

Chirality and Criticality: Novel Phenomena in Heavy-Ion Collisions

Overview of experimental search for the chiral magnetic effect

Fuqiang Wang Purdue University

OUTLINE

- Chiral magnetic effect (CME) and the $\Delta\gamma$ observable
- Flow and nonflow backgrounds
 - 1. Isobar collisions vary signal
 - 2. Event shape engineering vary background
 - 3. Au+Au collisions vary both signal and background
- Summary

CHIRAL MAGNETIC EFFECT (CME)

Discovery of CME: Chiral symmetry restoration, Local P/CP violation (matter-antimatter asymmetry)

$\Delta \gamma$ CORRELATOR AND EARLY RESULTS

Voloshin, PRC 2004 STAR, PRL 2009, PRC 2010

Look for charge separation

$$\gamma_{\alpha\beta} = \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{RP}) \right\rangle$$
$$\gamma_{+-,-+} > 0, \quad \gamma_{++,--} < 0$$
$$\Delta \gamma = \gamma_{\text{opposite-sign}} - \gamma_{\text{same-sign}} > 0$$

Significant signal $\Delta \gamma \sim 5 \times 10^{-4}$ A few % signal!

SIGNIFICANT FLOW-INDUCED BACKRGOUND

Voloshin 2004 FW 2009 Bzdak, Koch, Liao 2010 Pratt, Schlichting 2010

$$dN_{\pm} / d\varphi \propto 1 + 2v_{1} \cos \varphi^{\pm} + 2a_{\pm} \cdot \sin \varphi^{\pm} + 2v_{2} \cos 2\varphi^{\pm} + \dots$$

$$\gamma_{\alpha\beta} = \left[\left\langle \cos(\varphi_{\alpha} - \psi_{RP}) \cos(\varphi_{\beta} - \psi_{RP}) \right\rangle - \left\langle \sin(\varphi_{\alpha} - \psi_{RP}) \sin(\varphi_{\beta} - \psi_{RP}) \right\rangle \right]$$

$$+ \left[\frac{N_{cluster}}{N_{\alpha}N_{\beta}} \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{cluster}) \cos(2\varphi_{cluster} - 2\varphi_{RP}) \right\rangle \right]$$

$$= \left[\left\langle v_{1,\alpha}v_{1,\beta} \right\rangle - \left\langle a_{\alpha}a_{\beta} \right\rangle \right] + \frac{N_{cluster}}{N_{\alpha}N_{\beta}} \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{cluster}) \right\rangle v_{2,cluster}$$

$$\Delta \gamma = 2 \left\langle a_1^2 \right\rangle + \frac{N_{\rho}}{N_{\alpha} N_{\beta}} \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{\rho}) \right\rangle v_{2,\rho}$$

Flow-induced charge-dependent background: nonflow coupled with flow

$$\Delta \gamma_{
m Bkg} \propto v_2$$
 / N

THE NONFLOW BACKGROUND

Feng et al., PRC 105 (2022) 024913

• The flow-induced background is very-well understood

$$\Delta \gamma = 2 \left\langle a_1^2 \right\rangle + \frac{N_{\rho}}{N_{\alpha} N_{\beta}} \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{\rho}) \right\rangle v_{2,\rho}$$

• Nonflow issues are the next/final hurdle

$$\Delta C_{3} = 2 \left\langle a_{1}^{2} \right\rangle v_{2,c\perp B} + \frac{N_{2p}}{N_{\alpha} N_{\beta}} \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{2p}) \right\rangle v_{2,2p} v_{2,c} + \frac{N_{3p}}{N_{\alpha} N_{\beta} N_{c}} \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{c}) \right\rangle$$

$$= 2 \left\langle a_{1}^{2} \right\rangle v_{2,c\perp B} + \frac{C_{2p} N_{2p}}{N^{2}} v_{2,2p} v_{2,c} + \frac{C_{3p} N_{3p}}{2N^{3}}$$

$$\Delta \gamma = 2 \left\langle a_{1}^{2} \right\rangle \frac{v_{2,c\perp B}}{v_{2,c}} + \frac{C_{2p} N_{2p}}{N^{2}} \frac{v_{2,2p} v_{2,c}}{v_{2,c}^{*}} + \frac{C_{3p} N_{3p}}{2N^{3} v_{2,c}^{*}}$$

$$M \approx N_{+} \approx N_{-}$$

$$C_{2p} = \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{2p}) \right\rangle$$

$$CME \qquad nonflow \qquad flow \qquad 3p \qquad v_{2,c\perp B} : v_{2} \text{ of } c \text{ particle wrt direction } \perp B$$

$$v_{2,c\perp B}^{*} : weasured v_{2} \text{ of } c \text{ particle containing}$$

nonflow

Same A -> Same background Different Z -> different signal

ISOBAR COLLISIONS

Voloshin, PRL 105 (2010) 172301 STAR, PRC 105 (2022) 014901 Haojie Xu et al. PRL 121 (2018) 022301 Hanlin Li et al. PRC 98 (2018) 054907

0.4% precision is achieved! But isobar ratios are below unity.

Primary reason is mult. difference due to nuclear structure subtlety

Same A -> Same background Different Z -> different signal

ISOBAR COLLISIONS

Voloshin, PRL 105 (2010) 172301 STAR, PRC 105 (2022) 014901 Haojie Xu et al. PRL 121 (2018) 022301 Hanlin Li et al. PRC 98 (2018) 054907

INT Workshop - Chirality and Criticality: Novel Phenomena in Heavy-Ion Collisions - August 21-25, 2023

Same A -> Same background Different Z -> different signal

ISOBAR COLLISIONS

Voloshin, PRL 105 (2010) 172301 STAR, PRC 105 (2022) 014901 Haojie Xu et al. PRL 121 (2018) 022301 Hanlin Li et al. PRC 98 (2018) 054907

Fuqiang Wang

INT Workshop - Chirality and Criticality: Novel Phenomena in Heavy-Ion Collisions - August 21-25, 2023

NONFLOW ESTIMATES IN ISOBAR

NONFLOW ESTIMATES IN ISOBAR

CONCLUSION FROM ISOBAR DATA

CME UPPER LIMIT 10% AT 95% CONFIDENCE LEVEL

Fuqiang Wang

EVENT-SHAPE-ENGINEERING METHOD

$$\Delta \gamma_{\rm Bkg} = \frac{N_{\rho}}{N_{\alpha}N_{\beta}} \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{\rho}) \right\rangle v_{2,\rho}$$

ALICE:

Model study of v_2 -dependent reconstruction of B direction within a given centrality because different q_2 classes have different EP resolutions.

CMW & CME: COMMON BKG SOURCE

Wu, Shou, et al., PRC 107, L031902 (2023) Wu (ALICE), SQM 2002, EPJ Web Conf. 276, 01001 (2023)

3p nonflow removal will bring down $\Delta \gamma$ magnitude

HANDLE NONFLOW IN ESE

Schukraft, Timmins, Voloshin, PLB 719 (2013) 394 Feng et al., PRC 105 (2022) 024913

$$\gamma_{\rm Bkg} = \frac{N_{\rho}}{N_{\alpha}N_{\beta}} \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\varphi_{\rho}) \right\rangle v_{2,\rho}$$

Flow background is taken care of

- Remove v2 nonflow by $(\Delta \eta, \Delta \phi)$ analysis?
- Use v_2 {4} instead of v_2 {2} to minimize nonflow? (implicit assumption: fluct. $\sim v_2$)

Once nonflow taken care of, ESE is a promising way to extract CME signal

Vary both signal and background:

Spectator/Participant Plane Method

200 GEV AU+AU COLLISIONS

H.-j. Xu, et al., CPC 42 (2018) 084103, arXiv:1710.07265 S.A. Voloshin, PRC 98 (2018) 054911, arXiv:1805.05300 STAR, PRL 128 (2022) 092301

•

Mid-central 20-50%: indication of finite CME, $\sim 2\sigma$ significance

 $\overline{S}_{E_{a\eta=0.3}}$

NONFLOW IN AU+AU

Feng et al., PRC 105 (2022) 024913

$$\Delta C_3^{\text{Ru}} \{\text{EP}\} = \left(\frac{C_{2p}N_{2p}}{N^2}v_{2,2p}\{\text{EP}\}v_{2,c}\{\text{EP}\}\right)^{\text{Ru}} + \left(\frac{C_{3p}N_{3p}}{2N^3}\right)^{\text{Ru}}$$
$$\Delta C_3^{\text{Zr}} \{\text{EP}\} = \left(\frac{C_{2p}N_{2p}}{N^2}v_{2,2p}\{\text{EP}\}v_{2,c}\{\text{EP}\}\right)^{\text{Zr}} + \left(\frac{C_{3p}N_{3p}}{2N^3}\right)^{\text{Zr}}$$

Au+Au

$$\Delta C_{3}^{\text{Bkg}}\{\text{SP}\} = \frac{C_{2p}N_{2p}}{N^{2}}v_{2,2p}\{\text{SP}\}v_{2,c}\{\text{SP}\}$$

$$\Delta C_{3}^{\text{Bkg}}\{\text{EP}\} = \frac{C_{2p}N_{2p}}{N^{2}}v_{2,2p}\{\text{EP}\}v_{2,c}\{\text{EP}\} + \frac{C_{3p}N_{3p}}{2N^{3}}$$

NONFLOW IN AU+AU

$$\Delta C_3^{\text{Ru}} \{\text{EP}\} = \left(\frac{C_{2p}N_{2p}}{N^2}v_{2,2p}\{\text{EP}\}v_{2,c}\{\text{EP}\}\right)^{\text{Ru}} + \left(\frac{C_{3p}N_{3p}}{2N^3}\right)^{\text{Ru}}$$
$$\Delta C_3^{\text{Zr}} \{\text{EP}\} = \left(\frac{C_{2p}N_{2p}}{N^2}v_{2,2p}\{\text{EP}\}v_{2,c}\{\text{EP}\}\right)^{\text{Zr}} + \left(\frac{C_{3p}N_{3p}}{2N^3}\right)^{\text{Zr}}$$

Au+Au

$$\Delta C_{3}^{\text{Bkg}}\{\text{SP}\} = \frac{C_{2p}N_{2p}}{N^{2}}v_{2,2p}\{\text{SP}\}v_{2,c}\{\text{SP}\}$$

$$\Delta C_{3}^{\text{Bkg}}\{\text{EP}\} = \frac{C_{2p}N_{2p}}{N^{2}}v_{2,2p}\{\text{EP}\}v_{2,c}\{\text{EP}\} + \frac{C_{3p}N_{3p}}{2N^{3}}$$

$$f_{\rm CME} = \frac{\Delta \gamma_{\rm CME} \{\rm PP\}}{\Delta \gamma_{\rm \{PP\}}} = \frac{A/a-1}{1/a^2-1}$$

$$\epsilon_{\rm nf} \equiv v_{2,\rm nf}^2 / v_2^2$$

$$\frac{A}{a} = \frac{\Delta\gamma\{\text{SP}\}/\Delta\gamma\{\text{PP}\}}{v_2\{\text{SP}\}/v_2^*\{\text{PP}\}} = \frac{C_3\{\text{SP}\}}{v_2^2\{\text{SP}\}} \cdot \frac{v_2^{*2}\{\text{PP}\}}{C_3\{\text{PP}\}} = \frac{1+\varepsilon_{\text{nf}}}{1+\frac{\varepsilon_3/\varepsilon_2}{Nv_2^2\{\text{PP}\}}}$$
$$\varepsilon_2 = \frac{C_{2p}N_{2p}}{N} \cdot \frac{v_{2,2p}}{v_2} \approx N\Delta\gamma/v_2 \qquad \varepsilon_3 = \frac{C_{3p}N_{3p}}{2N}$$

NONFLOW IN AU+AU

$$\Delta C_{3}^{\text{Ru}}\{\text{EP}\} = \left(\frac{C_{2p}N_{2p}}{N^{2}}v_{2,2p}\{\text{EP}\}v_{2,e}\{\text{EP}\}\right)^{\text{Ru}} + \left(\frac{C_{3p}N_{3p}}{2N^{3}}\right)^{\text{Ru}}$$

$$\Delta C_{3}^{\text{Ru}}\{\text{EP}\} = \left(\frac{C_{2p}N_{2p}}{N^{2}}v_{2,2p}\{\text{EP}\}v_{2,e}\{\text{EP}\}\right)^{2} + \left(\frac{C_{3p}N_{3p}}{2N^{3}}\right)^{2}$$

$$Au+Au \qquad \Delta C_{3}^{\text{Bkg}}\{\text{SP}\} = \frac{C_{2p}N_{2p}}{N^{2}}v_{2,2p}\{\text{SP}\}v_{2,e}\{\text{EP}\} + \frac{C_{3p}N_{3p}}{2N^{3}}$$

$$f_{\text{CME}} = \frac{\Delta\gamma_{\text{CME}}(\text{PP})}{\Delta\gamma_{\text{(PP)}}} = \frac{(A/a)-1}{1/a^{2}-1}$$

$$\epsilon_{nf} \equiv v_{2,nf}^{2}/v_{2}^{2}$$

$$v_{2} \text{ nonflow} \Rightarrow \text{makes TPC } \Delta\gamma \text{ smaller} \Rightarrow \text{positive } f_{\text{CME}}$$

$$\frac{A \gamma \{\text{SP}\}/\Delta\gamma \{\text{PP}\}}{v_{2}\{\text{SP}\}/v_{2}^{*}\{\text{PP}\}} = \frac{C_{3}\{\text{SP}\}}{v_{2}^{2}\{\text{SP}\}} \cdot \frac{v_{2}^{*2}\{\text{PP}\}}{v_{2}^{2}\{\text{SP}\}} = \frac{1+\varepsilon_{nf}}{1+\frac{\varepsilon_{3}/\varepsilon_{2}}{Nv_{2}^{2}\{\text{PP}\}}}$$

$$\varepsilon_{2} = \frac{C_{2p}N_{2p}}{N} \cdot \frac{v_{2,2p}}{v_{2}} \approx N\Delta\gamma/v_{2} \qquad \varepsilon_{3} = \frac{C_{3p}N_{3p}}{2N}$$

$$f_{\text{CME}}^{*} \approx \left(\varepsilon_{nf} - \frac{\varepsilon_{3}/\varepsilon_{2}}{Nv_{2}^{2}\{\text{PP}\}}\right) / \left(\frac{1+\varepsilon_{nf}}{a^{2}}-1\right)$$

NONFLOW SUBTRACTED SIGNAL

STAR, PRL 128 (2022) 092301 Feng et al., PRC 105 (2022) 024913

NONFLOW SUBTRACTED SIGNAL

STAR, PRL 128 (2022) 092301 Feng et al., PRC 105 (2022) 024913

NONFLOW SUBTRACTED SIGNAL

STAR, PRL 128 (2022) 092301 Feng et al., PRC 105 (2022) 024913

AU+AU AND ISOBAR ARE CONSISTENT

Shi et al., Ann. Phys. 394 (2018) 50–72 Feng et al., PLB 820 (2021) 136549

Mag. field B ~ A/A^{2/3} ~ A^{1/3}, $\Delta \gamma_{CME} \sim B^2 \sim A^{2/3} \rightarrow Signal: AuAu/isobar ~ 1.5$

Could be x3 reduction in f_{CME}

 $\Delta \gamma \propto B^2$, differ by 15% between isobars

If CME signal in isobar ~ Au+Au ~ 10%,

With 0.4% uncertainty, $\sim 4\sigma$ effect

Then isobar difference $\sim 15\%*10\% = 1.5\%$.

Fuqiang Wang

AU+AU AND ISOBAR ARE CONSISTENT

Shi et al., Ann. Phys. 394 (2018) 50–72 Feng et al., PLB 820 (2021) 136549

 $\Delta \gamma \propto B^2$, differ by 15% between isobars If CME signal in isobar ~ Au+Au ~ 10%, Then isobar difference ~ 15%*10% = 1.5%. With 0.4% uncertainty, ~4 σ effect Background $\propto 1/N \rightarrow isobar/AuAu \sim 2$

Mag. field B ~ A/A^{2/3} ~ A^{1/3}, $\Delta \gamma_{CME} \sim B^2 \sim A^{2/3} \rightarrow Signal: AuAu/isobar ~ 1.5$

Could be x3 reduction in f_{CME}

If AuAu f_{CME} =10%, then isobar 3% (1 σ effect) Ru/Zr = 1 + 15%*3% = 1.005 (±0.004)

"LOOSE" CONCLUSION FROM AU+AU DATA

CME SIGNAL 10% ± 5%

Fuqiang Wang

"LOOSE" CONCLUSION FROM AU+AU DATA

CME SIGNAL 10% ± 5%

To outlook:

x10 more data, iTPC larger acceptance, EPD larger η gap Expect 1-1.5% total uncertainty

Fuqiang Wang

Any additional issues?

FINAL-STATE EVOLUTION EFFECT?

Choudhury et al., CPC 46 (2022) 014101 Shi et al., Ann. Phys. 394 (2018) 50–72 STAR, PRL 128 (2022) 092301 B-X Chen, X-L Zhao, G-L Ma, 2301.12076

FINAL-STATE EVOLUTION EFFECT?

Choudhury et al., CPC 46 (2022) 014101 Shi et al., Ann. Phys. 394 (2018) 50–72 STAR, PRL 128 (2022) 092301 B-X Chen, X-L Zhao, G-L Ma, 2301.12076

CME along axis B (and PP) more suppressed, making "CME ellipse" tilt away from B (and PP), thus *b* < *a*.

However, final-state CME now needs to be projected onto not only PP but also RP. $\frac{\Delta \gamma_{\rm CME} {}^{\rm (PP)}}{\Delta \gamma_{\rm CME} {}^{\rm (SP)}} = \frac{\Delta \gamma_{\rm CME} \left\langle \cos 2(\psi_{\rm CME} - \psi_{\rm PP}) \right\rangle}{\Delta \gamma_{\rm CME} \left\langle \cos 2(\psi_{\rm CME} - \psi_{\rm SP}) \right\rangle}$ $= \left\langle \cos 2(\psi_{\rm PP} - \psi_{\rm SP}) \right\rangle = a$

For measurements w.r.t. PP and RP, the $f_{\rm CME}$ formula is still valid.

AMPT indicates otherwise; maybe the absorption effect is more complex.

GLOBAL SPIN ALIGNMENT EFFECT?

Conceivable that ρ mesons can also have significant spin alignment. A couple of % back-to-back preference along *L* can have a large contribution to $\Delta\gamma$. Potential background to CME?

Probably not.

Because spin alignment is caused by orbit-spin interaction, and is therefore relative to the participant orbital angular momentum, so behaves just like participant flow background.

However, v_2 measurement is affected by ρ spin alignment, and can be significant.

SUMMARY

- CME has been one of the most active and challenging fields of research
- Theoretically well understood; Experimentally many innovative approaches
- Flow-induced background is well understood and under control
- Nonflow is the next (and hopefully final) issue
- All indications suggest a finite ~10% CME signal (2 σ significance)
- At least x10 more data to come, larger acceptance, new event-plane detector