INT Workshop on "Probing QCD at High Energy and Density with Jets, Oct. 16-20, 2023

Probing Short-distance Structure of QGP with EEC

Xin-Nian Wang Lawrence Berkeley National Laboratory

Collaborators: W. Ke, Y. He, I. Moult, Z. Yang and W. Zhao

Energy-energy correlator (EEC)

A new jet substructure observable:

$$\frac{d\Sigma^{(n)}}{d\theta} = \frac{1}{\sigma} \sum_{i \neq j} \int d\vec{n}_{i,j} \frac{d\sigma_{ij}}{d\vec{n}_{i,j}} \frac{E_i^n E_j^n}{Q^{2n}} \delta(\vec{n}_1 \cdot \vec{n}_2 - \cos\theta)$$

Berkeley Lab

Moult, et al

Fan, QM23

Jet EEC in Vacuum

LO emission in vacuum:

$$\frac{d\Sigma_q^{\text{vac}}}{d\theta} \approx \frac{\alpha_s}{2\pi} C_F \int_0^1 dz \ z(1-z) P_{qg}(z) \int_{\mu_0^2}^{Q^2} \frac{d\ell_\perp^2}{\ell_\perp^2} \delta\left(\theta - \frac{\ell_\perp}{z(1-z)E}\right) \\ \approx \frac{\alpha_s}{2\pi} \frac{C_F}{2\theta} \left(3 - \frac{2\mu_0}{E\theta}\right) \sqrt{1 - \frac{4\mu_0}{E\theta}}$$

Non-leading log power corrections $\sim heta$ Uncorrelated emission at small angle

Effects of hadronization

Resolving QGP scales with EEC

050500,05050

.....

BERKELEY LAB

huì

Andres, et al , 2209.11236

5

Resolving QGP scales with EEC

• Can EEC resolve the induced gluon emission in realistic heavy-ion collisions?

• Can EEC resolve recoil partons (medium response)?

• Can EEC resolve the angular scale of in-medium parton collisions

Gluon spectrum from single emission in GHT

Generalized HT induced emission in a QGP brick:

BERKELEY

 $\tau_f = \frac{2z(1-z)E}{(\ell_\perp - \mathbf{k}_\perp)^2}$

$$\frac{dN_g^{a}(^{\text{GHT})}}{dzd\ell_{\perp}^2} = \frac{C_A C_2(R)}{N_c^2 - 1} \frac{\alpha_s}{2\pi} P_{ag}^{(0)}(z) \int dy \rho_A(y) \int_0^{Q^2} d^2 \mathbf{k}_{\perp} \frac{\alpha_s \phi_g(x_g, \mathbf{k}_{\perp}^2)}{k_{\perp}^2} \frac{2\mathbf{k}_{\perp} \cdot \ell}{\ell_{\perp}^2 (\ell_{\perp} - \mathbf{k}_{\perp})^2} \left[1 - \cos \frac{y}{\tau_f} \right]$$

$$g(2)$$
For small angle emission:
$$\ell_{\perp} \ll zE, |\mathbf{k}_{\perp} - \ell_{\perp}| \ll (1 - z)E$$

$$\theta_{12}^2 \approx \frac{2\ell_{\perp}}{z(1 - z)E}$$

$$\tau_f = \frac{2z(1 - z)E}{\ell_{\perp}^2} = \frac{8}{z(1 - z)E\theta_{12}^2}$$

$$\int_0^{2\pi} d\phi \frac{\mathbf{k}_{\perp} \cdot \ell_{\perp} + \mathbf{k}_{\perp}^2}{(\ell_{\perp} - \mathbf{k}_{\perp})^2} = 2\pi\Theta(k_{\perp}^2 - \ell_{\perp}^2)$$

EEC in generalized high-twist

With a (GW) static potential model

$$\frac{\phi(0,\vec{k}_{\perp})}{k_{\perp}^2} = C_2(T) \frac{4\alpha_s}{(k_{\perp}^2 + \mu_D^2)^2} \cdot \qquad \hat{q} = \int dk_{\perp}^2 \phi(0,k_{\perp}) \approx \rho \frac{C_2(R)C_2(T)}{N_c^2 - 1} 4\pi \alpha_s^2 \ln \frac{s^*}{4\mu_L^2}$$

$$\frac{d\Sigma_q^{\text{med}}}{d\theta} = \frac{L^{5/2}}{\pi\sqrt{E}} \frac{\hat{q}}{\ln\frac{s^*}{4\mu_D^2}} \frac{8\alpha_{\text{s}}C_A}{\theta\sqrt{EL}} \int dz \frac{z(1-z)P_{qg}(z)}{z^2(1-z)^2\theta^2 EL + 4\mu_D^2} \left[1 - \frac{\sin ELz(1-z)\theta^2/8}{ELz(1-z)\theta^2/8}\right]$$

For large angles $z^2(1-z)^2\theta^2 EL \gg 4\mu_D^2$

Recover HT results:

$$=\frac{\hat{q}}{\ln\frac{s^*}{4\mu_D^2}}\qquad \qquad \frac{d\Sigma_q^{\text{med}}}{d\theta}=\frac{L^{5/2}\hat{q}_{HT}}{\pi\sqrt{E}}\frac{8\alpha_s C_A}{(\sqrt{EL}\theta)^3}\int dz\frac{P_{qg}(z)}{z(1-z)}\left[1-\frac{\sin ELz(1-z)\theta^2/8}{ELz(1-z)\theta^2/8}\right]$$

 \hat{q}_{HT}

EEC from HT in single emission

HT induced emission in a QGP brick:

Yang, He, Moult & XNW, 2310.01500

Contributions from medium response

 $2 \rightarrow 2$ elastic collisions:

$$\frac{d\Sigma_a^{\text{med}}}{d\theta} = \int dx d\vec{n}_{c,d} \delta(\vec{n}_c \cdot \vec{n}_d - \cos\theta) \sum_{b,(cd)} \int \prod_{i=b,c,d} d[p_i]$$

$$\times \frac{\gamma_b}{2E_a} \left[f_b (1 \pm f_c) (1 \pm f_d) - f_c (1 \pm f_a) (1 \pm f_b) \right]$$

$$\times \frac{E_c E_d}{E_a^2} (2\pi)^4 \delta^4 (p_a + p_b - p_c - p_d) \left| \mathcal{M}_{ab \to cd} \right|^2,$$

Both recoil and back-reaction ("negative partons")

10

Linear Boltzmann Transport model

LBT: Linear Boltzmann Transport

$$p_1 \cdot \partial f_1 = -\int dp_2 dp_3 dp_4 (f_1 f_2 - f_3 f_4) |M_{12 \to 34}|^2 (2\pi)^4 \delta^4 (\sum_i p_i) + \text{inelastic}$$

Induced radiation

$$\frac{dN_g}{dzd^2k_{\perp}dt} \approx \frac{2C_A\alpha_s}{\pi k_{\perp}^4} P(z)\hat{q}(\hat{p}\cdot u)\sin^2\frac{k_{\perp}^2(t-t_0)}{4z(1-z)E}$$

- pQCD elastic and radiative processes (high-twist)
- Transport of medium recoil partons (and back-reaction)
- CLVisc 3+1D hydro bulk evolution

He, Luo, Zhu & XNW, PRC 91 (2015) 054908

CoLBT-hydro (Coupled Linear Boltzmann Transport hydro)

Concurrent and coupled evolution of bulk medium and jet showers

$$p \cdot \partial f(p) = -C(p) \quad (p \cdot u > p_{cut}^{0})$$
$$\partial_{\mu} T^{\mu\nu}(x) = j^{\nu}(x)$$
$$j^{\nu}(x) = \sum_{i} p_{i}^{\nu} \delta^{(4)}(x - x_{i}) \theta(p_{cut}^{0} - p \cdot u)$$

- LBT for energetic partons (jet shower and recoil)
- Hydrodynamic model for bulk and soft partons: CLVisc
- Parton coalescence (thermal-shower)+ jet fragmentation
- Hadron cascade using UrQMD

LBT & CoLBT: Jet-induced medium response

Energy transverse distribution of medium response in a static medium

3D energy density distribution of the medium response induced by a γ -jet in a 0-10% Pb+Pb event

Jet suppression and medium response at LHC

Z-jet Single inclusive jets 0.8 anti- $k_t R = 0.4$ jets - LBT 5.02 TeV + ATLAS, 5.02 TeV 0.7 -LBT 2.76 TeV+ATLAS 2.76 TeV a[₹] 0.6 0.5 |y| < 2.10-10% 0.4 200 300 500 600 700 800 900 1000 400 100p_T (GeV)

> He, Cao, Chen, Luo, Pang & XNW 1809.02525 Zhang, Luo, XNW, Zhang, arXiv:1804.11041 Luo, Cao, He & XNW, arXiv:1803.06785

Modification of jets and medium response

Search for jet-induced diffusion wake

Diffusion (DF) wake leads to depletion of soft hadron yield in the back of jet direction

Yang, Tan, Chen, Pang & XNW, PRL, 130 (2023), 052301

Sensitivity to EoS and shear viscosity

eosq: first order s95p: rapid crossover from LQCD

Larger effective c_s in eosq \rightarrow : larger Mach cone angle \rightarrow shallower DF valley Stronger radial flow \rightarrow smaller soft MPI

Competition of:

 η /s increase transverse flow \rightarrow suppression of soft MPI and DF valley Negative shear correction of longitudinal pressure \rightarrow impede longitudinal expansion \rightarrow increase MPI and DF valley

Deep learning assisted jet tomography

PCN (point cloud network)

e-Print: 2206.02393

huì

.....

BERKELEY LAB

🗙 🗙 Yang, He, Chen, Ke, Pang & XNW

DL network selection

Actual distribution

 γ -soft hadron correlation

EEC of single parton in a QGP brick

Single parton with multiple scattering in a brick in LBT

Debye mass:

$$\mu_D^2 = \frac{3}{2} K g^2 T^2$$

We vary only K in the sampling the transverse momentum transfer of $2 \rightarrow 2$ and kinematic limit of gluon bremsstrahlung. We however keep qhat and $2 \rightarrow 2$ rate unchanged.

> Medium response (recoil + "negative" partons) Is (more) important

Yang, He, Moult & XNW, 2310.01500

EEC of a jet shower in a QGP brick

A jet shower in a brick in LBT

Initial γ -jet configurations generated from Pythia8

Energy loss and momentum broadening lead to suppression at small angles

Radiated gluon and medium response dominate at large angles

Yang, He, Moult & XNW, 2310.01500

EEC of γ-jets in Pb+Pb Collisions

CoLBT simulations:

Enhancement at large angles by soft hadrons from radiated gluons and medium response, sensitive to pT cuts

EEC by energetic hadrons from leading shower partons at small angles are suppressed, not affected by pT cuts

Yang, He, Moult & XNW, 2310.01500

pT dependence of EEC

γ energy dependence

Jet energy dependence

Summary

- First complete and realistic calculation of jet EEC in heavy-ion collisions
- Medium-response dominates enhancement of EEC at large angles
- Energy loss of leading jet shower partons leads to suppression of EEC at small angles
- Medium modification of EEC is sensitive to the angular scale of in-medium parton collisions

