

SCIENCE

Centre

From vortices to turbulence: dynamics in strongly interacting Fermi superfluids

Gabriel Wlazłowski

Warsaw University of Technology University of Washington

Compressible Turbulence: From Cold Atoms to Neutron Star Mergers INT-25-2a, June 23 – 27, 2025, Seattle

POLAND

Quantum turbulence

System: *unitary Fermi gas (spin-symmetric)* number of atoms = 26,790 Method: *Time-Dependent Density Functional Theory* PNAS Nexus, pgae160 (2024)

2

Computation on spatial grid

PHYSICS.WUT

(the largest system in 3D we considered had 108,532 atoms)

Quantum turbulence in Bose systems

E. A. L. Henn, J. A. Seman, G. Roati, K. M. F. Magalhães, and V. S. Bagnato, Phys. Rev. Lett. 103, 045301 (2009)

Reviews:

. . .

- L. Madeira, et al., Ann. Rev. of Cond. Mat. Phys., 11 (2020)
- M.C. Tsatsos, et al., Phys. Rep. 622, 1 (2016).
- M. Tsubota, et al., J. Low. Temp. Phys. 188, 119 (2017)

... Superfluid helium J. T. Mäkinen, et.al., Nat. Phys. 19, 898 (2023)

. . .

H. A. J. Middleton-Spencer, A. D. G. Orozco, L. Galantucci, M. Moreno, N. G. Parker, L. A. Machado, V. S. Bagnato, and C. F. Barenghi, Phys. Rev. Research 5, 043081 (2023)

3

Nir Navon, Alexander L. Gaunt, Robert P. Smith & Zoran Hadzibabic Nature 539, p. 72–75 (2016)

PHYSICS, **WUT**

An active field of research!

Superfluidity across BEC-BCS crossover

Comparing Bose & Fermi superfluids

FIG. 36 Vortex lattice in a rotating gas of ⁶Li precisely at the Feshbach resonance and on the BEC and BCS side. Reprinted with permission from Zwierlein *et al.* (2005).

M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle, Nature 435, 1047 (2005).

Scientific question: What is **impact of quantum statistics** on superfluid (turbulent) dynamics?

Synergy: theory & experiment

Synergy: theory & experiment

including 2 of the top 10.

6

General purpose framework

SLDA-type functional

$$E_0 = \int \mathcal{E}[n_{\sigma}(\boldsymbol{r}), \tau_{\sigma}(\boldsymbol{r}), \boldsymbol{j}_{\sigma}, \nu(\boldsymbol{r})] d\boldsymbol{r}$$

normal density

$$n_{\sigma}(\boldsymbol{r}) = \sum_{|E_n| < E_c} |v_{n,\sigma}(\boldsymbol{r})|^2 f_{\beta}(-E_n),$$

kinetic density

$$\tau_{\sigma}(\boldsymbol{r}) = \sum_{|E_n| < E_c} |\nabla v_{n,\sigma}(\boldsymbol{r})|^2 f_{\beta}(-E_n),$$

current density

$$\boldsymbol{j}_{\sigma}(\boldsymbol{r}) = \sum_{|E_n| < E_c} \operatorname{Im}[v_{n,\sigma}(\boldsymbol{r}) \nabla v_{n,\sigma}^*(\boldsymbol{r})] f_{\beta}(-E_n),$$

anomalous density

$$\nu(\boldsymbol{r}) = \frac{1}{2} \sum_{|E_n| < E_c} \left[u_{n,a}(\boldsymbol{r}) v_{n,b}^*(\boldsymbol{r}) - u_{n,b}(\boldsymbol{r}) v_{n,a}^*(\boldsymbol{r}) \right] f_{\beta}(-E_n).$$
Energy cut-off scale (need for regularization)

Superfluid Local Density Approximation

The Fermi-Dirac distribution function

Denisties are **parametrized** via Bogoliubov quasiparticle wave functions

quasiparticle = mixture of
hole particle
$$\varphi_{\eta}(\boldsymbol{r},t) = [u_{\eta}(\boldsymbol{r},t), v_{\eta}(\boldsymbol{r},t)]^T$$

$$\int \varphi_{\eta}^{\dagger}(\boldsymbol{r},t)\varphi_{\eta'}(\boldsymbol{r},t) \, d^{3}\boldsymbol{r} = \delta_{\eta,\eta'}$$

+ orthonormality condition (Pauli principle)

Additional density required by DFT theorem for systems with broken U(1) symmetry

SLDA (and BdG) allows for solutions: $n \neq 0$ and v=0 \rightarrow Cooper pair breaking \rightarrow effectively normal component $PPHYSICS_WUT$

SLDA-type functional

$$E_0 = \int \mathcal{E}[n_{\sigma}(\boldsymbol{r}), \tau_{\sigma}(\boldsymbol{r}), \boldsymbol{j}_{\sigma}, \nu(\boldsymbol{r})] d\boldsymbol{r}$$

By construction minimization of the SLDA-type functional leads to equations that are mathematically equivalent to BdG or HFB equations

$$\begin{pmatrix} h_{\uparrow}(\boldsymbol{r}) - \mu_{\uparrow} & \Delta(\boldsymbol{r}) \\ \Delta^{*}(\boldsymbol{r}) & -h_{\downarrow}^{*}(\boldsymbol{r}) + \mu_{\downarrow} \end{pmatrix} \begin{pmatrix} u_{n,\uparrow}(\boldsymbol{r}) \\ v_{n,\downarrow}(\boldsymbol{r}) \end{pmatrix} = E_{n} \begin{pmatrix} u_{n,\uparrow}(\boldsymbol{r}) \\ v_{n,\downarrow}(\boldsymbol{r}) \end{pmatrix}$$

$$h_{\sigma} = -\boldsymbol{\nabla} \frac{\delta E_0}{\delta \tau_{\sigma}} \boldsymbol{\nabla} + \frac{\delta E_0}{\delta n_{\sigma}} - \frac{i}{2} \left\{ \frac{\delta E_0}{\delta \boldsymbol{j}_{\sigma}}, \boldsymbol{\nabla} \right\}, \quad \Delta = -\frac{\delta E_0}{\delta \boldsymbol{v}^*}.$$

SLDA-type functional

$$E_0 = \int \mathcal{E}[n_{\sigma}(\boldsymbol{r}), \tau_{\sigma}(\boldsymbol{r}), \boldsymbol{j}_{\sigma}, \nu(\boldsymbol{r})] d\boldsymbol{r}$$

By construction minimization of the SLDA-type functional leads to equations that are mathematically equivalent to BdG or HFB equations

$$\begin{pmatrix} h_{\uparrow}(\boldsymbol{r}) - \mu_{\uparrow} & \Delta(\boldsymbol{r}) \\ \Delta^{*}(\boldsymbol{r}) & -h_{\downarrow}^{*}(\boldsymbol{r}) + \mu_{\downarrow} \end{pmatrix} \begin{pmatrix} u_{n,\uparrow}(\boldsymbol{r}) \\ v_{n,\downarrow}(\boldsymbol{r}) \end{pmatrix} = E_{n} \begin{pmatrix} u_{n,\uparrow}(\boldsymbol{r}) \\ v_{n,\downarrow}(\boldsymbol{r}) \end{pmatrix}$$

$$h_{\sigma} = -\nabla \frac{\delta E_0}{\delta \tau_{\sigma}} \nabla + \frac{\delta E_0}{\delta n_{\sigma}} - \frac{i}{2} \left\{ \frac{\delta E_0}{\delta \boldsymbol{j}_{\sigma}}, \nabla \right\}, \quad \Delta = -\frac{\delta E_0}{\delta \boldsymbol{v}^*}.$$

From point of view of DFT this step represents approximation, called *adiabatic approximation*

DFT method from practical point of view:

DFT method allows for the description of many-body quantum systems with higher accuracy than the mean-field method while keeping the computational complexity at the same level as for the mean-field method.

$$\begin{pmatrix} h_{\uparrow}(\boldsymbol{r},t) - \mu_{\uparrow} & \Delta(\boldsymbol{r},t) \\ \Delta^{*}(\boldsymbol{r},t) & -h_{\downarrow}^{*}(\boldsymbol{r},t) + \mu_{\downarrow} \end{pmatrix} \begin{pmatrix} u_{n,\uparrow}(\boldsymbol{r},t) \\ v_{n,\downarrow}(\boldsymbol{r},t) \end{pmatrix} = i\hbar \frac{\partial}{\partial t} \begin{pmatrix} u_{n,\uparrow}(\boldsymbol{r},t) \\ v_{n,\downarrow}(\boldsymbol{r},t) \end{pmatrix}$$

Example: The simplest choice

BdG (mean-field)
$$\mathcal{E}_{BdG} = \frac{\tau}{2} + 4\pi a |v(r)|^2$$
There always exists a functional that after minimization provides equations identical to the mean-field equations (zeroth order). $A_{\lambda} \rightarrow 1$ $\int minimization$ $\int minimization$ $\int minimization$ $B_{\lambda} \rightarrow 0$ λ $\int minimization$ $\int minimization$ $\int minimization$ $C_{\lambda} \rightarrow \frac{4\pi\hbar^2}{(3\pi^2)^{1/3}m} dk_F$ $\int minimization$ $\Delta(r)$ $\Delta(r)$ $\int (u_n(r))$ $\Delta = -4\pi a \sum_{|E_n| < E_c} u_n(\mathbf{r})v_n^*(\mathbf{r}) \frac{f_{\beta}(-E_n) - f_{\beta}(E_n)}{2}$ **PHYSICS.UUT**

Quantum turbulence in 3D

initial state:

- \rightarrow zero temperature (T = 0)
- → regular lattice of imprinted vortices in all three directions
- → the lattice consists of alternately arranged vortices and anti-vortices
- \rightarrow small long-wavelength perturbations of vortex lines

G. Wlazłowski, M.M.Forbes, S. Sarkar, A. Marek, M. Szpindler, PNAS Nexus, pgae160 (2024)

13

Quantum turbulence in 3D

initial state:

- \rightarrow zero temperature (T = 0)
- \rightarrow regular lattice of imprinted vortices in all three directions
- \rightarrow the lattice consists of alternately arranged vortices and anti-vortices
- \rightarrow small long-wavelength perturbations of vortex lines

G. Wlazłowski, M.M.Forbes, S. Sarkar, A. Marek, M. Szpindler, PNAS Nexus, pgae160 (2024)

Calculations:

 \rightarrow TDDFT for two coupling constants: $ak_{F} = \infty$ and $ak_{F} = -1.8$

 \rightarrow modified GPE (Extended Thomas Fermi) for the same initial conditions

$$i\hbar e^{i\eta} \frac{\partial \psi_B(\mathbf{r},t)}{\partial t} = \begin{pmatrix} -\hbar^2 \nabla^2 \\ 2m_B \\ \star \end{pmatrix} + \mathcal{E}'(n_B(\mathbf{r},t)) \end{pmatrix} \psi_B(\mathbf{r},t),$$
mass of dimer
(2m)
effective mean-
field chemical potential
(=\xi \varepsilon_F)
14
Physics.uut

PNAS Nexus, pgae160 (2024)

PNAS Nexus, pgae160 (2024)

Radial dependence of the:

(a) density n(r),

(b) order parameter $\Delta(r)$,

(c) velocity v(r) = j(r)/n(r)

for a single straight vortex line

at various temperatures in the BCS regime ($k_{Fa} = -1.8$).

20

Radial dependence of the: (a) density n(r), (b) order parameter $\Delta(r)$, (c) velocity v(r) = j(r)/n(r)for a single straight vortex line at various temperatures in the BCS regime ($k_{Fa} = -1.8$).

PNAS Nexus, pgae160 (2024) rk_F

The thin gray lines show the profiles of selected vortices from the TDDFT calcs taken at time $t\varepsilon_F = 1,000$ → the system effectively heats up!

100

80

60

40

20

100

100

80

60

40

The temperature dependence of the vortex-core density n_{core} allows use fermionic vortices as a local thermometers.

The temperature dependence of the vortex-core density n_{core} allows use fermionic vortices as a local thermometers.

- → the effective temperature of vortex lines is higher in regions of higher curvature (reconnections, kelvin waves)
- $\rightarrow\,$ similarity to the heating of wire, which is sharply bent back and forth...
- \rightarrow ... also to mechanism proposed by Silaev.

Fig. from: M.A. Silaev, *Universal Mechanism of Dissipation in Fermi Superfluids at Ultralow Temperatures,* Phys. Rev. Lett. 108, 045303 (2012)

GPE:
$$j = nv_s = n\frac{\hbar}{M}\nabla\phi$$
, $n = |\psi|^2$, $\phi = \arg(\psi)$

DFT:
$$j \neq nv_s = n\frac{\hbar}{M}\nabla\phi$$
, $n = \sum_{E_n > 0} |v_n|^2$, $\phi = \arg(\Delta)$, $M = 2m$

GPE:
$$j = nv_s = n\frac{\hbar}{M}\nabla\phi$$
, $n = |\psi|^2$, $\phi = \arg(\psi)$
DFT: $j \neq nv_s = n\frac{\hbar}{M}\nabla\phi$, $n = \sum_{E_n>0} |v_n|^2$, $\phi = \arg(\Delta)$, $M = 2m$
In general: $j = n_s v_s + n_n v_n$
superfluid normal One should define n_s or n_n not directly via the quantum wave-function, but as the response to the external perturbation,

like a "phase twist".

MPHYSICS.WUT

GPE:
$$j = nv_s = n\frac{\hbar}{M}\nabla\phi$$
, $n = |\psi|^2$, $\phi = \arg(\psi)$
DFT: $j \neq nv_s = n\frac{\hbar}{M}\nabla\phi$, $n = \sum_{E_n>0} |v_n|^2$, $\phi = \arg(\Delta)$, $M = 2m$
In general: $j = n_s v_s + n_n v_n$
superfluid normal
One should define n_s or n_n not
directly via the quantum wave-
function, but as the response to
the external perturbation,
like a "phase twist".

Example:

- 1. Start with the static solution with j=0,
- 2. Imprint the phase pattern $\phi(\mathbf{r}) \rightarrow \mathbf{v}_{s} = \hbar/M \nabla \phi$
- 3. Measure the current j (phase imprint should induce only superfow) $\rightarrow n_s = j/v_s$
- 4. Extract the normal density as $n_n = n n_s$

See also G. Orso & S. Stringari, Phys. Rev. A 109, 023301 (2024) for formal definition of the superfluid fraction **PHYSICS WUT**

Numerical result from DFT [ak_F =-0.70, T=0]

n: total density

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 n(x, y) [total density]

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 |\(\Delta(x,y)\)|

Numerical result from DFT [ak_F =-0.70, T=0]

n: total density

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 $n_s(x, y)$ [superfluid] superfluid

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

 $n_n(x, y)$ [normal]

normal

28

150

 $\arg[\Delta(x, y)]/\pi$

The vortex cores in Fermi superfluids are filled with the normal component, even at zero temperature!

Numerical result from finite temperature DFT [ak_F =-0.85]

Numerical result from finite temperature DFT [ak_F =-0.85]

condensate thermal cloud

Similar effect is observed for BEC at finite T

Fig from: A. J. Allen, Phys. Rev. A 87, 013630 (2013): Zaremba, Nikuni, and Griffin (ZNG) formalism

Vortex mass in most cases the vortices are regarded as massless particles m_v≈0

Source: W. J. Kwon, et.al., Nature 600, 64-69 (2021)

$$m_V^{\downarrow} \frac{d^2 r_V}{dt^2} = F_{\text{Magnus}} + F_{\text{boundry}} + F_{\text{dissipative+...}}$$

Vortex mass in most cases the vortices are regarded as massless particles $m_v \approx 0$

$$\int \frac{d^2 r_V}{dt^2} = F_{\text{Magnus}} + F_{\text{boundry}} + F_{\text{dissipative+...}}$$

$$\int \frac{v}{dt^2} = F_{\text{Magnus}} + F_{\text{boundry}} + F_{\text{dissipative+...}}$$

$$\int F_{\text{Magnus}} = n_s \kappa \hat{z} \times (v_V - v_s)$$
Biot-Savart Law in 2D
Superflow is generated by all other vortices
$$v_s(\mathbf{r}) = \frac{\kappa}{2\pi} \sum_{j \neq i} \frac{\hat{z} \times (\mathbf{r} - r_j)}{|\mathbf{r} - \mathbf{r}_j|^2}$$

Vortex mass

Source: W. J. Kwon, et.al., Nature 600, 64-69 (2021)

Vortex mass

Source: W. J. Kwon, et.al., Nature 600, 64-69 (2021)

PHYSICS.WUT

Vortex mass

Consider: quantum vortex at disc of radius R, zero temperature limit (no dissipative forces)

$$m_V \frac{d^2 \boldsymbol{r}_V}{dt^2} = n_s \kappa \, \hat{\boldsymbol{z}} \times \left(\frac{d \boldsymbol{r}_V}{dt} - \boldsymbol{v}_s\right)$$

generated by an oppositely-charged image vortex located at position $r'_0 = (R/r_0)^2 r_0$ which ensures the no-flow condition across the boundary.

Related works:

T. Simula, Phys. Rev. A 97, 023609 (2018);

- A. Richaud, V. Penna, and A. L. Fetter, Phys. Rev. A 103, 023311 (2021);
- J. D'Ambroise et al, Phys. Rev. E 111, 034216 (2025);
- A. Kanjo, H. Takeuchi, Phys. Rev. A 110, 063311 (2024);

A. Richaud et al, arXiv:2410.12417

Vortex mass

Consider: quantum vortex at disc of radius R, zero temperature limit (no dissipative forces)

$$m_V \frac{d^2 \boldsymbol{r}_V}{dt^2} = n_s \kappa \, \hat{\boldsymbol{z}} \times \left(\frac{d \boldsymbol{r}_V}{dt} - \boldsymbol{v}_s\right)$$

generated by an oppositely-charged image vortex located at position $r'_0 = (R/r_0)^2 r_0$ which ensures the no-flow condition across the boundary.

PHYSICS.WUT

If $\mathbf{m}_v = \mathbf{0}$: first order PDE $r(t) = r_0$ (circular orbit)

Related works:

T. Simula, Phys. Rev. A 97, 023609 (2018);

- A. Richaud, V. Penna, and A. L. Fetter, Phys. Rev. A 103, 023311 (2021);
- J. D'Ambroise et al, Phys. Rev. E 111, 034216 (2025);
- A. Kanjo, H. Takeuchi, Phys. Rev. A 110, 063311 (2024);

Vortex mass

Consider: quantum vortex at disc of radius R, zero temperature limit (no dissipative forces)

$$m_V \frac{d^2 \boldsymbol{r}_V}{dt^2} = n_s \kappa \, \hat{\boldsymbol{z}} \times \left(\frac{d \boldsymbol{r}_V}{dt} - \boldsymbol{v}_s\right)$$

generated by an oppositely-charged image vortex located at position $r'_0 = (R/r_0)^2 r_0$ which ensures the no-flow condition across the boundary.

If $\mathbf{m}_{v}=\mathbf{0}$: first order PDE $r(t) = r_{0}$ (circular orbit)

If $\mathbf{m}_{v} > 0$: second order PDE: $r(t) = r_{0} + A(v_{0}, m) \sin(\omega(m)t)$ $m = \frac{m_{v}}{M_{s}}, \quad M_{s} = \int n_{s}(r) dr$ (+ transverse oscillations)

PHYSICS.WUT

Related works:

T. Simula, Phys. Rev. A 97, 023609 (2018);

A. Richaud, V. Penna, and A. L. Fetter, Phys. Rev. A 103, 023311 (2021);

J. D'Ambroise et al, Phys. Rev. E 111, 034216 (2025);

A. Kanjo, H. Takeuchi, Phys. Rev. A 110, 063311 (2024);

Blue: numerical result for distance of vortex core from the disk center; Orange: fit of sin function

• Dynamics

Mass extracted from measurement of ω (fit of the point vortex model trajectory to data)

PHYSICS.WUT

• N_n/N_s Mass extracted as amount of normal component in the vortex core

Dashed line:

$$\mathfrak{m} = \alpha \times (\xi/R)^2 \qquad \xi = \frac{\hbar^2 k_F}{m\pi\bar{\Delta}},$$

39

vortex mass is proportional to the area of the core ($\propto \xi^2$, where ξ is the coherence or healing length)

$$r(t) = r_0 + A(v_0, \mathfrak{m}) \sin(\omega(\mathfrak{m})t)$$

The sensitivity of the vortex trajectory with respect to the initial velocity is a clear indicator that the equation of motion is of the second order

40

r/R

$$r(t) = r_0 + A(v_0, \mathfrak{m}) \sin(\omega(\mathfrak{m})t)$$

The sensitivity of the vortex trajectory with respect to the initial velocity is a clear indicator that the equation of motion is of the second order

SUMMARY

- (TD)DFT is general purpose framework: it overcomes limitations of mean-field approach, while keeping numerical cost at the same level as (TD)BdG calculations.
- (TD)DFT, its implementations and HPC reached the level of maturity that allows for providing predictions for large and complex systems: ~10⁴-10⁵ atoms.
- Dissipation mechanisms play a key role in differentiating fermionic from bosonic turbulence:
 - → role of pair breaking mechanism (production of the "normal component") increases as we move towards BCS regime!
- Vortices acquire mass due to the presence of the normal component in the vortex core.

Thank you!

Collaborators:

P. Magierski, D. Pęcak, M. Tylutki, Valentin Allard, A. Makowski, A. Barresi, E. Alba, A. Zdanowicz, M. Śliwiński, D. Lazarou, (WUT);
A. Bulgac (UW);
M. Forbes, S. Sarkar (WSU);
B. Tüzemen (IFPAN)
A. Richaud, P. Massignan (UPC); M. Caldara, M. Capone (SISSA)
A. Marek (MPCDF); M. Szpindler (Cyfronet);

Warsaw UniversityW-SLDA Toolkitof TechnologyW-BSk Toolkit

W-SLDA Toolkit

Self-consistent solver of mathematical problems which have structure formally equivalent to Bogoliubov-de Gennes equations.

$$\begin{pmatrix} h_a(\boldsymbol{r}) - \mu_a & \Delta(\boldsymbol{r}) \\ \Delta^*(\boldsymbol{r}) & -h_b^*(\boldsymbol{r}) + \mu_b \end{pmatrix} \begin{pmatrix} u_n(\boldsymbol{r}) \\ v_n(\boldsymbol{r}) \end{pmatrix} = E_n \begin{pmatrix} u_n(\boldsymbol{r}) \\ v_n(\boldsymbol{r}) \end{pmatrix}$$

time-dependent problems: td-wslda

$$i\hbar \frac{\partial}{\partial t} \begin{pmatrix} u_n(\boldsymbol{r},t) \\ v_n(\boldsymbol{r},t) \end{pmatrix} = \begin{pmatrix} h_a(\boldsymbol{r},t) - \mu_a & \Delta(\boldsymbol{r},t) \\ \Delta^*(\boldsymbol{r},t) & -h_b^*(\boldsymbol{r},t) + \mu_b \end{pmatrix} \begin{pmatrix} u_n(\boldsymbol{r},t) \\ v_n(\boldsymbol{r},t) \end{pmatrix}$$

Extension to nuclear matter in neutron stars

Unified solvers for static and time-dependent problems

Dimensionalities of problems: 3D, 2D and 1D

The W-SLDA Toolkit has been expanded to encompass nuclear systems, now available as the W-BSk Toolkit.

43

ALL FUNCTIONALITIES

Extension to nuclear matter in neutron stars

... all tools we create for Fermi gas simulations are publicly accessible as open-source...

Integration with VisIt:

analysis tool

Computing

visualization, animation and

Speed-up calculations by

Functionals for studies of

BCS and unitary regimes

exploiting High Performance

static problems: st-wslda

http://wslda.fizyka.pw.edu.pl/

We release the data generated by the W-SLDA Toolkit to maximize the knowledge gained from simulations run on costly HPC systems and to share research opportunities with other groups.

