Neutrino flavor conversion impact on r-process nucleosynthesis from mergers

Meng-Ru Wu (Institute of Physics, Academia Sinica)

The r-process and the nuclear EOS after LIGO-Virgo's third observing run INT, Seattle, USA, May 23–27, 2022

Outline

- Collective fast neutrino oscillations in BH-torus simulation
 - [Just, Abbar, MRW, Tamborra, Janka, Capozzi, 2203.16559]
 - collective fast oscillations
 - new implementation
 - impact on nucleosynthesis and kilonova

Collective neutrino oscillations

In a neutrino-dense environment, multi-dimensional quantum transport of neutrinos is needed when flavor oscillations are involved

$$(\partial_t + \mathbf{v} \cdot \partial_{\mathbf{x}} + \mathbf{F} \cdot \partial_{\mathbf{p}})\varrho(\mathbf{x}, \mathbf{p}, t) = -i[H_{\text{vac}} + H_{\text{m}} + H_{\nu\nu}, \varrho(\mathbf{x}, \mathbf{p}, t)] + \mathcal{C}(\varrho)$$

$$arrho$$
: Wigner-transformed flavor density matrix, $= \left(egin{array}{ccc} f_{
u_e} & arrho_{e\mu} & arrho_{e au} \\ arrho_{e\mu}^* & f_{
u_{\mu}} & arrho_{\mu au} \\ arrho_{e au}^* & arrho_{\mu au}^* & f_{
u_{ au}} \end{array}
ight)$

$$H_{\nu\nu} \sim G_F \sum_{\mathbf{p}'} (\varrho(\mathbf{x}, \mathbf{p}', t) - \bar{\varrho}^*(\mathbf{x}, \mathbf{p}', t))(1 - \mathbf{v} \cdot \mathbf{v}') \rightarrow \text{non-linear coupling}$$

[Fuller+ 1987, Pantaleone 1992, Sigl & Raffelt, 1992]

$$H_{\rm vac} \sim \delta m^2/(4E_{\nu})$$

 $H_m \sim G_F n_e$

When the magnitude of elements in $H_{\nu\nu}$ dominates that of $H_{\rm vac}$, H_m , and \mathcal{C} , collective behavior can emerge; neutrinos with different momenta can oscillate collectively

[Abbar+, Balantekin+, Capozzi+, Cervia+, Chakraborty+, Dasgupta+, Duan+, Fuller+, Friedland+, Johns+, Kato+, Kajino+, Kneller+, Martin+, Manibrata+, Mclaughlin+, Mirizzi+, Morigana+, Nagakura+, Raffelt+, Richers+, Rogerro+, Rrapaj+, Sawyer+, Shalgar+, Tamborra+, Volpe+, MRW, Xiong+...]

Fast collective neutrino flavor conversion

The angular crossing of electron-neutrino lepton number (ELN crossing) (the ELN function $G^0_{{\bf v}_{\nu}} \propto \int E^2_{\nu} dE_{\nu} [f^0_{\nu_e}({\bf p}_{\nu}) - f^0_{\bar{\nu}_e}({\bf p}_{\nu})]$ has + and - values)

- o flavor instability with growth rate $\sim G_F n_
 u \sim \mathcal{O}({
 m ns}^{-1})$ [Sawyer+, Izaguirre+, Dasgupta+, Morinaga+...]
- \rightarrow fast oscillations that tend to erase the ELN crossing [Bhattacharyya+, Richers+, MRW+,...]

The net ELN number $=\int dV \int d^2{\bf v}_{\nu} G_{{\bf v}_{\nu}}$ is conserved with fast conversions \to the amount of converted ν_e equals that of $\bar{\nu}_e$

Earlier works on fast conversions in mergers

- MRW+ 1701.06580, MRW+1711.00477, George+2009.04046
 - ELN crossings above artificially assumed sharp neutrino decoupling surfaces in BH-disk and early post-merger simulation data
 - Impacts on nucleosynthesis in neutrino-driven or polar part of the ejecta

Earlier works on fast conversions in mergers

- MRW+ 1701.06580, MRW+1711.00477, George+2009.04046
 - ELN crossings above artificially assumed sharp neutrino decoupling surfaces in BH-disk and early post-merger simulation data
 - Impacts on nucleosynthesis in neutrino-driven or polar part of the ejecta
- Li & Siegel 2103.02616 (see Xinyu Li's talk)
 - Identify flavor instability for the homogenous (${\bf k}=0$) mode directly in GRMHD simulations with M1 transport
 - Impacts on nucleosynthesis in BH–disk ejecta launched within $\sim 400~\rm ms$

Full flavor equipartition ($f_{\nu_e}=f_{\nu_\mu}=f_{\nu_\tau}$ and same for antineutrinos) after fast conversions were assumed

What's new (different) in our work

 examine BH-disk simulation data using a more general scheme searching for instabilities

for moments of ϕ -integrated ELN function $I_n = \int d\mu \mu^n G(\mu), \ \mu = \cos \theta$ if there exists a $\mathcal{F}(\mu) = \sum_{n=0}^N a_n \mu^n > 0,$ such that $I_0\left(\sum_{n=0}^N a_n I_n\right) < 0,$ \to ELN crossing exists [Abbar 2003,00969]

(x: up to I_2 , +: up to I_3)

ullet locations with instability can be largely covered by the criterion $f_{\bar{\nu}_e}=|\mathbf{F}_{\bar{\nu}_e}|/n_{\bar{\nu}_e}\gtrsim 0.175$

What's new (different) in our work

- explore different parametrized outcomes of flavor conversion:
 - (i) mix1: conserves net ELN number for all energy bins
 - (ii) mix2: $f_{\nu_e} = f_{\nu_\mu} = f_{\nu_\tau}$ and the same for antineutrinos
 - (iii) mix3: $f_{
 u_e}=f_{
 u_\mu}=f_{
 u_ au}=f_{ar
 u_e}=f_{ar
 u_\mu}=f_{ar
 u_ au}$
 - (*) mix1f: number density same as mix1, but keep flux factors unchanged

What's new (different) in our work

- explore different parametrized outcomes of flavor conversion:
 - (i) mix1: conserves net ELN number for all energy bins
 - (ii) mix2: $f_{\nu_e}=f_{\nu_\mu}=f_{\nu_\tau}$ and the same for antineutrinos
 - (iii) mix3: $f_{
 u_e}=f_{
 u_\mu}=f_{
 u_ au}=f_{ar
 u_e}=f_{ar
 u_\mu}=f_{ar
 u_ au}$
 - (*) mix1f: number density same as mix1, but keep flux factors unchanged

flavor oscillations lead to

- ullet faster disk cooling & higher e^- degeneracy
- ullet lower u_e and $ar
 u_e$ abundances
- ightarrow lower disk Y_e by $\sim 0.03-0.06$

(see also Oliver Just's talk)

Outflow Y_e distribution

outflow Y_e reduced by $\sim 0.01-0.03$, ejecta mass and velocity reduced by $\sim 10\%$

Impact on nucleosynthesis

Enhance the mass fraction of lanthanides + actinides by \sim a factor of 2-3

Impact on kilonova lightcurve

slightly dimmer at peak with prolonged diffusion bump due to enhanced opacity

Model dependence

qualitatively similar results for different model parameters

Summary

- Improved the modeling of including fast neutrino flavor conversions in BH-disk simulations
- ullet some non-negligible impact on disk cooling and composition, neutrino emission, and ejecta Y_e
- ullet lanthanide and actinide mass fraction affected by a factor of 2-3, leading to changes in kilonova lightcurves