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Introduction



Defining properties of phases (textbook)
Symmetry-protected topological/trivial phases 

• Unique GS with excitation gap.


• Stable against symmetry-preserving perturbations.


• Can be connected to product states by local unitaries if symmetries are broken. 
(Exceptions: 1D Kitaev chain, integer quantum Hall systems, …)


• Trivial excitations in the bulk. 
Anomalous states on symmetry-preserving boundaries. 

Topologically-ordered phases 

• Degenerate GS with excitation gap.  
Degeneracy does not originate from spontaneous breaking of symmetries.


• Stable against any local perturbations.


• Cannot be connected to product state by any local unitaries. 
Topological entanglement entropy.


• Fractionalized (anyonic) excitations in the bulk. Anyons must appear in pairs.

e.g. B. Zeng, X. Chen,  
D.-L. Zhou, X.-G.Wen,  

Springer (2019)
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This standard understanding of phases

will be questioned by our new example.



• Hamiltonian is the sum of commuting operators. 
 




‣ 


‣ 


• Periodic boundary condition (PBC) with system size  and  → System is put on 
torus.


• Vertex and plaquette operators:


‣ 


‣ 


• Since , the eigenvalues of  and  are . Any state with eigenvalues 
+1 for all vertices and plaquettes is a ground state.

Ĥ = − ∑
v∈𝒱

̂Av − ∑
p∈𝒫

B̂p

𝒱 = {(m1, m2) | mi = 0,1,⋯, Li − 1}

𝒫 = {(m1+
1
2 , m2+

1
2 ) | mi = 0,1,⋯, Li − 1}

L1 L2

̂A(m1,m2) = X̂(m1+ 1
2 ,m2)X̂(m1,m2+ 1

2 )X̂(m1− 1
2 ,m2)X̂(m1,m2− 1

2 )

B̂(m1+ 1
2 ,m2+ 1

2 ) = ̂Z(m1+1,m2+ 1
2 )

̂Z(m1+ 1
2 ,m2+1)

̂Z(m1,m2+ 1
2 )

̂Z(m1+ 1
2 ,m2)

̂A2
v = B̂2

p = 1 ̂Av B̂p ±1

 toric codeℤ2
A. Kitaev, Ann. Phys. (2003).
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Topological ground state degeneracy

• Global constraints  → Not all stabilizers are independent.


• Four Wilson loops:  

,   ,   ,   .


‣ .


‣ .


‣ .


‣ .


• Starting from a GS  with  eigenvalues of ,  
we can generate four  degenerate GSs:

∏
v∈𝒱

̂Av = ∏
p∈𝒫

B̂p = 1

X̂(1) =
L1−1

∏
ℓ=0

X̂(ℓ,m2+ 1
2 ) X̂(2) =

L2−1

∏
ℓ=0

X̂(m1+ 1
2 ,ℓ)

̂Z(1) =
L1−1

∏
ℓ=0

̂Z(ℓ+ 1
2 ,m2)

̂Z(2) =
L2−1

∏
ℓ=0

̂Z(m1,ℓ+ 1
2 )

̂Z(1)X̂(2) = − X̂(2) ̂Z(1)

̂Z(2)X̂(1) = − X̂(1) ̂Z(2)

[ ̂Z(1), ̂Z(2)] = [X̂(1), X̂(2)] = 0

[ ̂Z(1), X̂(1)] = [X̂(2), ̂Z(2)] = 0

|Φ0⟩ +1 ̂Z(1), ̂Z(2)

|Φ0⟩, X̂(1) |Φ0⟩, X̂(2) |Φ0⟩, X̂(1)X̂(2) |Φ0⟩

X̂(1)

X̂(2)

̂Z(2)

Z(1)
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Three key features of  toric codeℤ2
1. Ground state degeneracy (GSD):  on torus ( ). 

More generally,  on closed 2D manifold with genus .


2. Topological entanglement entropy (TEE): . 
von Neumann entropy of the subregion R: .


3. Anyons:  species. 

Ndeg = 4 g = 1
Ndeg = 4g g

Stop = − log 2
SR = − tr[ ̂ρR log ̂ρR] = Stop + |∂R |

22 {1,e} × {1,m} = {1,e, m, f}
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Features of new model
Our model contains parameters  and . 
When  is a prime and  is chosen properly (primitive root modulo ),


1. Ground state degeneracy (GSD) :


‣  when both  and  are multiples of .


‣  when  or  is not a multiple of .


e.g.  and . 
To observe , both  and  need to be multiples of . 
The minimum system size is ; the total Hilbert space dimension = . 
→ Nearly impossible to realize in any numerical study.


2. Topological entanglement entropy (TEE): , independent of  and .


3. Anyons:  species characterized by the electric charge  and the 
magnetic charge .

N ≥ 2 a = 1,2,⋯, N
N a N

Ndeg

Ndeg = N2 L1 L2 N − 1

Ndeg = 1 L1 L2 N − 1

N = 11 a = 2
Ndeg > 1 L1 L2 10

10 × 10 11200

Stop = − log N L1 L2

N2 qe = 1,2,⋯, N
qm = 1,2,⋯, N

 level spinN
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Features of new model
More generally, 


1. Ground state degeneracy (GSD) :


‣  

2. Anyons:  species characterized by the electric charge  and the magnetic charge 
.  

Translation permutes anyons as .


• the largest divisor of  that is coprime to . 


‣  if  is not a multiple of  → Topologically-ordered phases


‣  if  is a multiple of  → SPT phases


• Prime factorization .


• Radical of : .

Ndeg

Ndeg = [gcd(aL1 − 1,aL2 − 1,N )]2

N2
a qe = 1,2,⋯, Na

qm = 1,2,⋯, Na
Ti : (qe, qm) → (aqe, a−1qm)

Na = N a

Na ≠ 1 a rad(N )

Na = 1 a rad(N )

N =
n

∏
j=1

prj
j = pr1

1 pr2
2 ⋯prn

n

N rad(N ) =
n

∏
j=1

pj = p1p2⋯pn

 level spinN
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Defining properties of phases (updated)
Symmetry-protected topological/trivial phases 

• Unique GS with excitation gap for any sequence of  and .


• Stable against symmetry-preserving perturbations.


• Can be connected to product states by local unitaries if symmetries are broken. 
(Exceptions: 1D Kitaev chain, integer Quantum Hall systems, …)


• Trivial excitations in the bulk. 
Anomalous states on symmetry-preserving boundaries. 

Topologically-ordered phases 

• Degenerate GS with excitation gap for a sequence of  and . 
Degeneracy does not originate from spontaneous breaking of symmetries.


• Stable against any local perturbations.


• Cannot be connected to product state by any local unitaries. 
Topological entanglement entropy.


• Fractionalized (anyonic) excitations in the bulk. Anyons must appear in pairs.

L1 L2

L1 L2
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Talk plan
• Introduction ✔︎


• Definition & basic properties of  toric code model with parameter 


‣ Case 1:  (the standard choice)


‣ Case 2:  (a product state)


• More general cases


‣ Case 3:  is a prime (e.g.  and )


‣ Formulas for the general case


‣ Case 4:  (a subsystem-symmetry protected topological phase)


• Another example: quantum Ising model (on-going)


• Summary

ℤN a

a = 1

a = N

N N = 11 a = 2

a2 = N



Definition & basic properties  
of our model



 level spinsN
• Generalization of Pauli matrices to  level spins


•  group with phase 


• A  level spin is placed on every bond. They satisfy  and .


• Periodic boundary condition (PBC) with system size  and  → System is put on torus.


• Total Hilbert space dimension is .

N ≥ 2

ℤN × ℤN ω = e
2πi
N

N ̂ZrX̂r′￼ = ωδr,r′￼X̂r′￼
̂Zr

̂ZN
r = X̂N

r = 1

L1 L2

N2L1L2

X =

1
1

1
⋱

1

Z =

1
ω

ω2

⋱
ωN−1

ZN = XN = 1

ZX = ω XZ =

1
ω

ω2

⋱
ωN−1



• Vertex and plaquette operators. All commute regardless of the choice of .


‣ 


‣ 


• Hamiltonian is the sum of stabilizers: 




• Translation symmetry:  and .


•  is a very important parameter.


‣ : the standard choice.


‣ : discussed previously but GSD on torus was not investigated.

a
̂A(m1,m2) = X̂−a

(m1+ 1
2 ,m2)X̂

−a
(m1,m2+ 1

2 )X̂(m1− 1
2 ,m2)X̂(m1,m2− 1

2 )

B̂(m1+ 1
2 ,m2+ 1

2 ) = ̂Z(m1+1,m2+ 1
2 )

̂Z−1
(m1+ 1

2 ,m2+1)
̂Z−a
(m1,m2+ 1

2 )
̂Za
(m1+ 1

2 ,m2)

Ĥ = − ∑
v∈𝒱

1
2

( ̂Av + h.c.) − ∑
p∈𝒫

1
2

(B̂p + h.c.)

̂TiX̂r
̂T†
i = X̂r+ei

̂Ti
̂Zr

̂T†
i = ̂Zr+ei

a = 1,2,⋯, N

a = 1

a = N − 1

 toric code with parameter ℤN a

A. Kitaev, Ann. Phys. (2003). 
 
M. D. Schulz, et al, New J. Phys (2012).  
M. Barkeshli et al Math. Phys. (2020). 
J. C. Bridgeman et al, PRB (2017).  
Y. Fuji, PRB (2019)



A ground state
• Since , the eigenvalues of  and  are -fold: . 

Any state with eigenvalues +1 for all vertices and plaquettes is a ground state.


• A ground state can be constructed by  
(i) starting from the ferromagnetic state   

(ii) applying the projector  with the following properties.


‣ 


‣ 


‣ 


‣ 


Then  has eigenvalues +1 for all vertices and plaquettes. 
This extends the standard discussion in literature.

̂AN
v = B̂N

p = 1 ̂Av B̂p N 1,ω, ⋯, ωN−1

̂Zr |ϕ0⟩ = |ϕ0⟩ (∀r ∈ Λ)

̂P =
1

NL1L2 ∏
v∈𝒱

N−1

∑
ℓ=0

̂Aℓ
v

̂P2 = ̂P
̂Av

̂P = ̂P ̂Av = ̂P

B̂p
̂P = ̂PB̂p

̂Ti
̂P = ̂P ̂Ti

|Φ0⟩ ∝ ̂P |ϕ0⟩

e.g. H. Tasaki’s textbook, Springer (2020)



Case 1: a = 1
This case is the standard choice. Basically the same as the original toric code.


• Global constraints . 


• X loops: , .


• Z loops: , .


‣ .


‣ .


‣ .


‣ .


• GSD: .  TEE: .  Anyons:  species

∏
v∈𝒱

̂Av = ∏
p∈𝒫

B̂p = 1

X̂(1) =
L1−1

∏
ℓ=0

X̂(ℓ,L2− 1
2 ) X̂(2) =

L2−1

∏
ℓ=0

X̂(L1− 1
2 ,ℓ)

̂Z(1) =
L1−1

∏
ℓ=0

̂Z(ℓ+ 1
2 ,0)

̂Z(2) =
L2−1

∏
ℓ=0

̂Z(0,ℓ+ 1
2 )

̂Z(1)X̂(2) = ω X̂(2) ̂Z(1)

̂Z(2)X̂(1) = ω X̂(1) ̂Z(2)

[ ̂Z(1), ̂Z(2)] = [X̂(1), X̂(2)] = 0

[ ̂Z(1), X̂(1)] = [X̂(2), ̂Z(2)] = 0

Ndeg = N2 Stop = − log N N2



Proof of GSD via explicit construction of all states

 and  are fixed 
by global constraints.


Open string operators

Control the eigenvalues of

•  ( )


•  ( )


̂Av0
B̂p0

̂Av v ∈ 𝒱, v ≠ v0
B̂p p ∈ 𝒫, p ≠ p0

̂ZrX̂r′￼ = ωδr,r′￼X̂r′￼
̂Zr

v0

v0

p0

p0

Closed string operators , 

Control the eigenvalues of

•  

• 





X̂(2) ̂Z(2)

X̂(1)

̂Z(1)

̂Z(2)X̂(1) = ω X̂(1) ̂Z(2)

̂Z(1)X̂(2) = ω X̂(2) ̂Z(1)



Calculation of TEE
• Kitaev-Preskill prescription


‣ 


‣ 


• Useful formula: 


‣  is the number of -level spins in .


‣  is the subgroup of  supported in .


‣  is the multiplicative group generated by all ’s ( ), ’s ( ), and 
possible closed string operators for which  has the eigenvalue +1.


• When  and  are coprime: further simplified to .


‣  is the number of generators of  supported in .


• There can be spurious contribution,  
which characterize SSPT phase.

Stopo = (SA + SB + SC) − (SAB + SBC + SCA) + SABC

SR = − tr[ ̂ρR log ̂ρR]

SR = nR log N − log |GR |

nR N R

GR G R

G ̂Av v ∈ 𝒱 B̂p p ∈ 𝒫
|Φ0⟩

N a SR = (nR − mR)log N

mR G R

A. Kitaev and J. Preskill, PRL (2006)

N. Linden et al TQC (2013).

L. Zou and J. Haah, PRB (2016).

D. J. Williamson et al, PRL (2019)

D. T. Stephen et al, PRB (2019)



Case 2: a = N
This is the other extreme case.


•  with

.


• Completely decoupled → product state. 


• GSD: .  TEE: .  No anyons.

Ĥ = ∑
r∈Λ

ĥr

ĥ(m1,m2) = −
1
2 (X̂(m1− 1

2 ,m2)X̂(m1,m2− 1
2 ) + h.c.) −

1
2 ( ̂Z(m1,m2− 1

2 )
̂Z−1
(m1− 1

2 ,m2)
+ h.c.)

Ndeg = 1 Stop = 0

→



More general cases



• Unless  simple loop operator do not commute with stabilizers 
. 

The same is true for Z loops. 

• Modified, trial loop operator 
 

Commutes with the boundary plaquette only when .

a = 1,
X̂(1) = X̂(0,m2+ 1

2 )X̂(1,m2+ 1
2 )X̂(2,m2+ 1

2 )⋯X̂(L1−1,m2+ 1
2 )

X̂(1) = X̂(0,m2+ 1
2 )X̂a

(1,m2+ 1
2 )X̂

a2

(2,m2+ 1
2 )⋯X̂aL1−1

(L1−1,m2+ 1
2 )

aL1 − 1 = 0 mod N

Loop operators for general a

Needs to be connected to  
→  under PBC.X̂aL1

(0,m2+ 1
2 )



Excited states for general a
• Applying open strings of  and  creates a pair of electric and magnetic particles.


• Translation permutes anyons (i.e. changes the electric and magnetic charges).

X̂ ̂Z

X̂(1)
(m1− 1

2 ,m2+ 1
2 ),(m′￼1+ 1

2 ,m2+ 1
2 )

=
m′￼1−m1

∏
ℓ=0

X̂aℓ

(m1+ℓ,m2+ 1
2 )

̂Z(2)
(m1,m2),(m1,m′￼2+1) =

m′￼2−m2

∏
ℓ=0

̂Zam′￼
2−m2−ℓ

(m1,m2+ℓ+ 1
2 )



Single anyon
• Mismatch at the boundary implies a single anyon excitation without a pair. 

 
 and .X̂(i)B̂p0

= ωaLi−1 B̂p0
X̂(i) ̂Z(i) ̂Av0

= ω1−aLi ̂Av0
̂Z(i)

X̂(1) =
L1−1

∏
ℓ=0

X̂aℓ

(ℓ,L2− 1
2 )

X̂(2) =
L2−1

∏
ℓ=0

X̂aℓ

(L1− 1
2 ,ℓ)

̂Z(2) =
L2−1

∏
ℓ=0

̂ZaL2−1−ℓ

(0,ℓ+ 1
2 )

̂Z(1) =
L1−1

∏
ℓ=0

̂ZaL1−1−ℓ

(ℓ+ 1
2 ,0)



Global constraints
• GSD is given by    (Recall the original toric code. Can be proven.)


‣  is the number of global constraints: 
 
  .


‣ There will be an equal number of constraints: 
 
  .

Ndeg = N2
C

NC

∏
v∈𝒱

̂Aℓv
v = 1 (0 ≤ ℓv ≤ N − 1)

∏
p∈𝒫

B̂ℓp
p = 1 (0 ≤ ℓp ≤ N − 1)



• Trial global constraints:


‣ .


‣ .

L1−1

∏
m1=0

L2−1

∏
m2=0

̂Aam1+m2
(m1,m2)

=
L1−1

∏
m1=0

X̂−am1(aL2−1)
(m1,− 1

2 )

L2−1

∏
m2=0

X̂−am2(aL1−1)
(− 1

2 ,m2)

L1−1

∏
m1=0

L2−1

∏
m2=0

B̂a(L1−1−m1)+(L2−1−m2)

(m1+ 1
2 ,m2+ 1

2 ) =
L1−1

∏
m1=0

̂Za(L1−1−m1)(aL2−1)
(m1+ 1

2 ,0)

L2−1

∏
m2=0

̂Z−a(L2−1−m2)(aL1−1)
(0,m2+ 1

2 )

Global constraints



• Trial global constraints:


‣ .


‣ .

L1−1

∏
m1=0

L2−1

∏
m2=0

̂Aam1+m2
(m1,m2)

=
L1−1

∏
m1=0

X̂−am1(aL2−1)
(m1,− 1

2 )

L2−1

∏
m2=0

X̂−am2(aL1−1)
(− 1

2 ,m2)

L1−1

∏
m1=0

L2−1

∏
m2=0

B̂a(L1−1−m1)+(L2−1−m2)

(m1+ 1
2 ,m2+ 1

2 ) =
L1−1

∏
m1=0

̂Za(L1−1−m1)(aL2−1)
(m1+ 1

2 ,0)

L2−1

∏
m2=0

̂Z−a(L2−1−m2)(aL1−1)
(0,m2+ 1

2 )

Global constraints



• Trial global constraints:


‣ .


‣ .

L1−1

∏
m1=0

L2−1

∏
m2=0

̂Aam1+m2
(m1,m2)

=
L1−1

∏
m1=0

X̂−am1(aL2−1)
(m1,− 1

2 )

L2−1

∏
m2=0

X̂−am2(aL1−1)
(− 1

2 ,m2)

L1−1

∏
m1=0

L2−1

∏
m2=0

B̂a(L1−1−m1)+(L2−1−m2)

(m1+ 1
2 ,m2+ 1

2 ) =
L1−1

∏
m1=0

̂Za(L1−1−m1)(aL2−1)
(m1+ 1

2 ,0)

L2−1

∏
m2=0

̂Z−a(L2−1−m2)(aL1−1)
(0,m2+ 1

2 )

Global constraints



• Trial global constraints:


‣ .


‣ .

L1−1

∏
m1=0

L2−1

∏
m2=0

̂Aam1+m2
(m1,m2)

=
L1−1

∏
m1=0

X̂−am1(aL2−1)
(m1,− 1

2 )

L2−1

∏
m2=0

X̂−am2(aL1−1)
(− 1

2 ,m2)

L1−1

∏
m1=0

L2−1

∏
m2=0

B̂a(L1−1−m1)+(L2−1−m2)

(m1+ 1
2 ,m2+ 1

2 ) =
L1−1

∏
m1=0

̂Za(L1−1−m1)(aL2−1)
(m1+ 1

2 ,0)

L2−1

∏
m2=0

̂Z−a(L2−1−m2)(aL1−1)
(0,m2+ 1

2 )

Global constraints



• Trial global constraints:


‣ .


‣ .

L1−1

∏
m1=0

L2−1

∏
m2=0

̂Aam1+m2
(m1,m2)

=
L1−1

∏
m1=0

X̂−am1(aL2−1)
(m1,− 1

2 )

L2−1

∏
m2=0

X̂−am2(aL1−1)
(− 1

2 ,m2)

L1−1

∏
m1=0

L2−1

∏
m2=0

B̂a(L1−1−m1)+(L2−1−m2)

(m1+ 1
2 ,m2+ 1

2 ) =
L1−1

∏
m1=0

̂Za(L1−1−m1)(aL2−1)
(m1+ 1

2 ,0)

L2−1

∏
m2=0

̂Z−a(L2−1−m2)(aL1−1)
(0,m2+ 1

2 )

⋯

⋯

⋮⋮

Global constraints



• Prime factorization .


• Radical of : .


• the largest divisor of  that is coprime to . 


‣  if  is not a multiple of  → Topologically-ordered phases


‣  if  is a multiple of  → SPT phases


• GSD  with   in general. 
→  regardless of  when  is a multiple of .


• Anyons:  species characterized by the electric charge  and the 
magnetic charge .  
Translation .

N =
n

∏
j=1

prj
j = pr1

1 pr2
2 ⋯prn

n

N rad(N) =
n

∏
j=1

pj = p1p2⋯pn

Na = N a

Na ≠ 1 a rad(N)

Na = 1 a rad(N)

Ndeg = d2
a da = gcd(aL1 − 1,aL2 − 1,N)

Ndeg = 1 L1, L2 a rad(N)

N2
a qe = 1,2,⋯, Na

qm = 1,2,⋯, Na
Ti : (qe, qm) → (aqe, a−1qm)

General case



Justification of  Ndeg = d2
a

• Consider their -th power of the trial global constraints:


‣ .


‣ .


• We need . 

Solution:  with . 

The eigenvalues of  and  can be written as  ( ). 
Only the value of  ( ) is automatically fixed by global constraints. 
→ The part associated with “genuine” closed strings is .

n
L1−1

∏
m1=0

L2−1

∏
m2=0

̂Anam1+m2
(m1,m2)

=
L1−1

∏
m1=0

X̂−am1(aL2−1)n
(m1,− 1

2 )

L2−1

∏
m2=0

X̂−am2(aL1−1)n
(− 1

2 ,m2)

L1−1

∏
m1=0

L2−1

∏
m2=0

B̂na(L1−1−m1)+(L2−1−m2)

(m1+ 1
2 ,m2+ 1

2 ) =
L1−1

∏
m1=0

̂Za(L1−1−m1)(aL2−1)n
(m1+ 1

2 ,0)

L2−1

∏
m2=0

̂Z−a(L2−1−m2)(aL1−1)n
(0,m2+ 1

2 )

(aL1 − 1)n = (aL2 − 1)n = 0 mod N
n =

N
da

da = gcd(aL1 − 1,aL2 − 1,Na)

̂Av0
B̂p0

ωx+daℓ ℓ = 0,1,⋯, na − 1
x x = 0,1,⋯, da

Ndeg = d2
a



 and  are fixed 
by global constraints.


Open string operators

Control the eigenvalues of

•  ( )


•  ( )

[ ̂Av0
]

N
da [B̂p0

]
N
da

̂Av v ∈ 𝒱, v ≠ v0
B̂p p ∈ 𝒫, p ≠ p0

v0

v0

p0

p0

Closed string operators  and 

Control the eigenvalues of

• Residual part of  and .


• Genuine closed strings:  and 

X̂(i) ̂Z(i)

̂Av0
B̂p0

[X̂(1)]n1,a [ ̂Z(1)]n1,a

Proof of GSD via explicit construction of all states



GSD: . No anyons. But  & . 
Here we consider model rotated by 45 degree.


• Subsystem symmetries for each row


‣ 


‣ 


• This phase turns out to be  
a subsystem-symmetry protected topological (SSPT) phase 
We confirmed


‣ Charge pumping under subsystem-symmetry flux insertion.


‣ Zero energy edge states under open boundary condition.

Ndeg = 1 Stop ≠ 0 Sspurious ≠ 0

X̂m̄2
=

L̄1−1

∏̄
m1=0

X̂(m̄1,m̄2) =
L̄1/2

∏
j1=0

̂A(2j1+1,m̄2)
̂Aa
(2j1,m̄2+1)

̂Zm̄2
=

L̄1−1

∏̄
m1=0

̂Z(−1)m̄1

(m̄1,m̄2)
=

L̄1/2

∏
j1=0

B̂(2j1−1,m̄2−1)B̂a
(2j1,m̄2−2)

Case 3: a2 = N



Generalized Ising model
Yaozong Hu and HW


arXiv:2302.01207




Defining properties of phases (textbook)
Symmetry breaking phase of discrete symmetries 

• Degenerate ground states characterized by order parameter.


• Stable against symmetry-preserving perturbations.


• The large volume limit and the vanishing field limit do not commute! 
 

⟨ ̂z⟩

⟨ ̂z⟩

lim
V→∞

lim
ϵ→+0

⟨ ̂z⟩ = 0

lim
ϵ→+0

lim
V→∞

⟨ ̂z⟩ ≠ 0
Ĥ(ϵ) = Ĥ − ϵV ̂z



-state clock model 
(generalized transverse-field Ising model)

N

•  


‣
 level spin:   ,  .


‣ Symmetry:   .


‣ Order parameter:   .


• Phases


‣ : Ordered phase. Spontaneous breaking of  symmetry.


‣ : Disordered phase. No symmetries are broken.

Ĥ(g) = −
1
2

L−1

∑
i=0

[( ̂Z†
i

̂Zi+1 + h.c.) + g(X̂i + h.c.)]

N X =

1
1

1
⋱

1

Z =

1
ω

ω2

⋱
ωN−1

X̂ =
L−1

∏
i=0

X̂i = X̂0X̂1⋯X̂L−1

̂z =
1
L

L−1

∑
i=0

̂Zi =
1
L

( ̂Z0 + ̂Z1 + ⋯ + ̂ZL−1)

1 ≫ g ≥ 0 ℤN

1 ≪ g

X̂ ̂zX̂† = ω ̂z



Ĥ(0)(ϵ) = Ĥ −
1
2

ϵL ( ̂z + h.c.)



Generalized -state clock modelN

• 


‣
 level spin:   ,  .


‣ Symmetry:     if  .


‣ Order parameter:   .


‣    if   

Ĥ(g) = −
1
2

L−1

∑
i=0

[( ̂Z−a
i

̂Zi+1 + h.c.) + g(X̂i + h.c.)]

N X =

1
1

1
⋱

1

Z =

1
ω

ω2

⋱
ωN−1

X̂ =
L−1

∏
i=0

X̂ai

i = X̂0X̂a
1⋯X̂aL−1

L−1 aL = 1 mod N

̂z =
1
L

L−1

∑
i=0

̂ZaL−i

i =
1
L

( ̂ZaL

0 + ̂ZaL−1

1 + ⋯ + ̂Za
0)

X̂ ̂zX̂† = ω ̂Z aL = 1 mod N



Example: (N, a) = (3,2)
•  symmetry is absent.


• No ground state degeneracy.


• Still a gap closing at  !


• Still the large  limit and vanishing  limit 
do not commute!! 




• Spontaneous symmetry breaking  
without exact symmetry 
or ground state degeneracy…

ℤN

g = 1

L ϵ

Ĥ(ℓ0)(ϵ) = Ĥ −
1
2

ϵL (ω−ℓ0 ̂z + h.c.)



• We introduced a family of  toric code with an integer parameter .


‣ : the standard choice.


‣ : discussed previously but GSD on torus was not investigated.


‣  showed interesting behavior.


• the largest divisor of  that is coprime to . 


‣  if  is not a multiple of  → Topologically-ordered phases


‣  if  is a multiple of  → (S)SPT phases


• GSD  with  .


• Anyons:  species characterized by the electric charge  and the 
magnetic charge .  
Translation .

ℤN a

a = 1

a = N − 1

a = 2,3,⋯, N − 1

Na = N a

Na ≠ 1 a rad(N)

Na = 1 a rad(N)

Ndeg = d2
a da = gcd(aL1 − 1,aL2 − 1,N)

N2
a qe = 1,2,⋯, Na

qm = 1,2,⋯, Na
Ti : (qe, qm) → (aqe, a−1qm)

Summary 1 Ref: HW, M. Cheng, Y. Fuji, 
arXiv:2211.00299



Summary 2
Symmetry-protected topological/trivial phases 

• Unique GS with excitation gap for any sequence of  and .


• Stable against symmetry-preserving perturbations.


• Can be connected to product states by local unitaries if symmetries are broken. 
(Exceptions: 1D Kitaev chain, integer Quantum Hall systems, …)


• Trivial excitations in the bulk. 
Anomalous states on symmetry-preserving boundaries. 

Topologically-ordered phases 

• Degenerate GS with excitation gap for a sequence of  and . 
Degeneracy does not originate from spontaneous breaking of symmetries.


• Stable against any local perturbations.


• Cannot be connected to product state by any local unitaries. 
Topological entanglement entropy.


• Fractionalized (anyonic) excitations in the bulk. Anyons must appear in pairs.

L1 L2

L1 L2

Ref: HW, M. Cheng, Y. Fuji, 
arXiv:2211.00299



Summary 3
Symmetry breaking phase of discrete symmetries 

• Degenerate ground states for a sequence of  and  
 characterized by order parameter.


• Stable against symmetry-preserving perturbations.


• The large volume limit and the vanishing field limit do not commute! 
 

L1 L2

⟨ ̂z⟩

⟨ ̂z⟩

lim
V→∞

lim
ϵ→+0

⟨ ̂z⟩ = 0

lim
ϵ→+0

lim
V→∞

⟨ ̂z⟩ ≠ 0
Ĥ(ϵ) = Ĥ − ϵV ̂z


