%
- The averaged momentum fractions $\langle x_i \rangle = \int x f_i(x) dx$ [%]

$Q(e^{\pm})$	$e_{\rm val}$	γ	ℓ sea	q	g
30 GeV	96.6	3.20	0.069	0.080	0.023
50 GeV	96.5	3.34	0.077	0.087	0.026
M_Z	96.3	3.51	0.085	0.097	0.028

Muon beam:

- Scale unc. 20% for $f_{g/\mu}$ [2103.09844]
- $\mu_{
 m QCD}$ unc. 5% [2106.01393]

$Q(\mu^{\pm})$	$\mu_{ m val}$	γ	ℓ sea	q	g
30 GeV	98.2	1.72	0.019	0.024	0.0043
50 GeV	98.0	1.87	0.023	0.029	0.0051
M_Z	97.9	2.06	0.028	0.035	0.0062

EWPDFs of a lepton

• The sea leptonic and quark PDFs

$$\mathbf{v} = \sum_{i} (\mathbf{v}_i + \bar{\mathbf{v}}_i), \ \ell \text{sea} = \bar{\ell}_{\text{val}} + \sum_{i \neq \ell_{\text{val}}} (\ell_i + \bar{\ell}_i), \ q = \sum_{i=d}^{\flat} (q_i + \bar{q}_i)$$

Even neutrino becomes active.

- All SM particles are partons [Han, Ma, KX, 2007.14300]
- $W_L(Z_L)$ does not evolve: **Bjorken-scaling restoration**: $f_{W_L}(x) = \frac{\alpha_2}{4\pi} \frac{1-x}{x}$.
- The EW correction can be large: $\sim 50\%~(100\%)$ for $f_{d/e}~(f_{d/\mu})$ due to the relatively large SU(2) gauge coupling. [Han, Ma, KX et. al, 2106.01393]
- Scale uncertainty: $\sim 15\%$ (20%) between $Q=3~{\rm TeV}$ and $Q=5~{\rm TeV}$

Parton luminosities at high-energy lepton colliders

Consider a 3 TeV e^+e^- machine and a 10 TeV $\mu^+\mu^-$ machine

• Partonic luminosities for

 $\ell^+\ell^-, \gamma\ell, \gamma\gamma, qq, \gamma q, \gamma g, gq, ext{ and } gg$

• The partonic luminosity of $\gamma g + \gamma q$ is $\sim 50\%$ (20%) of the $\gamma\gamma$ one

- The partonic luminosities of qq, gq, and gg are $\sim 2\%~(0.5\%)$ of the $\gamma\gamma$ one
- Given the large strong coupling, sizable QCD cross sections are expected.
- Scale unc. are $\sim 20\%$ (50%) for photon (gluon) luminosities

Di-jet production at possible lepton colliders

- Low- p_T range is dominated by non-perturbative hadron production [backup for details] High- p_T range $p_T > (4 + \sqrt{s}/3 \,\mathrm{TeV}) \,\mathrm{GeV}$: perturbatively computable
- $\bullet~{\rm Threshold~cut:}~\hat{s}>20~{\rm GeV}$
- Detector angle: $\theta_{cut} = 5^{\circ}(10^{\circ}) \Leftrightarrow |\eta| < 3.13(2.44)$

- Including the QCD contribution leads to much larger total cross section.
- gg initiated cross sections are large for its large multiplicity
- gq initiated cross sections are large for its large luminosity.
- $\gamma\gamma$ initiated cross sections are slightly smaller than the EPA estimations.
- scale variation $Q: \sqrt{\hat{s}}/2 \rightarrow \sqrt{\hat{s}}$ brings a $6\% \sim 15\%$ ($30\% \sim 40\%$) enhancement

Kinematic distributions

A conservative acceptance cut: $10^{\circ} < \theta < 170^{\circ} \Leftrightarrow |\eta| < 2.44$

Two different mechanisms: $\mu^+\mu^-$ annihilation v.s. fusion processes

- Annihilation is more than 2 orders of magnitude smaller than fusion process.
- Annihilation peaks at $m_{ij} \sim \sqrt{s}$;
- Fusion processes peak near m_{ij} threshold.
- Annihilation sharply peaked around $y_{ij} \sim 0$, spread out due to ISR;
- Fusion processes spread out, especially for γq and γg initiated ones.

Inclusive jet distributions at a muon collider

- Jet production dominates over WWproduction until $p_T \gtrsim 60$ GeV or $E_j \gtrsim 200$ GeV.
- QCD contributions are mostly forward-backward; γγ, γq, and γg initiated processes are more isotropic.

A high-energy muon collider

• All SM particles are partons at high energies: $\langle x_i \rangle = \int x f_i(x) dx$ [%]

			-	- '	., .		
Q	$\mu_{ m val}$	$\gamma, Z, \gamma Z$	W^{\pm}	v	ℓsea	q	g
M_Z	97.9	2.06	0	0	0.028	0.035	0.0062
3 TeV	91.5	3.61	1.10	3.59	0.069	0.13	0.019
5 TeV	89.9	3.82	1.24	4.82	0.077	0.16	0.022

• We need polarized PDFs due to the chiral nature of EW theory

• The EW parton luminosities [Han, Ma, KX, 2007.14300]

EW semi-inclusive processes

Just like in hadronic collisions:

 $\mu^+\mu^- \rightarrow \text{exclusive particles} + \text{remnants}$

[Han, Ma, KX, 2007.14300]

$t\bar{t}$ production at a muon collider

[Han, Ma, KX, 2007.14300]

W^+W^-, ZH production

[Han, Ma, KX et al., 2106.01393]

Summary and prospects

- A high-energy muon collider is a dream machine for new physics search, both for energy and precision frontiers
- The parton picture play an important role
 - At very high energies, the collinear splittings dominate. All SM particles should be treated as partons that described by EW PDFs.
 - The large collinear logarithm needs to be resummed via solving the DGLAP equations, so the **QCD partons (quarks and gluons) emerge**.
 - When $Q > \mu_{EW}$, the EW splittings are activated: the EW partons appear, and the existing QED \otimes QCD PDFs may receive big corrections.

A high-energy muon collider is an EW version HE LHC

- Two classes of processes: $\mu^+\mu^-$ annihilation v.s. VBF [Han, Ma, KX, 2007.14300]
- Quark and gluon initiated jet production dominates [Han, Ma, KX, 2103.09844]
- EW PDFs are essential for high-energy muon colliders [Han, Ma, KX, 2007.14300, 2106.01393]

$\gamma\gamma \rightarrow$ hadrons at CLIC

• Large photon induced non-perturbative hadronic production

[Drees and Godbole, PRL 67 (1991) 1189, hep-ph/9203219]

[Chen, Barklow, and Peskin, hep-ph/9305247; Godbole et al., Nuovo Cim. C 034S1 (2011)]

- $\sigma_{\gamma\gamma
 ightarrow \ hadrons}$ may reach micro-barns level at TeV c.m. energies
- $\sigma_{\ell\ell
 ightarrow \, hadrons}$ may reach nano-barns, after folding in the $\gamma\gamma$ luminosity
- The events populate at low p_T regime

So we can separate from this non-perturbative range via a p_T cut.

[T. Barklow, D. Dannheim, M. O. Sahin, and D. Schulte, LCD-2011-020]