Advancing electric dipole moment (EDM) searches with ultracold radioactive molecules at FRIB

Xing Wu FRIB & Michigan State U

\$\$\$ Sponsored by DOE \$\$\$\$

Office of Science

Facility for Rare Isotope Beams

ACME collaboration

University of Chicago David DeMille (PI) Zhen Han (graduate student) Peiran Hu (graduate student)

Northwestern University Gerald Gabrielse (PI) Xing Fan (Res. Asst. Professor) Daniel Ang (Harvard grad student) Cole Meisenhelder (Harvard grad student) Siyuan Liu (graduate student) Maya Watts (graduate student) Collin Diver (graduate student)

Harvard University John Doyle (PI) Zack Lasner (postdoc)

Okayama University Koji Yoshimura Noboru Sasao Satoshi Uetake Takahiko Masuda Ayami Hiramoto

Other collaborators Cris Panda (Berkeley) Nick Hutzler (Caltech) Xing Wu (FRIB/MSU)

David DeMille

Koji Yoshimura Satoshi Uetake

Takahiko Masuda Ayami Hiramoto Cris Panda

Siyuan Liu

Collin Diver

THE UNIVERSITY OF HICAGO

MPI of Quantum Optics Garching, DE:

Martin Zeppenfeld

Gerhard Rempe

Maya Watts

Xing Fan

Nick Hutzler

Daniel Ang Cole Meisenhelder

Xing Wu

Naboru Sasao

Zack Lasner

After the Big Bang: ~1 part per billion more matter than antimatter Antimatter Matter

The remaining ~10⁻⁹ after Annihilation makes up the entire observable Universe!

Supported by n_B/n_y from Cosmology Observation

- Matter-favoring mechanism must violate *CP*-symmetry JETP Lett. 5, 27 (1967)
- CP: Charge & Parity reversal

 $CP \leftrightarrow T$: Time reversal Assuming CPT invariance

A.D. Sakharov

Peace Prize 1975

Two Ways to Hunt for the Exotic Particles

'Conventional' Approach: Particle Colliders

Higgs Boson @ LHC, Cern

Search for: Electric Dipole Moment (EDM)

Physics 1989

Norman Ramsey Proposed In 1950

Asymmetry in charge distribution

Two Ways to Hunt for the Exotic Particles

 ~30 TeV & beyond (Model Testing)
 ~\$3 million +
 ~5 grad students

EDM Narrows the Search for Theory Beyond SM

ACME: Advanced Cold Molecule

8

Search EDMs by Ramsey Interference Measurement

Electron EDM

Extract EDM by Reversing the E-field

Extract EDM by Reversing the E-field

Electron EDM can be extracted:

$$d \propto \phi_+ - \phi_-$$

Physics 1989

Molecule Amplifies EDM Interaction! ACME uses ThO molecules: 16 <mark>232 ¬</mark> E_{eff} ~ **10¹¹** V/cm: E_{lab} ~ **100** V/cm: Effective E-field around Applied E-field to polarize molecules heavy nucleus

$H^{3}\Delta_{1}$ state of ThO: Excellent for EDM Search ::

- Insensitive to magnetic field noise
 - Σ=1, Λ=2, but they are anti-parallel, so the magnetic moments nearly cancel out
 - Measured to be μ_{H} =0.00440(5) μ_{B}
- $\Omega = \Lambda + \Sigma = 2 + (-1) = 1$, giving parity doublet

• Easily polarizable

$H^{3}\Delta_{1}$ state of ThO: Excellent for EDM Search \cdot

- Easily polarizable
- Can reverse $\vec{\mathcal{E}}_{eff}$ by either reversing:
 - Moleculeorientation, *N*;
 - Lab electric field, $\vec{\mathcal{E}}_{lab}$

$H^{3}\Delta_{1}$ state of ThO: Excellent for EDM Search

- Easily polarizable
- Can reverse $\vec{\mathcal{E}}_{eff}$ by either reversing:
 - Moleculeorientation, \mathcal{N} ;
 - Lab electric field, $\vec{\mathcal{E}}_{lab}$

$$d_e \mathcal{E}_{\text{eff}} = -\hbar \omega^{\mathcal{N}\mathcal{E}}$$

ACME III will improve EDM sensitivity by ~30 times

- Molecular Lens increases molecular flux by x19 times
- x5 times longer spin precession time
- Better detection efficiency w/ SiPM and improved collection optics
- Additional technical improvements to control systematics and noises

Tested upgrades for ACME III

Figure of merit:

Upgrades	Signal Gain	EDM Sensitivity Gain	$\frac{1}{\Delta d}$ C	$\times E \tau \sqrt{\dot{N}T}$	
Electrostatic Lens	19	4.3	X19 larger \dot{N} 🗸	XW, et al, <i>NJP</i> 24 073043 (2022) XW, et al, <i>NJP</i> 22 023013 (2020)	
Increased Precession Time	.2	2.1	x 5 longer τ 🗸	(2020) D.Ang, XW, et al, <i>PRA</i> 106 (2), 022808 (2022)	
SiPM Detector & Photon Collection Upgrade	4	2	x4 larger \dot{N} 🗸	T Masuda, XW, et al, Optics Express 29, 11, 16914 (2021	
Timing Jitter Noise Reduction	1	1.7	x3 reduction <pre>v3</pre>	C.Panda, XW, et al, <i>J. Phys.</i> <i>B</i> 52, 235003 (2019)	
Total	12	30	Projected EDM sensitivity		
			gain over ACME II		

First molecular signal from ACME III beamline

- Signal rate is approximately what we have expected from all the upgrades
- Excellent prospects to probe eEDM at <3x10⁻³¹ e·cm level

ACME collaboration (Harvard, U Chicago, Northwestern)

E. Cornell

JILA eEDM (Eric Cornell, Jun Ye)

State of the Art

 Neutral ThO molecular beam: |d_e|<1.1x10⁻²⁹ e cm *Nature 562, 355 (2018)* ○ Project to reach <3x10⁻³¹ e cm in the coming generation
 ○ interrogation time is limited by EDM state lifetime (~ 4ms)

Trapped HfF⁺ molecular ions: |d_e| < 5x10⁻³⁰ e cm Science 381, 46 (2023)
◆ 1s spin precession time
Severely limited by N, due to Coulomb repulsion

One Strategy: Neutral Molecules in a Trap!

neutral YbF

Mike Tarbutt @ Imperial College London

neutral BaF

Steven Hoekstra @ NL-eEDM collaboration

neutral RaF

Ronald Garcia-Ruiz, John Doyle, Nick Hutzler YbF, BaF, and RaF can be nominally laser cooled!

(Alkaline-earth fluoride molecules are analogous to the Alkali atoms)

 Perspective to load into Magneto-Optical Trap, optical dipole trap, and optical lattice

 They do not possess the powerful
 ³Δ₁ co-magnetometer structure (which both ThO and HfF⁺ have)

Polyatomic Molecules

 Take a molecule that is like Alkaline-earth fluoride, but with –F atom replaced by a ligand group that produces co-magnetometer structure (e.g. –OH, -OCH₃)

Image modified from Hutzler Group @ *CalTech* RaOCH₃

N. Hutzler @ CalTech

I. Kozyryev and N. Hutzler, PRL 119, 133002 (2017)

- Alkaline-earth element stays as photon-cycling center
- Ligand group provides the parity doublet

Fall 2023: QuEST Project Starts at FRIB/MSU

To establish a new generation EDM measurement that outperforms the current best limits by several orders of magnitude

Fall 2023: QuEST Project Starts at FRIB/MSU

Rare Isotope Access at FRIB:

Octupole deformation from pearshaped nuclei (²²⁵Ra, ²²³Fr)→ nuclear enhancement to *T*-violating new physics

Fall 2023: QuEST Project Starts at FRIB/MSU

'Conventional' Laser Cooling of Molecules

Image taken from Polyatomic Molecule Project @ *Harvard*

John Doyle @ Harvard David DeMille @ U Chicago Jun Ye @ JILA/Boulder

.

- Photon-cycling on Optical-Cycling-Center (e.g. Ca, Sr, Yb, etc)
- Many Atom-Cooling techniques are ready to apply
- Reach ~5 micro-Kelvin (for CaF).
- But, it requires ~12 Lasers or more for polyatomic molecules....

Probably Need More than 12 Lasers to Re-pump!

Opto-electric Sisyphus Cooling

- Only need about 1 laser!!
- Only require to scatter ~100 photons
- Rely on E-field to remove energy of molecules
- Optical transition pumps molecules from weaker Stark-states (|w>) to stronger Stark-states (|s>).
- Demonstrated for CH₂O, CH₃F, reaching ~300 micro-Kelvin!

But, cooling rate is very slow, ~10 Hz, vs. ~10 MHz for conventional laser cooling

M. Zeppenfeld & G. Rempe @ MPQ

Nature 491, 570–573 (2012), Phys. Rev. Lett. 116, 063005 (2016)

Would it be Feasible to Marry the Two Most Successful Methods for Direct Cooling?

✓ x10⁶ faster cooling rate!!

- Only need ~1 re-pumping lasers, instead of 15 or more!!!
- Fundamental cooling limit is the photon recoil at ~ 400nK

Electric loffe-Pritchard trap for polar molecules

PRA 79, 051401 (R) 2009

Schnell & Meijer @ FHI, Berlin

Decelerate Molecular Beams by Centrifugal Force!

Demonstrated in my doctoral thesis

XW, PhD Thesis, TU München (2017) XW et al., Science 358, 645 (2017) S Chervenkov, XW et al., PRL, 112, 01<u>3001 (2014)</u>

Same principle was used for producing ultracold neutron beams @ ILL, Grenoble, France Very Cold Neutron guide Entrance shutter Shutters Turbine wheel Neutron guide TGC Tube Guide Courbe For searching Neutron EDM!

Physics in the Lab Frame

A: trajectory in the rotating frame B: trajectory in the lab frame

Same principle was used for producing ultracold neutron beams since 1990s @ ILL, Grenoble, France Very Cold Neutron guide Entrance shutter Shutters Turbine wheel Neutron guide TGC Tube Guide Courbe For searching Neutron EDM!

XW, PhD Thesis, TU München (2017) S Chervenkov, XW et al., PRL, 112, 013001 (2014)

High efficiency

- Static electrodes at the periphery
- Rotating electrodes spiral to the centre
- Enable continuous deceleration

Constant force curve: ~10 to 20% over all guiding efficiency

How does a Real Centrifuge Look Like?

How does a Real Centrifuge Look Like?

Bend-up

Cryofuge

- Combine a cryogenic beam source with the centrifuge
 - flux (<1K) $\approx 1.2 \times 10^{10} \text{s}^{-1}$
 - density (<1K) $\approx 1.0 \times 10^{9} \text{ cm}^{-3}$

Deceleration results

XW et al., Science 358, 645 (2017)

Plan for Simplifying the Mechanical Structure

Solution: completely avoid the static guide

Only rotational guide

Laser beam

Truly Generic Approach to Decelerate Particles

- The guide can be either electric, or magnetic, or surface scattering
- Applicable: polar molecules, atoms (e.g. Hydrogen and Tritium), cold neutron, etc.
- Optical loading can be replaced by microwave/RF pumping

Truly Generic Approach to Decelerate Particles

- The guide can be either electric, or magnetic, or surface scattering
- Applicable: polar molecules, atoms (e.g. Hydrogen and Tritium), cold neutron, etc.
- Optical loading can be replaced by microwave/RF pumping

Hamish Robertson & Elise Novitski @ UW Seattle

"Project 8": probe
neutrino mass from Microwave/RF
Tritium β-decay

H, or Tritium, or cold neutron, ...

Only rotational guide

Start with Hexapole Permanent Magnetic Guide

Sebastian Miki-Silva @ FRIB/MSU

 Plan to benchmark with Rb/Li atomic beams before CaOCH₃ (and eventually RaOCH₃)

Quantum Measurement with Molecules Coupled in Microwave Resonator

Quantum Non-Demolition (QND) Measurement with Rydberg atoms in µWave-Resonator

Serge Haroche

Physics 2012

Molecules in a µWave-Resonator

QND Measurementbased Spin Squeezing

Demonstrated with atoms in optical resonators:

V. Vuletić @ *MIT* J. Thompson @ *JILA, Boulder* Schleier-Smith, Kasevich @ *Stanford*

Cavity QED with Molecules

- In addition to metrology ...:
 - Molecules in a microwave-IR cross cavity

Molecule has

- rotational transitions (6~60GHz)
- vibrational transition (in IR range)

Quantum transducer: to convert qubits between mW and telecom wavelength

Cavity QED with Molecules

- In addition to metrology ...:
 - Molecules in a microwave-IR cross cavity

Molecule has

- rotational transitions (6~60GHz)
- vibrational transition (in IR range)

Quantum transducer: to convert qubits between mW and telecom wavelength

D. Schuster @ U Chicago

ACME II Setup Moved from Harvard to East Lansing this Year

Great perspective for cycling >10 photons on ThO \bigcirc X \rightarrow I transition

- X→I transition (512nm) has 91% branching ratio back to X, v=0 state.
- Cycling >10 photons + other improvement can significantly enhance eEDM sensitivity
- Potentially cycle ~100 photons by closing Q→I and H→I transitions:
 - Maybe more than just photon-cycling???

ACME II Setup Moved from Harvard to East Lansing this rquette Sudbury TrovRines **Historic ACME II setup** Algonquin Mackinaw City Manitoulin Provincial Ott Island Park Petoskey FRIB MAINE Bangor Alex Frenett from PolyEDM Kingston project @ Harvard will JOIN Toronto MIC and FRIB as postdoc fellow this Rochester apids Hamilton September London **NEW YORK** VE Buffalo Lansing Albany etroit Kalamazoo Rockford TAS MASSACHUSETTS -ake-Enie Rapids Chicago Prov Cleveland Davenport CONNECTICU Naperville Nantucket Fort Wayne New Ha New PENNSYLVANIA Peoria Pittsburah INDIAN ILLINOIS Philadelphia **Test New Upgrades for** Springfield Champaign Indianapo AND NEW JERSEY post-ACME-III Bloomington aton St. Louis DELAWARE

louisville

Imagery @2023 TerraMetrics, Map data @2023 Google, INEGI United States TermsearPrivacy Send Product Feedback 100

Rare Isotopes Gives Further Enhancement

Quantum Control of Molecules Enhancement: 2 orders of magnitude

Quantum-Enhanced Sensing:

Enhancement: 1~2 orders of magnitude

Nuclear Enhancement to Hadronic Sector of *T*-Violation

Eventually cover the entire parameter space, up to the Standard Model prediction!

Octupole Deformation in e.g. ²²⁵Ra, ²²³Fr Enhancement: up to 4 Orders of Magnitude

Test Fundamental Symmetries using Radioactive Molecules @ FRIB

Xing Wu

An excellent team needs excellent Students & Postdocs

\$ \$\$\$ Sponsored by DOE \$\$\$ \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$

