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Multiple scattering central role in jetpartonprocesses calculations

Momentum broadeningeffects in jet energy correlators
Andres et al 2303.03413 see Fabio's talk

Moliere scattering in jet quenching and jet substructure
SeeRaymond Ehlers talk and Barata et al 2009.13667

Interplay between classical 8 quantum corrections to g
See Eamonn Weitz talk

Quantum partonic transport
Barata et al 2210.06519

Momentum broadening effects in co production
SeeJasmine Brewer's talk

Collisional and radiative energy loss in dural magnetic current
See Kirill Turchin's talk

This talk study in more detail finite system size effects in

multiple scattering and the emergence ofoptical diffraction
















































Brata TInfinitemedium nucleus approximation

air so when

iiii
iii

rain i 9nd
momenntagntrasteran transverse site medium

R
due to interactionswiththe

ra n size medium constituent

For rd I use to me

Georgia000,00
ooo

t.o S.aetoooo

rdr Md where

MICT 4ThXs T at NE T2

Nf 3 2sME 0.12

For R I use averaged parton pathlength limited up fromaboveby freezeouttime










































Tea Md rd R Rlrd

Pb Pb Fun 13 Ter 0 5 557 MeV 1.24GeV 0.167m Tfm 31

50 60 401MeV 0.95Get 0.20fun 3.37m 16

Pb Pb fun 2.76TeV O 5 470 Met 1.08GeV 0.18fur Tfm 27

50 60 338MeV 0.84GeV 0.237m 3 Ifm 13

XeXe Fon 5.44Ter O 5 462 MeV 1.07 Get 0.18fun 4.37m 24

5060 334 MeV 0.8260 0.247m 2.67m 11

AuAu Fan 700 GeV 0 5 362 MeV 0.88GeV 0.227m 4.67m 21

TO60 254MeV 0.67Get 0.37m 2.57m 8

CuCu fun 200Get O5 300MeV 0.76Get 0.267m 2.97m 11

304090 252 MeV 0.67 Get 0.3fun 2.27m I



quantum electrodynamics case ordinary matter

Particle spin in An x
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SOLUTION
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Wilson line propagator in A till space time point x
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Photonpropaigator h screened Coulomb

fields

Scattering amplitude to all orders in A lx at HE
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DIFF ELASTIC CROSS SECTION probability for the particle to go

from Pi to PI'spitE't after interacting to all orders at HE

with the n sources

d til
da

Ti É Tsi É

Medium average

F Cri xi faxifitis din faint exit it
v

f fi probability of a source to be found at I



Noticing Tgi Ssi I and axe ex t

d's'd

da
T É I E
I 1 I 1

takes the average takes the average
at amplitude level at cross section level

t t
COHERENT INCOHERENT

Identity valid forany averaged
TheCqE Tf E traced over cross section

I E SI E SEE s ai SETI
V V



Coherent differential cross section
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and define the window function of the medium as
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Example homogeneous brick of matter with cylindrical geom
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Crosssection for the scattering with h centers equal to
n times the cross section with a single center

coherent scattering with whole medium



Incoherent differential cross section Rs rd yd
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TOTAL ELASTIC CROSS SECTION OF MULTIPLE SCATTERING
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Half the scattering events are coherent diffraction even if Ro
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HE ELASTIC SCATTERING IN QUANTUM CHROMODYNAMICS
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Incoherent cross section satisfies the Moliere equation
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transport equation Penetrating dist e
at cross section level withoutget interacting

Coherent cross section does not
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Quantum transport equation at amplitude level
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Examples typical QCD medium for Al A fun 200Get collisions
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to term diffraction in classical Non Abelianbackground 0 as



Summary 8 possible new directions

Diffraction is a non classical effect cannot

be reduced to the form of a stochastic equation

Necessary for a precise tomography of color and

electromagnetic charge distributions in small systems
effects in di lepton accoplanarity distributions

related phenomena transition radiation and dielectric suppression

Procedure can be extended to study bound systems
and hence effects of charge correlations near phase transition

imprints of critical opalescence phenomena
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