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Symmetry-protected topological (SPT) phases

• Gapped & unique ground state, short-range correlations


• Short-range entangled (SRE): adiabatically connected to product state (e.g. 
atomic insulator), but adiabatic path must break symmetry


• Nontrivial boundary states characterized by t’Hooft anomaly

Haldane-AKLT chain Topological insulator



This talk: average SPT and average anomaly

• Q: what if “protecting symmetry” broken by quenched disorder, but 
restored upon averaging? Does SPT make sense for “average symmetry”?


• Does quantum anomaly make sense for average symmetry?


• Example: lattice symmetries are always average symmetries in reality


• Another motivation: disordered quantum critical phenomena (quantum 
Hall transitions, superconductor-insulator transition, critical spin 
liquids…)



Defining average SPT

• Ensemble of local Hamiltonians 


• Short-range correlated disorder 


• Exact symmetry:  for any disorder realization


• Average symmetry:  transforms nontrivially under , but probability 
distribution  is invariant under 


• Simplest case: total symmetry 


• Symmetric ensemble:  is not spontaneously broken

H = Hclean + Σivi𝒪i
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Defining average SPT (cont.)

• Short-range entangled (SRE) ensemble: for each disorder realization , 
 is SRE, with correlation length  upper-bounded in the ensemble


• Continuous deformation: deforming , ,  while preserving all 
the symmetry & SRE conditions


• Average SPT (ASPT)  equivalence classes under deformation

I
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Digression: disordered vs. decohered ASPT

• We call the previous definition “disordered ASPT”


• Another physical context for ASPT: mixed quantum state in open system


• Exact symmetry 


• Average symmetry 


• Deformation: symmetric finite-depth quantum channels


• Physically very different from disordered ASPT, although mathematical 
classification similar

Kρ = eiαρ

GρG−1 = ρ

(de Groot, Turzillo, Schuch; Ma, CW; Zhang, Qi, Bi; Lee, You, Xu)



Topological response

• Topological response of SPT  symmetry flux traps symmetry charge 
(e.g. IQHE   flux traps  charge)


• Average symmetry: charge not well-defined, but flux is


• Example:  can have anti-periodic b.c.


• Average topological response  average flux traps exact charge (more 
generally, invertible states)

≈
= U(1) U(1)

ℤave
2

≈

ϕ(x = L) = − ϕ(x = 0) v(x = L) = − v(x = 0)



Decorated domain wall (standard version)

• Start from -breaking state, make domain walls (symmetry defects) that are 
decorated with lower-dim SPT


• Form quantum superposition of (“condense”) such domain walls


• Example:  decorate  domain walls with  Haldane chain
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Decorated domain wall for ASPT
• Very similar picture, except domain walls do not move (pinned by local 

disorders)


• Domain walls proliferate, not as a quantum superposition, but probabilistically in 
disordered ensemble


• Example:  decorate  domain walls with  Haldane chainSO(3) × ℤ(ave)
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Crucial differences

• In ASPT, domain walls proliferate probabilistically — no analogue of 
superposition phase factor


• Example: the Levin-Gu state for  symmetry has no ASPT analogue


• A subtler point: decorating a  -defect with a -charge does not 
produce a nontrivial ASPT


• Helpful analogy: atomic insulators with different integer  charge per 
unit cell can be smoothly interpolated to each other via Anderson localized 
insulators
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General classification

• Within group-cohomology, bosonic ASPT with  are classified by


• More generally


• Classification involves the Atiyah-Hirzebruch spectral sequence, with

G̃ = G × K
d+1

∑
p=2

Hd+1−p(G, Hp(K, U(1)))

1 → K → G̃ → G → 1

Ep,q
2 = Hp(G, hq(K))

 classifies -symmetric invertible phases 
in  spacetime dimensions, and 
hq>1(K ) K

q h0,1(K ) = 0



Intrinsically disordered ASPT

• Example:  fermions with


• On each intersection of  and  domain wall, decorate a Kitaev chain


• This ASPT is forbidden in clean limit: an obstruction 


• But the obstruction becomes trivial for average symmetries


• “Less is more!”
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Long-range entanglement from anomaly

• Use the previous  SPT as example


• Suppose: a short-range entangled boundary for some disorder realization


• Can create a domain wall by changing disorder (flipping random field)


• Domain wall creates two spin-  on boundary

SO(3) × ℤ(ave)
2

1
2



Long-range entanglement from anomaly
• SRE of original state  regions far away from domain wall do not 

couple to the spin-  moments


• To keep  symmetry, the two spin-  must form singlet


• Infinite many ways to create such long-range singlets with domain walls, 
with essentially the same probability as the original state

⟹
1
2

SO(3)
1
2

Conclusion:

SRE boundary state can appear at 

most with vanishing probability



Application: average LSM

• Lattice systems with average translation symmetry and spin-  per unit 

cell (or any fractional symmetry representation ) have 
mixed anomaly between  and average translation


• Dynamics of such systems must be nontrivial: long-range entanglement


• Classic example: random singlet state in random bond spin-  chain
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(Kimchi, Nahum, Senthil)



Summary

• SPT protected by average (and exact) symmetries


• Topological response and decorated domain wall picture


• Intrinsically disordered ASPT


• Average anomaly and long-range entanglement


• Average LSM constraints



Much more to explore…

• What about average SET (symmetry-enriched topological orders)?


• Use average anomaly to study disordered critical systems (quantum Hall 
plateau transition, disordered DQCP, disordered spin liquids, Weyl/Dirac 
semimetals, etc.)?


• Even compressible states (dirty non-Fermi liquids)???


• Non-equilibrium setting?

(On-going work)


