INTERPLAY BETWEEN QUANTUM AND CLASSICAL CORRECTIONS TO \hat{q}

EAMONN WEITZ Based on 2207.08842 with Jacopo Ghiglieri

10.20.2023

INT WORKSHOP: PROBING QCD AT HIGH ENERGY AND DENSITY WITH JETS

1 Introduction

- 2 Classical Corrections
- 3 Quantum Corrections Background
- 4 Quantum Corrections in a weakly coupled QGP

OUTLINE

1 Introduction

- 2 Classical Corrections
- 3 Quantum Corrections Background
- 4 Quantum Corrections in a weakly coupled QGP

JET ENERGY LOSS

JET ENERGY LOSS

\hat{q} has been extracted from:

- Experimental data [Burke et al., 2014, Han et al., 2022]
- Bayesian analysis [Cao et al., 2021, Xie et al., 2023]

- \blacksquare \hat{q} has been extracted from:
 - Experimental data [Burke et al., 2014, Han et al., 2022]
 - Bayesian analysis [Cao et al., 2021, Xie et al., 2023]

- Plays role of transport coefficient in kinetic description
- Controls in-medium shower in multiple scattering regime

Defining $\hat{\pmb{q}}(\mu)$

■ Can be related to the transverse scattering rate, C(k_⊥)

$$\hat{\mathbf{q}}(\mu) = \int^{\mu} \frac{d^2 \mathbf{k}_{\perp}}{(2\pi)^2} \mathbf{k}_{\perp}^2 \mathcal{C}(\mathbf{k}_{\perp})$$
$$\lim_{\to \infty} \langle W(\mathbf{x}_{\perp}) \rangle = \exp(-\mathcal{C}(\mathbf{x}_{\perp})L)$$

■ W(x_⊥) is a Wilson loop defined in the (x⁺, x_⊥) plane

[Casalderrey-Solana and Teaney, 2007, D'Eramo et al., 2011,

Benzke et al., 2013]

 Can compute perturbatively for the case of a weakly coupled QGP

[Ghiglieri and Teaney, 2015]

THERMAL SCALES IN A WEAKLY COUPLED QGP

- *T*, hard scale associated with energy of individual particles ⇒ hard-hard interactions can be described perturbatively
- gT, soft scale associated with energy of collective excitations
 ⇒ soft-soft interactions can also be described
 perturbatively

g²T, ultrasoft scale is associated with nonperturbative physics

- \Rightarrow loops can be added at no extra cost (Linde problem)
- \Rightarrow cannot use perturbation theory

HTL EFFECTIVE THEORY

- For hard-soft interactions, we are not so lucky either... Turns out that one can add loops for free
 perturbative expansion breaks down
- Hard Thermal Loop (HTL) effective theory comes to the rescue, allowing us to resum these loops

At leading order, $\hat{q}_{o} \sim g^{4}T^{3}$:

- Contribution from hard scale [Arnold and Xiao, 2008]
- Contribution from soft scale [Aurenche et al., 2002]

At leading order, $\hat{q}_{o} \sim g^{4}T^{3}$:

- Contribution from hard scale [Arnold and Xiao, 2008]
- Contribution from soft scale [Aurenche et al., 2002]

At $\mathcal{O}(g)$: contribution from soft scale [Caron-Huot, 2009]

At leading order, $\hat{q}_{o} \sim g^{4}T^{3}$:

- Contribution from hard scale [Arnold and Xiao, 2008]
- Contribution from soft scale [Aurenche et al., 2002]

At $\mathcal{O}(g)$: contribution from soft scale [Caron-Huot, 2009]

At $\mathcal{O}(g^2)$, receives contributions from:

- soft scale
- ultrasoft scale

At leading order, $\hat{q}_{o} \sim g^{4}T^{3}$:

- Contribution from hard scale
- Contribution from soft scale ← Classical

At $\mathcal{O}(g)$: contribution from soft scale \leftarrow Classical

At $\mathcal{O}(g^2)$, receives contributions from:

- soft scale ← Classical
- ultrasoft scale ← Classical

At leading order, $\hat{q}_{o} \sim g^{4}T^{3}$:

- Contribution from hard scale
- Contribution from soft scale

At $\mathcal{O}(g)$: contribution from soft scale

At $\mathcal{O}(g^2)$, receives contributions from:

soft scale

- ultrasoft scale
- Logarithmically enhanced quantum corrections

OUTLINE

1 Introduction

2 Classical Corrections

3 Quantum Corrections – Background

4 Quantum Corrections in a weakly coupled QGP

CLASSICAL CORRECTIONS – BACKGROUND

• Corrections coming from exchange of gluons between medium and parton that are $\leq gT$

CLASSICAL CORRECTIONS – BACKGROUND

Corrections coming from exchange of gluons between medium and parton that are $\leq gT$

$$\implies n_{\rm B}(\omega) \equiv \frac{1}{\exp(\frac{\omega}{T}) - 1} \gg 1$$

 \implies corrections are enhanced!

- Can compute some of these classical corrections using Hard Thermal Loop (HTL) effective theory, but analytically difficult in practice
- Thanks to observation from [Caron-Huot, 2009], these classical corrections can be computed in Electrostatic QCD (EQCD)
- EQCD is a 3 dimensional theory of static modes

 \Rightarrow Can be studied on the **lattice**!

 \Rightarrow Paved way for **non-perturbative** (NP) determination of classical corrections to $C(k_{\perp})!$

NON-PERTURBATIVE MOMENTUM BROADENING

 Series of papers
 [Panero et al., 2014, Moore et al., 2021, Schlichting and Soudi, 2021], culminated with NP determination of in-medium splitting rate for medium of finite size

Difference between rate from LO kernel and NP kernel can be up to 50%!

1 Introduction

2 Classical Corrections

3 Quantum Corrections - Background

4 Quantum Corrections in a weakly coupled QGP

■ O(g²) corrections found to have double logarithmic ~ In²(L/τ_{min}) and single logarithmic enhancements by [Liou et al., 2013](LMW) and separately by [Blaizot et al., 2014](BDIM) for a medium with static scattering centers

These are radiative, quantum corrections, coming from keeping track of the recoil during the medium-induced emission of a gluon

PHYSICAL PICTURE

LMW and BDIM argued that these quantum corrections come from the single-scattering regime

• formation time
$$\tau = \omega / k_{\perp}^2$$

Resummation of double logs performed recently

[Caucal and Mehtar-Tani, 2022]

 \Rightarrow effectively renormalising $\hat{q}(\mu)$

 Same double logs found in calculation of double gluon emission with overlapping formation times [Arnold et al., 2021]
 Universality

- Both LMW and BDIM calculations used the Harmonic
 Oscillator Approximation (HOA), which is more well-suited to multiple scattering regime
- Both calculations also assume medium to be composed of static scattering centers

ightarrow Not clear how phase spaces of classical $\mathcal{O}(g)$ and quantum $\mathcal{O}(g^2)$ corrections are connected

Which is larger: KO(g) or $\ln^2(\#)O(g^2)$?

Hard to say... But can definitely make a start by revisiting computation of quantum corrections

N = 1 term in opacity expansion emerges from dipole picture

$$\delta \mathcal{C}(\mathbf{k}_{\perp},\rho)_{\rm LMW} = 4\alpha_{\rm s} C_{\rm R} \int \frac{d\omega}{\omega} \int^{\rho} \frac{d^2 l_{\perp}}{(2\pi)^2} C_{\rm O}(l_{\perp}) \frac{l_{\perp}^2}{\mathbf{k}_{\perp}^2 (\mathbf{k}_{\perp} + \mathbf{l}_{\perp})^2}$$
(1)

31

$$\delta \mathcal{C}(\mathbf{k}_{\perp},\rho)_{\rm LMW} = 4\alpha_{\rm s}C_{\rm R}\int \frac{d\omega}{\omega}\int^{\rho}\frac{d^{2}l_{\perp}}{(2\pi)^{2}}\mathcal{C}_{\rm O}(l_{\perp})\frac{l_{\perp}^{2}}{k_{\perp}^{2}(\mathbf{k}_{\perp}+\mathbf{l}_{\perp})^{2}}$$

Convenient to work instead with formation time, $au=rac{\omega}{k_{\perp}^2}$

$$\delta \hat{q}_{\rm LMW}(\mu) = 4\alpha_{\rm s} C_{\rm R} \hat{q}_{\rm o} \int^{\mu} \frac{d^2 k_{\perp}}{(2\pi)^2 k_{\perp}^2} \int \frac{d\omega}{\omega} = \frac{\alpha_{\rm s} C_{\rm R}}{\pi} \hat{q}_{\rm o} \int^{f(\mu)} \frac{d\tau}{\tau} \int \frac{d\omega}{\omega}$$

But what should limits be???

Will of course dictate size of logs!

1 Introduction

- 2 Classical Corrections
- 3 Quantum Corrections Background

4 Quantum Corrections in a weakly coupled QGP

How to adapt BDIM/LMW result to weakly coupled QGP?

How to adapt BDIM/LMW result to weakly coupled QGP?

$$\delta \hat{q}_{LMW}(\mu) = \frac{\alpha_{s}C_{R}}{\pi} \hat{q}_{0} \int_{\tau_{\min}}^{\mu^{2}/\hat{q}_{0}} \frac{d\tau}{\tau} \int_{\hat{q}_{0}\tau^{2}}^{\mu^{2}\tau} \frac{d\omega}{\omega}$$

$$\delta \hat{q}_{LMW}(\mu) = \frac{\alpha_{s}C_{R}}{\pi} \hat{q}_{0} \int_{\tau_{\min}}^{\mu^{2}/\hat{q}_{0}} \frac{d\tau}{\tau} \int_{\hat{q}_{0}\tau^{2}}^{\mu^{2}\tau} \frac{d\omega}{\omega} (1 + 2n_{B}(\omega))$$

$$\Rightarrow n_{B}(\omega) \equiv \frac{1}{e^{\frac{\omega}{\tau}} - 1} \text{ can be ignored iff } \omega_{\min} = \hat{q}_{0}\tau_{\min}^{2} \gg T$$

How to adapt BDIM/LMW result to weakly coupled QGP?

$$\delta \hat{q}_{\text{LMW}}(\mu) = \frac{\alpha_{\text{s}} C_{\text{R}}}{\pi} \hat{q}_{\text{o}} \int_{\tau_{\min}}^{\mu^{2}/\hat{q}_{\text{o}}} \frac{d\tau}{\tau} \int_{\hat{q}_{\text{o}}\tau^{2}}^{\mu^{2}\tau} \frac{d\omega}{\omega}$$

$$\delta \hat{q}_{\text{LMW}}(\mu) = \frac{\alpha_{\text{s}} C_{\text{R}}}{\pi} \hat{q}_{\text{o}} \int_{\tau_{\min}}^{\mu^{2}/\hat{q}_{\text{o}}} \frac{d\tau}{\tau} \int_{\hat{q}_{\text{o}}\tau^{2}}^{\mu^{2}\tau} \frac{d\omega}{\omega} (1 + 2n_{B}(\omega))$$

$$\Rightarrow n_{B}(\omega) \equiv \frac{1}{e^{\frac{\omega}{\tau}} - 1} \text{ can be ignored iff } \omega_{\min} = \hat{q}_{\text{o}}\tau_{\min}^{2} \gg T$$
But is this consistent with single scattering?

=

$$\delta \hat{q}_{\rm LMW}(\mu) = \frac{\alpha_{\rm s} C_{\rm R}}{\pi} \hat{q}_{\rm o} \int_{\tau_{\rm min}}^{\mu^2/\hat{q}_{\rm o}} \frac{d\tau}{\tau} \int_{\hat{q}_{\rm o} \tau^2}^{\mu^2 \tau} \frac{d\omega}{\omega}$$

$$\begin{split} \delta \hat{q}_{\text{LMW}}(\mu) &= \frac{\alpha_{\text{s}} C_{\text{R}}}{\pi} \hat{q}_{\text{o}} \int_{\tau_{\min}}^{\mu^{2}/\hat{q}_{\text{o}}} \frac{d\tau}{\tau} \int_{\hat{q}_{\text{o}}\tau^{2}}^{\mu^{2}\tau} \frac{d\omega}{\omega} \\ \hline \hat{q}_{\text{o}} &\sim g^{4}T^{3} \end{split}$$
Need to demand $g^{4}T^{3}\tau_{\min}^{2} \gg T$
 $\Rightarrow \tau_{\min} \text{ should be } \gg \frac{1}{q^{2}T}$

$$\delta \hat{q}_{\text{LMW}}(\mu) = \frac{\alpha_{\text{s}} C_{\text{R}}}{\pi} \hat{q}_{\text{o}} \int_{\tau_{\min}}^{\mu^{2}/\hat{q}_{\text{o}}} \frac{d\tau}{\tau} \int_{\hat{q}_{\text{o}}\tau^{2}}^{\mu^{2}\tau} \frac{d\omega}{\omega} \frac{\hat{q}_{\text{o}} \sim g^{4}T^{3}}{\hat{q}_{\text{o}} \sim g^{4}T^{3}}$$
Need to demand $g^{4}T^{3}\tau_{\min}^{2} \gg T$

$$\Rightarrow \tau_{\min} \text{ should be } \gg \frac{1}{g^{2}T}$$

But $\frac{1}{g^2T}$ is the mean free time between multiple scatterings!

 \Rightarrow Would lead us away from single scattering regime!

 \implies In order to stay away from multiple scattering regime, must account for thermal effects

$$\delta \hat{q}_{\mathsf{LMW}}(\mu) = rac{lpha_{\mathsf{s}}\mathsf{C}_{\mathsf{R}}}{\pi} \hat{q}_{\mathsf{O}} \int_{ au_{\min}}^{\mu^{2}/\hat{q}_{\mathsf{O}}} rac{d au}{ au} \int_{\hat{q}_{\mathsf{O}} au^{2}}^{\mu^{2} au} rac{d\omega}{\omega}$$

 \implies In order to stay away from multiple scattering regime, must account for thermal effects

$$\begin{split} \delta \hat{q}_{\text{LMW}}(\mu) &= \frac{\alpha_{\text{s}} C_{\text{R}}}{\pi} \hat{q}_{\text{o}} \int_{\tau_{\min}}^{\mu^2/\hat{q}_{\text{o}}} \frac{d\tau}{\tau} \int_{\hat{q}_{\text{o}}\tau^2}^{\mu^2\tau} \frac{d\omega}{\omega} \\ \\ \text{Introduce intermediate regulator} \\ \tau_{\text{int}} \ll 1/g^2 T \\ \delta \hat{q}_{1+2}(\mu) &= \frac{\alpha_{\text{s}} C_{\text{R}}}{\pi} \hat{q}_{\text{o}} \int_{\tau_{\text{int}}}^{\mu^2/\hat{q}_{\text{o}}} \frac{d\tau}{\tau} \int_{\hat{q}_{\text{o}}\tau^2}^{\mu^2\tau} \frac{d\omega}{\omega} (1 + 2n_{\text{B}}(\omega)) \\ &= \frac{\alpha_{\text{s}} C_{\text{R}}}{2\pi} \hat{q}_{\text{o}} \Big\{ \ln^2 \frac{\mu^2}{\hat{q}_{\text{o}} \tau_{\text{int}}} - \frac{1}{2} \ln^2 \frac{\omega_{\text{T}}}{\hat{q}_{\text{o}} \tau_{\text{int}}^2} \Big\} \\ \hline \omega_{\text{T}} \equiv 2\pi T e^{-\gamma_{\text{E}}} \end{split}$$

$2n_B(\omega)$ accounts for stimulated emission and absorption of thermal gluons

DOUBLE LOGS IN A WEAKLY COUPLED QGP

• Investigate which logs are produced by *soft, collinear* modes through a *semi-collinear* process associated with formation time $\tau_{semi} \sim 1/gT$ [Ghiglieri et al., 2013, Ghiglieri et al., 2016]

Only spacelike interactions with medium

Now timelike interactions are allowed too

 \Rightarrow Going beyond instantaneous approximation!

DOUBLE LOG WITH SINGLE SCATTERING

DOUBLE LOG WITH SINGLE SCATTERING

DOUBLE LOG WITH SINGLE SCATTERING

Why is it that region 2 and 4 do not contribute to the double Logs?

First, note that

$$\lim_{\frac{\omega}{T}\to 0} \left(1+2n_B(\omega)\right) = 1+\frac{2T}{\omega}-1$$
 (2)

The absence of the IR scale in any logarithms can then be seen by looking at the following integral, with $\nu_{IR} \ll T \ll \nu_{UV}$

$$\int_{\nu_{IR}}^{\nu_{UV}} \frac{d\omega}{\omega} \left(\underbrace{1}_{\text{vacuum}} + \underbrace{2n_{B}(\omega)}_{\text{thermal}}\right) = \underbrace{\ln \frac{\nu_{UV}}{\nu_{IR}}}_{\text{vacuum}} + \underbrace{\frac{2T}{\nu_{IR}} - \ln \frac{2\pi T}{\nu_{IR} e^{\gamma_{E}}} + \dots}_{\text{thermal}}$$
$$= \frac{2T}{\nu_{IR}} + \ln \frac{\nu_{UV} e^{\gamma_{E}}}{2\pi T} + \dots$$
(3)

How can we understand the transition to power law enhancement in regions 2 and 4?

Our results include power law corrections depending on our IR cutoff

They cancel against cutoff-dependent corrections computed from [Caron-Huot, 2009] \Rightarrow Non-trivial check!

GOING BEYOND HARMONIC OSCILLATOR APPROXIMATION

HOA not well-suited to single-scattering

GOING BEYOND HARMONIC OSCILLATOR APPROXIMATION

HOA not well-suited to single-scattering So how can we go beyond it?

$$\delta \hat{q}_{\text{GW}}(\mu) = \frac{\alpha_{\text{s}} C_{\text{R}}}{4\pi} \hat{q}_{\text{o}} \ln^2 \frac{\mu^4}{\hat{q}_{\text{o}} \omega_{\text{T}}} \longrightarrow \frac{\alpha_{\text{s}} C_{\text{R}}}{4\pi} \hat{q}(\rho) \ln^2 \frac{\#}{\omega_{\text{T}}}$$
where $\hat{q}(\rho) \propto \ln \frac{\rho^2}{m_D^2}$

 ρ separates us from neighbouring region with simultaneously single-scattering and multiple scatterings

Appearance of \hat{q}_o in double log signifies lack of understanding of transition between single scattering and multiple scattering regimes

GOING BEYOND HARMONIC OSCILLATOR APPROXIMATION

HOA not well-suited to single-scattering So how can we go beyond it?

$$\delta \hat{q}_{\text{GW}}(\mu) = \frac{\alpha_{\text{s}} C_{\text{R}}}{4\pi} \hat{q}_{\text{o}} \ln^2 \frac{\mu^4}{\hat{q}_{\text{o}} \omega_{\text{T}}} \longrightarrow \frac{\alpha_{\text{s}} C_{\text{R}}}{4\pi} \hat{q}(\rho) \ln^2 \frac{\#}{\omega_{\text{T}}}$$
where $\hat{q}(\rho) \propto \ln \frac{\rho^2}{m_D^2}$

Need to solve transverse momentum-dependent LPM equation without **HOA** [Ghiglieri and Weitz, 2022] in order to shed light on how these issues could be addressed

SUMMARY/OUTLOOK

- Have computed double logarithmic corrections to *q̂*, showing how they are connected to classical corrections
 ⇒ Still need to go beyond HOA to quantitatively determine argument of logs
- Try to better understand transition from single scattering to multiple scattering using Improved Opacity expansion
 [Barata et al., 2021]
- Would similar calculation of logs in calculation of double gluon emission [Arnold et al., 2021] alter conclusion?
- Incorporate our findings for $\omega \sim T$ and smaller τ regions into resummation equations [Caucal and Mehtar-Tani, 2022]

THANKS FOR LISTENING!

[ARNOLD ET AL., 2021] ARNOLD, P., GORDA, T., AND IQBAL, S. (2021). THE LPM EFFECT IN SEQUENTIAL BREMSSTRAHLUNG: ANALYTIC RESULTS FOR SUB-LEADING (SINGLE) LOGARITHMS.

[ARNOLD AND XIAO, 2008] ARNOLD, P. B. AND XIAO, W. (2008). HIGH-ENERGY JET QUENCHING IN WEAKLY-COUPLED QUARK-GLUON PLASMAS.

Phys.Rev., D78:125008.

[AURENCHE ET AL., 2002] AURENCHE, P., GELIS, F., AND ZARAKET, H. (2002).
A Simple sum rule for the thermal gluon spectral function and applications.
JHEP, 0205:043.

[BARATA ET AL., 2021] BARATA, J. A., MEHTAR-TANI, Y., SOTO-ONTOSO, A., AND TYWONIUK, K. (2021). MEDIUM-INDUCED RADIATIVE KERNEL WITH THE IMPROVED OPACITY EXPANSION.

JHEP, 09:153.

 [BENZKE ET AL., 2013] BENZKE, M., BRAMBILLA, N., ESCOBEDO, M. A., AND VAIRO, A. (2013).
 GAUGE INVARIANT DEFINITION OF THE JET QUENCHING PARAMETER. JHEP, 1302:129.

 [BLAIZOT ET AL., 2014] BLAIZOT, J.-P., DOMINGUEZ, F., IANCU, E., AND MEHTAR-TANI, Y. (2014).
 PROBABILISTIC PICTURE FOR MEDIUM-INDUCED JET EVOLUTION. JHEP, 1406:075.

[BURKE ET AL., 2014] BURKE, K. M. ET AL. (2014). **EXTRACTING THE JET TRANSPORT COEFFICIENT FROM JET QUENCHING IN HIGH-ENERGY HEAVY-ION COLLISIONS.** *Phys.Rev.*, C90(1):014909.

[CAO ET AL., 2021] CAO, S. ET AL. (2021). **DETERMINING THE JET TRANSPORT COEFFICIENT** \hat{q} **FROM INCLUSIVE HADRON SUPPRESSION MEASUREMENTS USING BAYESIAN PARAMETER ESTIMATION.** *Phys. Rev. C*, 104(2):024905. [CARON-HUOT, 2009] CARON-HUOT, S. (2009). O(G) PLASMA EFFECTS IN JET QUENCHING. Phys.Rev., D79:065039.

 [CASALDERREY-SOLANA AND TEANEY, 2007] CASALDERREY-SOLANA, J. AND TEANEY, D. (2007).
 TRANSVERSE MOMENTUM BROADENING OF A FAST QUARK IN A N=4 YANG MILLS PLASMA.
 JHEP, 04:039.

[CAUCAL AND MEHTAR-TANI, 2022] CAUCAL, P. AND MEHTAR-TANI, Y. (2022). Universality aspects of quantum corrections to transverse momentum broadening in QCD media.

[D'ERAMO ET AL., 2011] D'ERAMO, F., LIU, H., AND RAJAGOPAL, K. (2011). TRANSVERSE MOMENTUM BROADENING AND THE JET QUENCHING PARAMETER, REDUX.

Phys.Rev., D84:065015.

[GHIGLIERI ET AL., 2013] GHIGLIERI, J., HONG, J., KURKELA, A., LU, E., MOORE, G. D., AND TEANEY, D. (2013). NEXT-TO-LEADING ORDER THERMAL PHOTON PRODUCTION IN A WEAKLY COUPLED QUARK-GLUON PLASMA.

JHEP, 1305:010.

[GHIGLIERI ET AL., 2016] GHIGLIERI, J., MOORE, G. D., AND TEANEY, D. (2016). JET-MEDIUM INTERACTIONS AT NLO IN A WEAKLY-COUPLED QUARK-GLUON PLASMA.

JHEP, 03:095.

[GHIGLIERI AND TEANEY, 2015] GHIGLIERI, J. AND TEANEY, D. (2015). PARTON ENERGY LOSS AND MOMENTUM BROADENING AT NLO IN HIGH TEMPERATURE QCD PLASMAS.

Int. J. Mod. Phys., E24(11):1530013. To appear in QGP5, ed. X-N. Wang. [GHIGLIERI AND WEITZ, 2022] GHIGLIERI, J. AND WEITZ, E. (2022). CLASSICAL VS QUANTUM CORRECTIONS TO JET BROADENING IN A WEAKLY-COUPLED QUARK-GLUON PLASMA. JHEP, 11:068.

[HAN ET AL., 2022] HAN, Q.-F., XIE, M., AND ZHANG, H.-Z. (2022). EXTRACTING THE JET TRANSPORT COEFFICIENT FROM HADRON SUPPRESSIONS BY CONFRONTING CURRENT NLO PARTON FRAGMENTATION FUNCTIONS.

[LIOU ET AL., 2013] LIOU, T., MUELLER, A., AND WU, B. (2013). RADIATIVE p_{\perp} -BROADENING OF HIGH-ENERGY QUARKS AND GLUONS IN QCD MATTER. Nucl.Phys., A916:102–125.

 [MOORE ET AL., 2021] MOORE, G. D., SCHLICHTING, S., SCHLUSSER, N., AND SOUDI, I. (2021).
 NON-PERTURBATIVE DETERMINATION OF COLLISIONAL BROADENING AND MEDIUM INDUCED RADIATION IN QCD PLASMAS.
 JHEP, 10:059. [PANERO ET AL., 2014] PANERO, M., RUMMUKAINEN, K., AND SCHÄFER, A. (2014).
A lattice study of the jet quenching parameter.

Phys.Rev.Lett., 112:162001.

[SCHLICHTING AND SOUDI, 2021] SCHLICHTING, S. AND SOUDI, I. (2021). Splitting rates in QCD plasmas from a non-perturbative determination of the momentum broadening kernel $C(q_{\perp})$.

[XIE ET AL., 2023] XIE, M., KE, W., ZHANG, H., AND WANG, X.-N. (2023). INFORMATION-FIELD-BASED GLOBAL BAYESIAN INFERENCE OF THE JET TRANSPORT COEFFICIENT. Phys. Rev. C, 108(1):L011901.

WHAT IS EQCD?

■ Integrate out hard scale, *T* from QCD

■ Integrate out hard scale, *T* from QCD

- Arrive at 3 dimensional gluon effective field theory for momenta, gT ~ m_D, inverse screening length for chromoelectric fields
- EQCD Lagrangian

$$\mathcal{L}_{\text{EQCD}} = \frac{1}{2g_{3d}^2} \operatorname{Tr} F_{ij} F_{ij} + \operatorname{Tr} D_i \Phi D_i \Phi + m_D^2 \operatorname{Tr} \Phi^2 + \lambda \left(\operatorname{Tr} \Phi^2 \right)^2$$

where Φ is adjoint scalar, i, j = 1, 2, 3

■ Integrate out hard scale, *T* from QCD

- Arrive at 3 dimensional gluon effective field theory for momenta, gT ~ m_D, inverse screening length for chromoelectric fields
- EQCD Lagrangian

$$\mathcal{L}_{\text{EQCD}} = \frac{1}{2g_{3d}^2} \operatorname{Tr} F_{ij}F_{ij} + \operatorname{Tr} D_i \Phi D_i \Phi + m_D^2 \operatorname{Tr} \Phi^2 + \lambda \left(\operatorname{Tr} \Phi^2\right)^2$$

where Φ is adjoint scalar, i, j = 1, 2, 3

$\blacksquare \Rightarrow$ "Dimensional Reduction"

- Can think of sticking together amplitude and conjugate amplitude to get diagrams on the right
- Black lines represent hard parton in the amplitude and conjugate amplitude
- Red gluons are bremsstrahlung, represented by thermal propagators
- Blue gluons are those that are exchanged with the medium and are represented by HTL propagators

WHERE DO THESE DIAGRAMS COME FROM?

