IGFAE, University of Soutrago de Compostela

Multiple scattering central role in jet/partar processes calculations: Momentum broadening effects in jet energy correlators - Andres et. al. 2303.03413, see Fabrio's talk. Moline scattering in jet quenching and jet substructure ---> See Raymond Ehlers talk and Barata et al. 2009.13667 Interplay between classical & quartum vorrections to g → See Eamonn Weitz talk. Quantum pontonic transport ---> Barata et. al. 2210.06519 Momentum broadening effects in cc production Collisional and radiative energy-bas in chiral magnetic current ---- See kinill tuchin's falk

* THIS TALK: study in more detonil finite system-size effects in multiple scattering and the emergence of optical diffraction.

Inhinite medium inucleus approximation RIrd -> 00 where RN transverse size medium ra v size medium constituent * For ra I use LO HTL: Fa~ µd" where $\mu_{a}^{2}(T) = 4\pi \alpha_{s}(T) \left(1 + \frac{N_{f}}{5}\right) T^{2} + \cdots$ $N_{f} = 3$, $\alpha_{s}(M_{z}^{2}) = 0.12$

		Teg	ud	Гd	R	RIFL
Pb-Pb JSNN = 13 TeV	0-5%	557 Mer	1.246eV	0.16 fm	5fm 821	31
	5V-60%	401 Mev	V.93 Gev	0.10 94	9.9 JNN	0
Pb-Pb SNN = 2.76 TeV	0-5%	470 MeV	1.08 GeV	0.18 fm	Ъfm	શ્વ
	60-60°/2	338 HeV	D.84 GeV	0.23 fm	3.1 fm	13
Xe-Xe JSmn= 5.44 Ter	0-5°/0	462 MeV	1.07 GeV	0.18 fm	4.37m	24
	P0-90°10	334 NeV	D.826eV	0.24 fm	2.6 fm	٨
Au Au JSnn= 200 GeV	0-5%	362 Nei	0.886	eV 0.22.fm	4.b Ju	n 21
	50.90°1°	254 Hei	0.676	ev 0.3 fm	2.5 fu	r 8
Cu. Cu JSnn = 200 Ger	0-5010	300 NeV	0.76 G	er 0.26 fm	2.9 I m	41
	30-40%	252 Mer	J F.J.O	ber 0.3 fn	n 2.2 fu	4 7

quantum electrodynamics ase : ordinary matter Particle spin-1 in Ap (x) $(i\mathcal{D}-m)\mathcal{U}=\mathcal{D}_{\mu}=\partial_{\mu}+ieA_{\mu}$ $\mathcal{D}=\mathcal{D}_{\mu}\mathcal{U}^{\mu}$ At HE use $(-i\mathcal{D}-m)(+i\mathcal{D}-m)\mathcal{H}=0$ $\hat{q}_{\mu} \equiv i \frac{\partial}{\partial x^{\mu}}$ $\left[m^2 - (\hat{p}_n - eA_p)^2 + e\nabla_p \cdot F^{n}\right] \Psi = 0$ Assume particle's energy greatly exceeds magnitude of interaction with A, and An varies slowly particle's wavelength:

$$4^{\pm}(x) = 4^{\pm}(x) U^{\pm}(x) \qquad ip^{\mu} \frac{\partial U^{\pm}_{\lambda}}{\partial x^{\mu}} = ep_{\mu} A^{\mu}(x) U^{\pm}_{\lambda}(x)$$

Solution :

$$J_{A}^{i}(\mathbf{x}) = \exp \left\{ i \frac{\Im e}{m} \int_{-\infty}^{0} dz \ p^{*} A_{\mu} \left(x + \frac{3}{m} z \right) \right\}$$

Wilsom line propagator in A_{μ} till space-time point x

$$A_{\mu}(\mathbf{x}) \equiv \mathbf{n} \text{ classical and static sources with worldlines}$$

$$x_{\mu}^{i} = (\mathbf{t}, \overline{\mathbf{x}}^{i}) \quad \dot{\mathbf{x}}_{\mu}^{i} = (\mathbf{h}, \overline{\mathbf{0}}) \text{ randonnly distributed in a finite volume}$$

$$J_{\mu}^{(n)}(\mathbf{x}) = \sum_{i=1}^{n} \Im e \int_{-\infty}^{\infty} dt^{i} \dot{\mathbf{x}}_{\mu}^{i}(t^{i}) \delta[\mathbf{x} - \mathbf{x}_{i}(t^{i})] = \Im e^{n} \sum_{i=1}^{n} \Im e^{i} \delta^{i}(\mathbf{x}^{i} - \mathbf{x}^{i})$$

$$\frac{\Im e^{n}}{\Im e^{n}} = \sum_{i=1}^{n} \Im e^{i} \delta[\mathbf{x} - \mathbf{x}_{i}(t^{i})] = \Im e^{n} \sum_{i=1}^{n} \Im e^{i} \delta^{i}(\mathbf{x}^{i} - \mathbf{x}^{i})$$

$$\lim_{i \neq i=1}^{n} \Im e^{i} \delta[\mathbf{x} - \mathbf{x}^{i}] = \Im e^{n} \sum_{i=1}^{n} \Im e^{i} \delta[\mathbf{x}^{i} - \mathbf{x}^{i}]$$

$$\lim_{i \neq i=1}^{n} \Im e^{i} \delta[\mathbf{x} - \mathbf{x}^{i}] = \Im e^{i} \delta^{i}(\mathbf{x}^{i} - \mathbf{x}^{i})$$

$$A_{r}^{(u)}(x) = \int d^{u}g \ D_{r^{v}}^{B}(x-y) \ J_{r^{v}}^{v}(y) = g_{r^{v}} \frac{1}{u_{n}} \sum_{i=1}^{u} \frac{\partial_{i}e}{|\vec{x}-\vec{x}i|} e^{-\mu_{a}|\vec{x}-\vec{x}i|}$$
Photon propagator
$$fierds$$

Scattering ampeitude to all-orders in
$$J_{T}(x)$$
 at HE:
 $\langle P_{F}S_{F}|\hat{M}|P_{F}S_{F}\rangle = \Pi S(E_{F}-E_{F})\beta S_{S+S}$ i $T_{S}i^{(*)}(q_{F})$

$$T_{fi} \left(\overrightarrow{q}_{t} \right) = \frac{1}{i} \int_{0}^{2} dx_{t} e^{-i q_{t} \cdot x_{t}} \int_{0}^{1} W_{i} \left(\overrightarrow{x}_{t} \right) - 1 \int_{0}^{1} dx_{t} e^{-i q_{t} \cdot x_{t}} \int_{0}^{1} W_{i} \left(\overrightarrow{x}_{t} \right) - 1 \int_{0}^{1} dx_{t} e^{-i q_{t} \cdot x_{t}} \int_{0}^{1} W_{i} \left(\overrightarrow{x}_{t} \right) - 1 \int_{0}^{1} W_{i} \left(\overrightarrow{x}_{t} \right) + \frac{1}{i} \int_{0}^{1} dx_{t} e^{-i q_{t} \cdot x_{t}} \int_{0}^{1} W_{i} \left(\overrightarrow{x}_{t} \right) - 1 \int_{0}^{1} W_{i} \left(\overrightarrow{x}_{t} \right) + \frac{1}{i} \int_{0}^{1} dx_{t} e^{-i q_{t} \cdot x_{t}} \int_{0}^{1} W_{i} \left(\overrightarrow{x}_{t} \right) + \frac{1}{i} \int$$

$$W_{i}(\vec{x_{t}}) = W(\vec{x_{t}} - \vec{x_{t}}) = \exp \left\{ i \frac{\Theta e}{r} \int_{-\infty}^{+\infty} dx_{3} A_{0}(\vec{x_{t}} - \vec{x_{t}}, x_{3} - x_{3}) \right\}$$

Wilson line in the field
of the i-th source = exp $\left\{ i \frac{\Theta e}{r} 2 K_{0}(\mu t | \vec{x_{t}} - \vec{x_{t}}|) \right\}$

DIFF. ELASTIC CROSS SECTION = probability for the ponticle to go tran Fi to Fj=Fi+q+ atter interacting to all-orders at HE with the h sources:

$$\left\langle \frac{d^2 \sigma_{st}}{d \bar{q}_{t}^2} \right\rangle_{V} = \left\langle T_{fi}^{(n)}(\bar{q}_{t}^2) T_{fi}^{(n)*}(\bar{q}_{t}^2) \right\rangle_{V}$$

Medium average:

$$\left\langle F^{(n)}(\vec{x}_{1},...,\vec{x}_{n})\right\rangle_{N} = \int d^{3}\vec{x}_{1} \int (\vec{x}_{1}) \cdots \int d^{3}\vec{x}_{n} \int (\vec{x}_{n}) F^{(n)}(\vec{x}_{1},...,\vec{x}_{n})$$

$$\int (\vec{x}_{1},...,\vec{x}_{n}) \int d^{3}\vec{x}_{n} \int (\vec{x}_{n}) F^{(n)}(\vec{x}_{1},...,\vec{x}_{n})$$

Noticing
$$T_{5i}^{(n)} = S_{5i}^{(n)} - 1$$
 and $\langle x^2 \rangle = \langle x \rangle^2 + \tau^2$
 $\left\langle \frac{d^2 \sigma_{d}}{d q_{e}^2} \right\rangle_{V}^{(n)} = T_{2}^{(n)} (q_{e}) + \sum_{2}^{(n)} (q_{e})$
 $takes the average takes the takes the takes the takes the average takes the takes takes the takes takes the takes takes takes the takes takes the takes takes$

$$\frac{\text{Coherent differential cross-section}}{\left\langle T_{fi}^{(n)}(\vec{q}_{t}) \right\rangle_{V} = \frac{1}{i} \int d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} - i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} - i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} - i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} - i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} - i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} - i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} - i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} + i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} + i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} + i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} + i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} + i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} + i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} + i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} + i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} + i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} + i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} + i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} + i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} + i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} + i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} + i \int_{V} d^{1}x_{t} e^{-i\vec{q}_{t}\cdot\vec{x}_{t}} \int \left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{t}) \right\rangle_{V} + i \int_{V} d^$$

$$\left\langle \prod_{i=1}^{n} W_{i}(\vec{x}_{i}) \right\rangle_{V} = \left\{ \int d^{3}\vec{x}_{i} + (m) W_{i}(\vec{x}_{i}) \right\}_{V} = \left\{ 1 + \frac{1}{N} \int d^{3}\vec{x}_{i} + (\vec{x}_{i}) (W_{i}(\vec{x}_{i}) - 1) \right\}_{V}$$

$$\left\{ V = \exp \left\{ \int d^{3}\vec{x}_{i} + (\vec{x}_{i}) (W_{i}(\vec{x}_{i}) - 1) \right\}_{V} = \left\{ (\vec{x}, \vec{x}) = W_{i} + (\vec{x}) \right\}_{V}$$

$$\left\{ V = \exp \left\{ \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}_{i}) - 1) \right\}_{V} = \left\{ (\vec{x}, \vec{x}) = W_{i} + (\vec{x}) \right\}_{V}$$

$$\left\{ V = \exp \left\{ \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}_{i}) - 1) \right\}_{V} = \left\{ (\vec{x}, \vec{x}) = W_{i} + (\vec{x}) \right\}_{V}$$

$$\left\{ V = \exp \left\{ \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}_{i}) - 1) \right\}_{V} = \left\{ (\vec{x}, \vec{x}) = W_{i} + (\vec{x}) \right\}_{V}$$

$$\left\{ V = \exp \left\{ \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}_{i}) - 1) \right\}_{V}$$

$$\left\{ V = \exp \left\{ \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}_{i}) - 1) \right\}_{V} = \left\{ \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}) - 1) \right\}_{V}$$

$$\left\{ V = \exp \left\{ \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}_{i}) - 1) \right\}_{V} = \left\{ \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}) - 1) \right\}_{V}$$

$$\left\{ V = \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}) - 1) \right\}_{V}$$

$$\left\{ V = \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}) - 1) \right\}_{V}$$

$$\left\{ V = \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}) - 1) \right\}_{V}$$

$$\left\{ V = \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}) - 1) \right\}_{V}$$

$$\left\{ V = \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}) - 1) \right\}_{V}$$

$$\left\{ V = \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}) - 1) \right\}_{V}$$

$$\left\{ V = \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}) - 1) \right\}_{V}$$

$$\left\{ V = \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}) - 1) \right\}_{V}$$

$$\left\{ V = \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}) - 1) \right\}_{V}$$

$$\left\{ V = \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}) - 1) \right\}_{V}$$

$$\left\{ V = \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}) - 1) \right\}_{V}$$

$$\left\{ V = \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}) - 1) \right\}_{V}$$

$$\left\{ V = \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}) - 1) \right\}_{V}$$

$$\left\{ V = \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}) - 1) \right\}_{V}$$

$$\left\{ V = \int d^{3}\vec{x}_{i} + (\vec{x}) (W_{i}(\vec{x}) - 1) \right\}_{V}$$

$$\left\{ V = \int d^{3}\vec{x} + (\vec{x}) (W_{i}(\vec{x}) - 1) \right\}_{V}$$

$$\left\{ V = \int d^{3}\vec{x} + (\vec{x}) (W_{i}(\vec{x}) - 1) \right\}_{V}$$

$$\left\{ V = \int d^{3}\vec{x} + (\vec{x}) (W_{i}(\vec{x}) - 1) \right\}_{V}$$

$$\left\{ V = \int d^{3}\vec{x} + (\vec{x}) (W_{i}(\vec{x}) - 1) \right\}_{V}$$

$$\left\{ V = \int d^{3}\vec{$$

White this in terms of the single elastic amplitude using
$$W_{I}(\vec{x}_{l}) - 1 = W(\vec{x}_{l} - \vec{x}_{l}) - 1 = i \int \int \frac{d^{2}\vec{q}_{L}}{(2n)^{2}} e^{+i\vec{q}_{L}(\vec{x}_{l} - \vec{x}_{l})} - \int \int \int \frac{d^{2}\vec{q}_{L}}{(2n)^{2}} e^{-i\vec{q}_{L}(\vec{x}_{l} - \vec{x}_{l})} = \int \frac{d^{2}\vec{q}_{L}}{(2n)^{2}} e^{-i\vec{q}_{L}} = \int \frac{d^{2}\vec{q}_{L}}{(2n)^{2}} e^{-i\vec{q}_{L}(\vec{x}_{l} - \vec{x}_{l})} = \int \frac{d^{2}\vec{q}_{L}}{(2n)^{2}} e^{-i\vec{q}_{L}} = \int \frac{d^{2}\vec{q}_{L}}{(2n)^$$

valid to all-orders in
$$\alpha$$
 and q

$$\begin{aligned}
\prod_{i=1}^{n} \left(\overrightarrow{q_{i}} \right) &= \\
\left[\frac{1}{i} \int d^{1}x_{t} e^{-i\overrightarrow{q_{i}}\cdot\overrightarrow{x_{i}}} \left[e^{xp} \int d^{2} \int \frac{d^{1}u_{t}}{(1n)^{2}} e^{-i(\overrightarrow{q_{i}}\cdot\overrightarrow{x_{i}})} \int \left(\overrightarrow{k_{t}} \right) \int -1 \right] \right]^{2}
\end{aligned}$$

$$= \left| \begin{array}{c} \varrho(\vec{w}_{t,0}) T_{fi}^{(n)}(\vec{w}_{t}) \right|^{2} + \mathcal{O}(\varrho^{2}) \\ Lo(\vec{w}_{t}) + \mathcal{O}(\varrho^{2}) \\ Lo$$

$$\frac{\text{Example}: \text{homogeneous brick of matter with cylindrical grow.}}{\int |\vec{x}| = \int_{0}^{\infty} \Theta(\ell|2-1x_{0}|) \Theta(R \cdot \sqrt{x_{1}^{2} + x_{2}^{2}}) = \int_{0}^{\infty} \Theta(\ell|2-1x_{0}|) \Theta(R \cdot \sqrt{x_{1}^{2}}) \\ \Rightarrow \int_{0}^{\infty} \log(\ell|2) = \int_{0}^{\infty} \log(\ell|2) \frac{2\pi R}{|\vec{k}_{1}|} \int_{0}^{\infty} (|\vec{k}_{1}|R) \int_{0}^{\infty} = \frac{h}{nn^{2}e} \\ T(\frac{m}{\mu}) (|\vec{q}_{1}|) = \frac{4 h^{2}}{(1q_{1}R)^{2}} \int_{0}^{2} (|\vec{q}_{1}|R) \times ||T_{\text{fi}}^{(n)}(\vec{q}_{1})||^{2} ||\frac{(Qe)^{k}}{|\vec{k}_{1}^{2} + \mu^{d}|^{2}}|^{2} \\ HE particle being diffracted single elastic hell \\ about the dusk with ose. |q_{1}|n| \frac{1}{R} \quad defl. cross section ||q_{1}|n| \frac{1}{R} \end{aligned}$$

Cross-section for the scattening with h centers equal to n' firmes the cross-section with a single center => coherent scattening with whole medium Incoherent differential cross-section

$$\sum_{2}^{(m)} (\vec{q}_{t}) = \pi R^{2} e^{-j_{e}\ell T} (\vec{s})$$

$$\sum_{2}^{(m)} (\vec{q}_{t}) = \pi R^{2} e^{-j_{e}\ell T} (\vec{s})$$

$$\int d^{2}x_{t} e^{-iq_{t}\cdot x_{t}} \begin{bmatrix} j_{e}\ell T_{e\ell}^{(n)}(\vec{x}) \\ e & -n \end{bmatrix}$$

$$NOLIERE EQUATION FOR FINITE e$$

(R)rd = \overline{rd})

Where the F.T. of the single h=1 diff. elastic cross-section

and I used <u>optical</u> theorem to all-ordes in α $2 \text{Im} T_{fi}^{(n)}(\vec{\sigma}) = T_{el}^{(i)} = T_{el}^{(i)}(\vec{\sigma})$

TOTAL ELASTIC CROSS-SECTION OF MULTIPLE SCATTERING

$$\mathcal{T}_{e\ell}^{(m)} = \int \frac{d^2 q_{t}}{(\gamma n)^2} \left\{ \mathcal{Z}_{2}^{(m)}(\vec{q}_{t}) + \mathcal{T}_{2}^{(n)}(\vec{q}_{t}) \right\} = \gamma n R^2 \operatorname{Re} \left\{ 4 - e^{i \left(r - e^{i \left($$

Single h=1 elastic cross-section

At low medium densities $h \rightarrow 0$ $T_{ee}^{(n)} = 2\pi R^{2} \oint \frac{e_{o} \ell T_{ee}^{(n)}}{2} + 000 \oint = h T_{ee}^{(n)} + 000$ Saturatian $\ell_{o}^{sot} \ell \gg \frac{2}{T_{ee}} + \frac{\mu A^{2}}{2\pi (Qe^{2})^{2}}$ $T_{ee}^{(n)} = 2\pi R^{2} \quad \text{CORRECT PLACK DISK LiMit}$

=> sitchle contributions to kg2) and hence q

HE ELASTIC SCATTERING IN QUANTUM CHROMODYNAMICS

$$T_{fi}^{(n)}(\vec{q}_{1}) = \frac{1}{i} \int d^{2}\vec{x}_{e} e^{-i\vec{q}_{e}\cdot\vec{x}_{e}} P_{exp} \left\{ -i\frac{3}{4}s \int dx_{3} t_{a} dx(x_{1},x_{2}) \right\}$$

$$\frac{1}{N_{e}} T_{r} \left\langle T_{fi}^{(n)}(\vec{q}_{1}) T_{fi}^{(n)}(\vec{q}_{2}) \right\rangle = T_{2}^{(n)}(\vec{q}_{1}) + \sum_{c}^{(n)}(\vec{q}_{1})$$

$$\frac{1}{N_{e}} T_{r} \left\langle T_{fi}^{(n)}(\vec{q}_{1}) T_{fi}^{(n)}(\vec{q}_{2}) \right\rangle = T_{2}^{(n)}(\vec{q}_{1}) + \sum_{c}^{(n)}(\vec{q}_{1})$$

$$\frac{1}{N_{e}} T_{r} \left\langle T_{fi}^{(n)}(\vec{q}_{1}) T_{fi}^{(n)}(\vec{q}_{2}) \right\rangle = T_{2}^{(n)}(\vec{q}_{1}) + \sum_{c}^{(n)}(\vec{q}_{1})$$

$$\frac{1}{N_{e}} T_{r} \left\langle T_{fi}^{(n)}(\vec{q}_{1}) T_{fi}^{(n)}(\vec{q}_{2}) \right\rangle = T_{2}^{(n)} \left\{ d^{2}x_{e} e^{-i\vec{q}_{e}\cdot\vec{x}_{e}} e^{(e^{2}T_{ee}^{(n)}(\vec{q}_{1})} - A \right\}$$

$$\frac{1}{N_{e}} \left\{ d^{2}q_{e} e^{i\vec{q}_{e}\cdot\vec{x}_{e}} d^{2}T_{ee}^{(n)} = \frac{q^{2}}{M^{2}} \frac{N_{e}^{1}}{4N_{e}^{2}} \mu I\hat{x}_{e} I K_{r}(\mu I\hat{x}_{e}) + \cdots$$

$$Stuge h = 1 diff eboshe cross section$$

$$\frac{d^{2}T_{ee}^{(n)}}{N_{e}} = \frac{1}{N_{e}} T_{r} \left(T_{fi}^{(n)}(\vec{q}_{e}) T_{fi}^{(n)}(\vec{q}_{e}) \right) = \frac{q^{2}}{4s^{1}} \frac{N_{e}^{1}}{4N_{e}^{2}} \left(\frac{1}{\vec{q}_{e}^{2}} \frac{1}{y_{e}^{2}} \right)^{1} + \cdots$$

Incherat cross-section satisfies the Molicic equation

$$\frac{3 \sum_{k=1}^{10} |\vec{q}_{k}\rangle = \ell_{0} \int \frac{d^{2}\vec{u}_{k}}{(m)^{2}} \frac{d\tau_{k}}{d\tau_{k}} \left[\sum_{k=1}^{10} (\vec{q}_{k} \cdot \vec{k}) - \sum_{k=1}^{10} (\vec{q}_{k}) \right] + \ell_{0} \pi \hbar^{2} \frac{d\tau_{k}}{d\tau_{k}} = \ell_{0} \ell_{0} \tau_{0}^{10} \frac{d\tau_{k}}{d\tau_{k}} = \ell_{0} \ell_{0} \ell_{0} \tau_{0}^{10} \frac{d\tau_{k}}{d\tau_{k}} = \ell_{0} \ell_{0} \tau_{0}^{10} \frac{d\tau_{k}}{d\tau_{k}} = \ell_{0} \ell_{0} \ell_{0} \ell_{0} \tau_{0}^{10} \frac{d\tau_{k}}{d\tau_{k}} = \ell_{0} \ell_{0} \ell_{0} \ell_{0} \tau_{0}^{10} \frac{d\tau_{k}}{d\tau_{k}} = \ell_{0} \ell_{0}$$

 $(M_1 \circ 0.5 \text{ GeV} R = 10 \text{ rd})$

LO term diffraction in classical Non-Adrehian background U(xs)

- Diffraction is a non-classical effect: cannot be reduced to the form of a stochastic equation.

- Procedure can be extended to study bound systems and hence effects of charge correlations near phase transition * imprints of cartical opalescence phenomena? Thanks