How precision lepton scattering (especially electrons) can help precision LBL neutrino measurements Lawrence Weinstein (for Adi Ashkenazi) **Old Dominion University INT 2023**

Measure counts Use an interaction model to deconvolute the ν Flux.

L. Weinstein, INT 2023

Measure counts Use an interaction model to deconvolute the ν Flux.

$$N_{\partial}(E_{rec},L) = \mathop{\text{a}}_{i} \mathop{\text{b}}_{\partial} \mathop{\text{F}}_{\partial}(E,L) \mathop{\text{S}}_{i}(E) \mathop{f}_{\text{S}}(E,E_{rec}) dE$$

measured v Flux interaction model

Lots of complicated strong interaction nuclear physics

- Quasielastic scattering
- Meson exchange currents
- Resonance production
- Deep inelastic scattering
- Rescattering and absorption No good complete theories

Use effective, empirical, semi-classical (no interference) models in **Neutrino Event Generators**

Measure counts Use an interaction model to deconvolute the γ Flux.

 $N_{\partial}(E_{rec},L) = \operatorname{and}_{i} \mathbb{F}_{\partial}(E,L) S_{i}(E) f_{S_{i}}(E,E_{rec}) dE$ ν Flux interaction model measured

Event Generators: theory models, e data, ν ND data, ...

L. Weinstein, INT 2023

 $C(e,e')_{0\pi} E_{QE} [GeV]$

Why electrons?

- Monoenergetic
- High intensity
- Similar interaction with nuclei
 - Single boson exchange
 - CC Weak current [vector plus axial]

•
$$j_{\mu}^{\pm} = \overline{u} \frac{-ig_W}{2\sqrt{2}} (\gamma^{\mu} - \gamma^{\mu}\gamma^5) u$$

- EM current [vector]
 - $j^{em}_{\mu} = \bar{u} \gamma^{\mu} u$
- Similar nuclear physics

What neutrino expts want

How do reaction mechanisms appear in A(e,e'p)?

From QE to "dip"

Baghaei, PRC 39, 177 (1989)

L. Weinstein, INT 2023

What are correlations?

Average Two-Nucleon Properties in the Nuclear Ground State

Two-body currents are **not** Correlations (but everything adds coherently)

2N currents enhance correlations

NP A672 (2000) 285

Physics Summary

Nuclei are complicated

- Neutrino interactions
 - Continuous mixed beams
 - Vector plus axial current
 - Includes all reaction mechanisms
 - MEC, IC, correlations, Delta, ...
 - Final state interactions
 - Need cross sections to extract oscillation parameters from data
- Electron scattering can help!
 - Monochromatic beam
 - Vector current only
 - Can choose kinematics and event topologies to select reaction mechanisms
 - Use data to measure cross sections

But!

How to use eA data to better describe vAinteractions? Papadopoulou et al, PRD 103, 113003 (2021)

Papadopoulou et al, PRD 103, 113003 (2021) arXiv:2106.09381

• GENIE v3

– Unified *eA* and *vA* code

Test:

- Cross sections
- Hadronization
- Final State Interactions

eA vs vA similarities

PRD 103, 113003 (2021)

Electron events weighted by Q⁴

Electron Data

Present

- Jefferson Lab
 - Small aperture spectrometers (Hall A)
 - (e,e') and (e,e'p) data at fixed angles and energies
 - Large Acceptance Spectrometer (CLAS)
 - 1, 2, and 4 GeV beams
 - All channels (e,e'), (e,e'p), (e,e'pπ), ...
 - He, C, Fe targets
 - Large Acceptance Spectrometer (CLAS12)
 - (1), 2, 4, and 6 GeV beams
 - All channels (e,e'), (e,e'p), (e,e'pπ), ...
 - D, He, C, (O), Ar, Ca40, Ca48 and Sn targets

Future

- Mainz (O and Ar gas jet targets)
- SLAC (LDMX, arXiv:1912.06140)

Inclusive (e,e') cross sections $N_{a}(E_{rec},L) = \operatorname{ang}_{i} \mathbb{F}_{a}(E,L) S_{i}(E) f_{i}(E,E_{rec}) dE$

Now: selected target, energy, angle combinations Sparse coverage, little to no O or Ar data

In progress: use large acceptance CLAS12 data a) H, D, C, (O), Ar targets b) (1), 2, 4 and 6 GeV at c) $8 \le \theta_e \le 35^{\circ}$ \rightarrow Continuous q, ω coverage (M. Goldberg and A. Ashkenazi, Tel Aviv U)

Inclusive (e,e') cross sections

Jefferson Lab Hall A: C, Ti and Ar (e,e') 2.2 GeV 15.5°

PRD 103, 113003 (2021)

Jefferson Lab CLAS

CLAS: 1996-2015

Large acceptance for $\theta_e > 15^{\circ}$ 1, 2, and 4 GeV He, C, and Fe Charged particle thresholds similar to neutrino tracking detectors

- forward detector (5 40°)
 - Luminosity ~10³⁵ s⁻¹cm⁻²
 - $-\frac{\delta p}{p} \sim 0.5 1\%$
 - Neutrons:
 - 50% effi for p > 1 GeV/c
- Hermetic central detector (40 – 135°)
 - 5 T solenoidal field
 - $p_p > 350$ MeV/c
 - Neutron effi ~ 10—15%
- Data taken 21/22
 - (1), 2, 4, and 6 GeV
 - d, He, **C**, (O), Ar, ⁴⁰Ca, ⁴⁸Ca, Sn

Emphasize QE – A(e,e'p) 0π

- Choose 0π events to enhance the QE sample
 Subtract undetected pions and photons
- Weight by Q^4 to account for photon propagator Reconstruct the incident lepton energy:
- Cherenkov detectors:

 $-E_{QE} = \frac{2M_N\epsilon + 2M_NE_l - m_l^2}{2(M_N - E_l + k_l\cos\theta_l)}$

- Use lepton kinematics
- assuming QE
- Tracking detectors

 $-E_{cal} = E_e + T_p + \epsilon$

• calorimetry

Background Subtraction

Want 0π event sample

(e,e') background: undetected pions and photons

(e,e'p) background: undetected pions, photons and extra protons

Data Driven Correction:

- 1. Use measured (e,e'p π/γ) events,
- 2. Rotate π or γ around **q** to determine its acceptance,
- 3. Subtract (e,e'p π/γ) contributions

Background Subtraction

Want 0π event sample

(e,e') background: undetected pions and photons

(e,e'p) background: undetected pions, photons and extra protons

Data Driven Correction:

- 1. Use measured (e,e'p π/γ) events,
- 2. Rotate π or γ around **q** to determine its acceptance,
- 3. Subtract (e,e'p π/γ) contributions
- 4. Do the same for 2p, 3p, 2p+ π etc.

Caution: π^0 threshold ~ 600 MeV

QE and MEC: SuSAv2 vs G2018 (Local Fermi Gas + Dytman) RES and DIS: Berger-Sehgal + Bodek- Yang

L. Weinstein, INT 2023

Khachatryan, Papadopoulou et al, Nature, 2021

Absolute QE-like C(e,e'p) $_{0\pi}$ Cross Sections

Khachatryan, Papadopoulou et al, Nature, 2021

A and E dependence

A and E dependence

A and E dependence

L. Weinstein, INT 2023

Khachatryan, Papadopoulou et al, Nature, 2021

 $A(e, e'p\pi^{\pm})$

- Focus on resonance and DIS
 - More important for DUNE
- Subtract higher multiplicity backgrounds

 $C(e, e'p\pi^{-})$ at 2.2 GeV 22000 -Number of Events 20000 $\delta \vec{p}_{\mathrm{T}}$ $\delta \alpha_{\rm T}$ 18000 1p1π-total 1p1π-total 16000 14000 12000 Number of **1**p1π-10000 4000 8000 ubtracted 3000 6000 2p1π 2000 1p1π-2p1π 4000 2000 subtracte 1p27 1000 Ψ ╋ 5000 $\delta \vec{p}_{\rm T}$ $+ E_{\pi} + T_p +$ 2 4000 1.5 E_e' $E_{rec} =$ E_{rec} 0.5 0.5 0.4 0.8 1.2 1.4 120 20 8 140

2

0

 $\delta ec{p}_T = ec{p}_T^e + ec{p}_T^p + ec{p}_T^\pi$ [GeV]

1

0

 $\delta \alpha_{\rm T} \equiv \arccos \frac{-\vec{p}_{\rm T}^{\ell'} \cdot \delta \vec{p}_{\rm T}}{p_{\rm T}^{\ell'} \delta p_{\rm T}}$

90

1p2π

 $\delta \alpha_{\rm T}$

160

500

400

300

200

100

 180^{-5}

 $C(e, e'p\pi^{-})$ at 2.2 GeV

Analysis by A. Mand (ODU) and J. Tena Vidal (TAU) Available data: 3He, 4He, C, Fe at 1.1, 2.2 and 4.4 GeV

Proton Transparency

- Measure final state interactions (rescattering) of struck particles to constrain event generator models
- Methods
 - Ratio of A(e,e'p) cross sections to PWIA models
 - (new) fraction of quasielastic A(e,e') events with a detected proton
 - CLAS6 data He, C, and Fe at 2 and 4 GeV
 - N. Steinberg, S. Dytman, M. Betancourt, in preparation

Proton Transparency

Data analysis

- (e,e') events (denominator)
- Select bins of θ_e
- Choose $E'_{min}(\theta_e)$ to reject non-quasielastic (RES and MEC) events
 - Correct for remaining non-QE fraction (GENIE)

Proton Transparency: (e,e'p)/(e,e') ratio

(e,e'p) events (numerator)

- Start with (e,e') events
- Select non-rescattered protons:
 - $\circ \hspace{0.1in} heta_{pq}^{max}$ and p_p^{min} cuts
- Purely data ratio corrected for non-QE electron events and for

Proton Transparency: comparison to previous data

Jlab:

Dutta, PRC 68, 064603 (2003), Garrow, PRC 66, 044613 (2002) Rohe, PRC 72, 054602 (2005)

SLAC: O'Neill, PLB 351, 87 (1995) MIT/Bates: Garino, PRC 45, 780 (1992)

Slide added after talk

Proton Transparency: (e,e'p)/(e,e') ratio

Electron Data

Present

- Jefferson Lab
 - Small aperture spectrometers (Hall A)
 - (e,e') and (e,e'p) data at fixed angles and energie
 - Large Acceptance Spectrometer (CLAS)
 - Wide angular and momentum acceptance
 - 1, 2, and 4 GeV beams
 - All channels (e,e'), (e,e'p), (e,e'pπ), ...
 - He, C, Fe targets
 - Large Acceptance Spectrometer (CLAS12)
 - Wide angular and momentum acceptance
 - (1), 2, 4 and 6 GeV beams
 - H, D, He, C, (O), Ar, Ca40, Ca48, Sn
- Mainz (O and Ar gas jet targets)
- SLAC (LDMX arXiv:1912.06140)

So how do use this wealth of *eA* data?

Working Groups

- Electron Data analysis
- Modeling development
- GENIE tuning
- Implications for neutrinos

- lots of data taken and to come
 - Many beam energies and targets
 - Many event topologies

- Inclusive scattering to constrain cross sections
- 0π events to constrain QE
 - pp and pn events to constrain MEC and FSI
- 1π events to constrain resonance and SIS/DIS
- Proton transparency measurements to constrain FSI
- Use these to tune generators to understand cross sections and energy reconstruction $\sigma_i(E) f_{\sigma_i}(E, E_{rec})$

Unique hadronic models test!

 $eav + f_{i}$?

Join us!

Backup slides

L. Weinstein, INT 2023

GENIE reproduced v inclusive data

Adding radiative effects

