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Background

q̂ has been extracted from:

I Experimental data [Burke et al., 2014, Han et al., 2022]

I Bayesian analysis [Cao et al., 2021, Xie et al., 2023]

Plays role of transport coe�cient in kinetic description

Controls in-medium shower in multiple scattering regime
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Defining q̂(µ)

Can be related to the transverse
scattering rate, C(k⊥)

q̂(µ) =

∫ µ d2k⊥
(2π)2

k2⊥C(k⊥)

lim
L→∞
〈W(x⊥)〉 = exp(−C(x⊥)L)

W(x⊥) is a Wilson loop de�ned in
the (x+, x⊥) plane
[Casalderrey-Solana and Teaney, 2007, D’Eramo et al., 2011,

Benzke et al., 2013]

Can compute perturbatively for
the case of a weakly coupled QGP

[Ghiglieri and Teaney, 2015]
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Thermal Scales in a Weakly Coupled QGP

T, hard scale associated with energy of individual particles
⇒ hard-hard interactions can be described perturbatively

gT, soft scale associated with energy of collective excitations
⇒ soft-soft interactions can also be described
perturbatively

g2T, ultrasoft scale is associated with nonperturbative
physics
⇒ loops can be added at no extra cost (Linde problem)
⇒ cannot use perturbation theory
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HTL Effective Theory

For hard-soft interactions, we are not so lucky either...
Turns out that one can add loops for free
=⇒ perturbative expansion breaks down

Hard Thermal Loop (HTL) e�ective theory comes to the
rescue, allowing us to resum these loops

HTL
Resnmmation

msn.ir?nm-.i-.roosMBM---)elelleeeleleDoor
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Summary of Perturbative Expansion

At leading order, q̂0 ∼ g4T3:
Contribution from hard scale [Arnold and Xiao, 2008]
Contribution from soft scale [Aurenche et al., 2002]

At O(g): contribution from soft scale [Caron-Huot, 2009]

At O(g2), receives contributions from:

soft scale

ultrasoft scale
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Summary of Perturbative Expansion

At leading order, q̂0 ∼ g4T3:
Contribution from hard scale
Contribution from soft scale⇐Classical

At O(g): contribution from soft scale⇐Classical

At O(g2), receives contributions from:
soft scale⇐Classical
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Summary of Perturbative Expansion

At leading order, q̂0 ∼ g4T3:
Contribution from hard scale
Contribution from soft scale

At O(g): contribution from soft scale

At O(g2), receives contributions from:
soft scale
ultrasoft scale
Logarithmically enhanced quantum corrections
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Classical Corrections – Background

Corrections coming from exchange of gluons between
medium and parton that are . gT

=⇒ nB(ω) ≡ 1
exp
(
ω
T
)
− 1 � 1

=⇒ corrections are enhanced!
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Mapping onto EQCD

Can compute some of these classical corrections using Hard
Thermal Loop (HTL) e�ective theory, but analytically di�cult
in practice

Thanks to observation from [Caron-Huot, 2009], these
classical corrections can be computed in Electrostatic QCD
(EQCD)

EQCD is a 3 dimensional theory of static modes

⇒ Can be studied on the lattice!

⇒ Paved way for non-perturbative (NP) determination of
classical corrections to C(k⊥)!
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Non-perturbative Momentum Broadening

Series of papers
[Panero et al., 2014,
Moore et al., 2021,
Schlichting and Soudi, 2021],
culminated with NP determination
of in-medium splitting rate for
medium of �nite size

Di�erence between rate from LO
kernel and NP kernel can be up to
50%!
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Quantum Corrections – Background

O(g2) corrections found to have
double logarithmic ∼ ln2(L/τmin) and single logarithmic
enhancements by [Liou et al., 2013](LMW) and separately by
[Blaizot et al., 2014](BDIM) for a medium with static
scattering centers

These are radiative, quantum corrections, coming from
keeping track of the recoil during the medium-induced
emission of a gluon
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Physical Picture

LMW and BDIM argued that these quantum corrections come
from the single-scattering regime

formation time τ = ω/k2⊥

single scattering multiple scattering
k1%t

=
W ↳ E

enend enend·⑱
& 33
T I X -

I I
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Quantum Corrections – Background

Resummation of double logs performed recently
[Caucal and Mehtar-Tani, 2022]

⇒ e�ectively renormalising q̂(µ)

Same double logs found in calculation of double gluon
emission with overlapping formation times [Arnold et al., 2021]

⇒ Universality
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Motivation

Both LMW and BDIM calculations used the Harmonic
Oscillator Approximation (HOA), which is more well-suited
to multiple scattering regime

Both calculations also assume medium to be composed of
static scattering centers
→ Not clear how phase spaces of classical O(g) and
quantum O(g2) corrections are connected

Which is larger: KO(g) or ln2(#)O(g2)?
Hard to say... But can de�nitely make a start by revisiting
computation of quantum corrections
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Double Logs from the literature

P

P −K

K + L

P + L P

P −KP −K − L

K + L

P

P −K

K
K + L

N = 1 term in opacity expansion emerges from dipole picture

δC(k⊥, ρ)LMW = 4αsCR
∫ dω

ω

∫ ρ d2l⊥
(2π)2

C0(l⊥)
l2⊥

k2⊥(k⊥ + l⊥)2
(1)
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l2⊥
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|k⊥ + l⊥| � l⊥ ⇒Single Scattering

δC(k⊥)LMW = 4αsCRq̂0
1
k4⊥

∫ dω
ω

q̂0(ρ)→ q̂0 ⇒HOA

Reminder: q̂(µ) =

∫ µ d2k⊥
(2π)2

k2⊥C(k⊥)
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Double Logs from the literature

Convenient to work instead with formation time, τ =
ω

k2⊥

δq̂LMW(µ) = 4αsCRq̂0
∫ µ d2k⊥

(2π)2k2⊥

∫ dω
ω

=
αsCR
π

q̂0
∫ f(µ) dτ

τ

∫ dω
ω

But what should limits be???

Will of course dictate size of logs!
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Double Logs from the literature

δq̂LMW(µ) =
αsCR
π

q̂0
∫ µ2/q̂0

τmin

dτ
τ

∫ µ2τ

q̂0τ 2

dω
ω

=
αsCR
2π q̂0 ln2

µ2

q̂0τmin

τ >
ω

µ2
Comes from enforcing UV cuto�, µ on k⊥

τ <

√
ω

q̂0
Keeps us away from multiple-scattering

τ > τmin
IR cuto� on τ
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From Static Scattering to a Weakly Coupled QGP

How to adapt BDIM/LMW result to weakly coupled QGP?
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(1+ 2nB(ω))

=⇒ nB(ω) ≡ 1
eωT − 1

can be ignored i� ωmin = q̂0τ 2min � T

How to adapt BDIM/LMW result to weakly coupled QGP?

But is this consistent with single scattering?
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From Static Scattering to a Weakly Coupled QGP

δq̂LMW(µ) =
αsCR
π

q̂0
∫ µ2/q̂0

τmin

dτ
τ

∫ µ2τ

q̂0τ 2

dω
ω q̂0 ∼ g4T3

Need to demand g4T3τ 2min � T

⇒ τmin should be�
1
g2T

But 1
g2T is the mean free time between multiple scatterings!

⇒ Would lead us away from single scattering regime!
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From Static Scattering to a Weakly Coupled QGP

=⇒ In order to stay away from multiple scattering regime,
must account for thermal e�ects

δq̂LMW(µ) =
αsCR
π

q̂0
∫ µ2/q̂0

τmin
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τ

∫ µ2τ

q̂0τ 2

dω
ω
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From Static Scattering to a Weakly Coupled QGP

=⇒ In order to stay away from multiple scattering regime,
must account for thermal e�ects

δq̂LMW(µ) =
αsCR
π

q̂0
∫ µ2/q̂0

τmin

dτ
τ

∫ µ2τ

q̂0τ 2

dω
ω

δq̂1+2(µ) =
αsCR
π

q̂0
∫ µ2/q̂0

τint

dτ
τ

∫ µ2τ

q̂0τ 2

dω
ω

(1+ 2nB(ω))

Introduce intermediate regulator
τint � 1/g2T

=
αsCR
2π q̂0

{
ln2

µ2

q̂0τint
− 1
2 ln2

ωT
q̂0τ 2int

}
ωT ≡ 2πTe−γE
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From Static Scattering to a Weakly Coupled QGP

{
or

,
t

2nB(ω) accounts for stimulated emission and absorption
of thermal gluons
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Double Logs in a Weakly Coupled QGP

δq̂1+2(µ) =
αsCR
2π q̂0

{
ln2

µ2

q̂0τint
− 1
2 ln

2 ωT
q̂0τ 2int

}ωT ≡ 2πTe−γE

12

Intermediate regulator
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Strict Single Scattering

Investigate which logs are produced by soft, collinear modes
through a semi-collinear process associated with formation
time τsemi ∼ 1/gT [Ghiglieri et al., 2013, Ghiglieri et al., 2016]

P

P −K

K + L

P + L
P

P −K

K + L

P + L

Only spacelike interactions with medium Now timelike interactions are allowed too

⇒ Going beyond instantaneous approximation!
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Double Log with Single Scattering

δq̂3+4(µ) =
αsCR
2π q̂0 ln2

µ2τint

ωT
+ subleading logs

Strict single scattering

Few-scatterings
12
34

25 31



Double Log with Single Scattering

δq̂GW(µ) = δq̂1+2(µ) + δq̂3+4(µ) =
αsCR
4π q̂0 ln2

µ4

q̂0ωT

Strict single scattering

Few-scatterings
12
34

25 31



Double Log with Single Scattering

Why is it that region 2 and 4 do not contribute to the double Logs?

Strict single scattering

Few-scatterings
12
34
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Vacuum and Quantum Correction Cancellation

First, note that

lim
ω
T −>0

(
1+ 2nB(ω)

)
= 1+

2T
ω
− 1 (2)

The absence of the IR scale in any logarithms can then be seen
by looking at the following integral, with νIR � T � νUV∫ νUV

νIR

dω
ω

(
1︸︷︷︸

vacuum

+ 2nB(ω)︸ ︷︷ ︸
thermal

)
= ln

νuv
νIR︸ ︷︷ ︸

vacuum

+
2T
νIR
− ln

2πT
νIReγE

+ ...︸ ︷︷ ︸
thermal

=
2T
νIR

+ ln
νUVeγE
2πT + ... (3)
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Relation to Classical Corrections
Region of phase space from which classical O(g)
corrections emerge [Caron-Huot, 2009]

1

3
2
45

How can we understand the transition to power law enhancement
in regions 2 and 4?
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Relation to Classical Corrections

1

ω
(1+2nB(ω))

CH Power Law
1

ω
BDIM/LMW Log

0.1 0.5 1 5 10 50 100

0.1

1

10

100

1000

ω

T

f(
ω
)

ω=ωT

Can understand transition by looking at ω integrand, f (ω)

nB(ω) ≡ 1
eωT − 1

ωT ≡ 2πTe−γE
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Relation to Classical Corrections

5

Our results include power law corrections depending on our IR cuto�

They cancel against cuto�-dependent corrections
computed from [Caron-Huot, 2009]⇒ Non-trivial check!
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Going Beyond Harmonic
Oscillator Approximation

HOA not well-suited to single-scattering
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Going Beyond Harmonic
Oscillator Approximation

HOA not well-suited to single-scattering
So how can we go beyond it?

δq̂GW(µ) =
αsCR
4π q̂0 ln2

µ4

q̂0ωT
αsCR
4π q̂(ρ) ln2

#

ωT

where q̂(ρ) ∝ ln
ρ2

m2
D

ρ separates us from neighbouring region
with simultaneously single-scattering and multiple scatterings

Appearance of q̂0 in double log signi�es lack of understanding of
transition between single scattering and multiple scattering regimes

30 31



Going Beyond Harmonic
Oscillator Approximation

HOA not well-suited to single-scattering
So how can we go beyond it?

δq̂GW(µ) =
αsCR
4π q̂0 ln2

µ4

q̂0ωT
αsCR
4π q̂(ρ) ln2

#

ωT

where q̂(ρ) ∝ ln
ρ2

m2
D

Need to solve transverse momentum-dependent LPM equation
without HOA [Ghiglieri and Weitz, 2022] in order to
shed light on how these issues could be addressed
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Summary/Outlook

Have computed double logarithmic corrections to q̂,
showing how they are connected to classical corrections
⇒ Still need to go beyond HOA to quantitatively determine
argument of logs

Try to better understand transition from single scattering to
multiple scattering using Improved Opacity expansion
[Barata et al., 2021]

Would similar calculation of logs in calculation of double
gluon emission [Arnold et al., 2021] alter conclusion?

Incorporate our �ndings for ω ∼ T and smaller τ regions into
resummation equations [Caucal and Mehtar-Tani, 2022]

31 / 31



Thanks for listening!
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What is EQCD?

Integrate out hard scale, T from QCD

Arrive at 3 dimensional gluon e�ective �eld theory for
momenta, gT ∼ mD, inverse screening length for
chromoelectric �elds

EQCD Lagrangian

LEQCD =
1

2g23d
Tr FijFij + TrDiΦDiΦ +m2

D Tr Φ2 + λ
(
Tr Φ2)2

where Φ is adjoint scalar, i, j = 1, 2, 3

⇒ “Dimensional Reduction”
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Tr FijFij + TrDiΦDiΦ +m2

D Tr Φ2 + λ
(
Tr Φ2)2

where Φ is adjoint scalar, i, j = 1, 2, 3

⇒ “Dimensional Reduction”



Contributing diagrams

Can think of sticking together
amplitude and conjugate
amplitude to get diagrams on the
right

Black lines represent hard parton
in the amplitude and conjugate
amplitude
Red gluons are bremsstrahlung,
represented by thermal
propagators

Blue gluons are those that are
exchanged with the medium and
are represented by HTL
propagators
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Where do these diagrams come from?

Irt ring + e. ,

'

-

= zB %?
it.gr
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