Pion-nucleon scattering with lattice QCD at M $\pi \approx 200$ MeV

Accessing and Understanding the QCD Spectra INT 20r-2c, March 2023

André Walker-Loud

rrrrr

BERKELEY LAB

Lattice QCD and Effective Field Theory for "Nuclear Physics"

□ What are our long term goals? □ What questions will we try and answer in support of these goals?

*Nuclear Physics:

low-energy processes involving one, two, ... nucleons, pions and currents

such as neutron stars □ NNN, YN, YNN, ... interactions

u to predict nuclear reactions that contribute to low-energy precision tests of the SM \Box neutron β -decay (test V-A structure) $\Box 0\nu\beta\beta$

- \Box ν -A scattering
- permanent EDMs in nucleons and nuclei

- What are our long-term goals?
- Quantitatively understand the emergence of nuclear physics from the Standard Model (SM)
 - to possibly contribute to our understanding of nuclear physics in extreme environments,

Many Body Nuclear Methods

GFMC, IMSRG, Shell Model, ...

two-nucleons (pions)

Hadronic EFT

pions, kaons, nucleons, hyperons delta (decuplet)

(M. Creutz)

(fig: C. Drescher)

quarks, gluons and lattices

What questions will we try and answer to support these goals?

- □ Is the fine-tuning that is present in the low-energy NN scattering persistent as the up/down quark masses are changed from their physical values?
 - Academic: understanding our universe in terms of SM parameters
 - □ Practical: for the foreseeable future, LQCD calculations of NN interactions will require extrapolations from $m_{\pi}^{LQCD} \rightarrow m_{\pi}^{phys}$ As the pion mass is changes, the appropriate EFT (power counting) might change

EFT provides us with predicted pion mass dependence for observables D owe observe this expected pion mass dependence in LQCD results? **I** f no or yes, what does it teach us about the efficacy of the EFT?

\Box Can we map out the convergence patter of our EFTs versus m_{π} ?

qualitative, but not a precise quantitative description at $m_s \approx m_s^{\text{phys}}$ C. Bernard, CD2015 [1510.02180]

 \Box M_B: SU(3) heavy baryon XPT (HBXPT) is not a convergent expansion (*a*) m_s^{phys} LHP Collaboration [0806.4549], PACS-CS Collaboration [0905.0962] NPLQCD Collaboration [0912.4243] $\Box \rightarrow YN SU(3) EFT$ is a model (theoretical uncertainty is not controlled)

What questions will we try and answer to support these goals?

 $\square m_{\pi}, m_{K}, F_{\pi}, F_{K}$: MILC Collaboration has demonstrated that SU(3) XPT provides a

What questions will we try and answer to support these goals?

\Box Can we map out the convergence patter of our EFTs versus m_{π} ?

 $g_A = g_0 - \epsilon_\pi^2 (g_0 + 2g_0^3) \ln(\epsilon_\pi^2)$ $+c_2\epsilon_{\pi}^2 + g_0c_3\epsilon_{\pi}^3 + c_4\epsilon_{\pi}^4$

N ⁿ LO	LO	NLO	$N^{2}LO$	N ³ LO	
$N^{2}LO$	1.237(34)	-0.026(30)	0.062(14)	_	$(a) m_{\pi}^{\text{phys}}$
$N^{3}LO$	1.296(76)	-0.19(12)	0.045(63)	0.117(66)	

What questions will we try and answer to support these goals?

u Can we map out the convergence patter of our EFTs versus m_{π} ?

- between orders a sign of breakdown
- \Box Adding Δ to LQCD requires $N\pi$ scattering

\Box LQCD results for M_N and g_A suggest that SU(2) baryon XPT w/out Δ is non-convergent

 \Box The flat (g_A) and linear (M_N) pion mass dependence indicates strong cancellations

 \Box Adding explicit Δ will improve convergence of g_A (large-Nc) but make M_N worse

arXiv > hep-lat > arXiv:2208.03867

High Energy Physics - Lattice

[Submitted on 8 Aug 2022 (v1), last revised 7 Feb 2023 (this version, v3)]

Elastic nucleon-pion scattering at $m_{\pi} = 200$ MeV from lattice QCD

John Bulava, Andrew Hanlon, Ben Hörz, Colin Morningstar, Amy Nicholson, Fernando Romero-López, Sarah Skinner, Pavlos Vranas, André Walker-Loud Nucl. Phys. B 987 (2023) 116105

□Exciting in its own right

□ Stepping stone towards NN (at this light pion mass)

 $\Box m_{\pi}$ is light enough that

 \Box the Δ is unstable

Optimistic that EFT could be convergent-ish

1V > hep-lat > arXiv:2208.03867arX

High Energy Physics - Lattice

[Submitted on 8 Aug 2022 (v1), last revised 7 Feb 2023 (this version, v3)]

Elastic nucleon-pion scattering at $m_{\pi} = 200$ MeV from lattice QCD

John Bulava, Andrew Hanlon, Ben Hörz, Colin Morningstar, Amy Nicholson, Fernando Romero-López, Sarah Skinner, Pavlos Vranas, André Walker-Loud Nucl. Phys. B 987 (2023) 116105

□ Single CLS ensemble (D200) $\Box a \approx 0.063 \text{ fm}, V = 64^3 \text{x} 128, N_{cfg} = 2000, m_{\pi} \approx 200 \text{ MeV}, m_{\pi} L \approx 4.2$ $\Box \operatorname{tr}\left(M_q\right) = \operatorname{tr}\left(M_q^{\mathrm{phys}}\right)$ $\Box m_K \approx 480 \text{ MeV}$

Choice made by CLS (not us) when generating configs - simplifies renormalization

□ What were the goals of this calculation? □ Is the sLapH method capable — with reasonable statistics/resources — in achieving precise estimates of the interaction energies/scattering amplitudes at light pion masses?

□ It seems the answer is yes, fortunately

□ To carry out the study, we used

N_{D}	$(ho, n_{ ho})$	$N_{\rm ev}$	$N_{ m R}^{ m fix}$	$N_{ m R}^{ m rel}$	Nc
2560 2176	(0.1, 36)	448	6	2	(TF,SF,LI1

- $N_{\rm D}$ Dirac inversions per config
- $N_{\rm ev}$ No. of eigenvectors of 3D Laplacian

Elastic nucleon-pion scattering at $M\pi \approx 200$ MeV from lattice QCD

oise dilution N_{t_0} $(6)_{\text{fix}}(\text{TI8},\text{SF},\text{LI16})_{\text{rel}}$

 $N_{\rm R}^{\rm fix}$ No. of noise sources for fixed lines

 $N_{\rm R}^{\rm rel}$ No. of noise sources for relative lines

Results 0.12 0.11 • We explored multi-exponential fits 0.10as well as a "geometric series" fit am_{π}^{eff} $C_{\text{geom.}}(t) = \frac{Ae^{-E_0 t}}{1 - Re^{-\Delta Et}}$ 0.080.07 This GS fit does quite well Our interest is quantifying uncertainty on ground state 0.0675 0.0670 -□We also tried a multi-state version •• [#]*w*^{*w*} 0.06651 of the GS ansatze $C_{\text{geom.}}^{N}(t) = \frac{Ae^{-E_{0}t}}{1 - \sum_{n=1}^{N-1} B_{n}e^{-\Delta E_{n}t}}$ 0.0660

\Box Parity Odd Results - S-wave N π

□ Various irreps used to determine the spect						
d	Λ	dim.	contributing $(2J, \ell)^{n_{\text{occ}}}$ for $\ell_{\text{max}} = 2$			
(0, 0, 0)	G_{1u}	2	(1,0)			
	$G_{1\mathrm{g}}$	2	(1,1)			
	$H_{ m g}$	4	(3,1), (5,2)			
	$H_{\rm u}$	4	(3,2),5,2)			
	$G_{2\mathrm{g}}$	2	(5,2)			
(0, 0, n)	G_1	2	(1,0), (1,1), (3,1), (3,2), (5,2)			
	G_2	2	$(3,1), (3,2), (5,2)^2$			
(0,n,n)	G	2	$(1,0), (1,1), (3,1)^2, (3,2)^2, (5,2)^3$			
(n, n, n)	G	2	$(1,0), (1,1), (3,1), (3,2), (5,2)^2$			
	F_1	1	(3,1), (3,2), (5,2)			
	F_2	1	(3,1), (3,2), (5,2) 7.5-			

Note: the gray bands and green energy levels are correlated, which is not reflected visually in the plots $E_{
m cm}/m_{\pi}$

6.0

□FV Spectrum to Scattering Amplitudes [Lüscher, ... many others] $\det[\tilde{K}^{-1}(E_{\rm cm}) - B^{P}(E_{\rm cm})] + O(e^{-ML}) = 0$

 $\Box K$ proportional to the K-matrix $\square B^{P}(E_{cm})$ is the "Box Matrix" that encodes information about the finite-volume and BCs

□ Solving this expression is equivalent to looking for poles in a coupled-channel scattering amplitude

□ for a single channel

 $p \cot \delta - ip = 0 \longrightarrow p \cot \delta - \frac{1}{\pi L} \lim_{\Lambda \to \infty} \left| \sum_{|\vec{n}| < \ell} \right|$

Elastic nucleon-pion scattering at $M\pi \approx 200$ MeV from lattice QCD

$$\int_{\Lambda} \frac{1}{|\vec{n}|^2 - \frac{p^2 L^2}{4\pi^2}} - 4\pi\Lambda = 0$$

□FV Spectrum to Scattering Amplitudes - spectrum method comparison

I=1/2 fit using s-wave only approximation

I=3/2 fit using s- and p-wave approximation

$$\frac{q_{\rm cm}^3}{m_{\pi}^3} \cot \delta_{3/2^+} = \frac{6\pi\sqrt{s}}{m_{\pi}^3 g_{\Delta,\rm BW}^2} (m_{\Delta}^2 - s)$$

□Results for scattering lengths and effective Delta-resonance parameters $m_{\Delta} = 1268(17) \text{ MeV} \quad \frac{m_{\Delta}}{m_{\pi}} = 6.257(35), \qquad g_{\Delta N\pi} = 14.41(53)$ $m_{\pi} a_0^{3/2} = -0.2735(81), \qquad m_{\pi} a_0^{1/2} = 0.142(22),$

Compare with χ PT

□ The formula for the scattering length are known at 4th order in the chiral expansion (w/o Δ) □ They are expressed in terms of what is called scalar and vector scattering lengths $a^{3/2} - a^{\pm} - a^{$

$$a_0'' = a_0' - a_0$$

□At NLO, these are given by

$$m_{\pi} a_0^{3/2} [\text{NLO}] = -\epsilon_{\pi}^2 \frac{2\pi}{1+\mu} \left\{ 1 + \frac{\epsilon_{\pi}}{2} \frac{\Lambda_{\chi}}{m_N} (g_A^2 + m_{\pi} a_0^{1/2} [\text{NLO}] \right\} = \epsilon_{\pi}^2 \frac{2\pi}{1+\mu} \left\{ 1 - \frac{\epsilon_{\pi}}{4} \frac{\Lambda_{\chi}}{m_N} (g_A^2 + m_{\pi} a_0^{1/2} [\text{NLO}] \right\} = \epsilon_{\pi}^2 \frac{2\pi}{1+\mu} \left\{ 1 - \frac{\epsilon_{\pi}}{4} \frac{\Lambda_{\chi}}{m_N} (g_A^2 + m_{\pi} a_0^{1/2} [\text{NLO}] \right\}$$

$$C = M_N (2c_1 - c_2 - c_3)$$

$$\epsilon_\pi = \frac{m_\pi}{4\pi F_\pi}, \quad \mu = \frac{m_\pi}{M_N}, \quad \Lambda_\chi = 4\pi F_\pi$$

$$a_0^{1/2} = a_0^+ + 2a_0^-$$

Hoferichter et al, 1510.06039, Hoferichter et al, 1507.07552
 Fettes, Meissner [Steininger] [hep-ph/9803266] hep-ph/0002162

-8C	C0	MPARISON of	C = mN * (2c1 -	c2 -
, , , , , , , , , , , , , , , , , , ,	order	pheno	D200 Fit	
	nlo	0.300(24)	0.648(62)	
$-8C) \} ,$	n2lo	-0.019(24)	NA	
J	n3lo	0.244(29)	NA	

 $\epsilon_{\pi}^{\text{D200}} = 0.1759(12), \qquad \mu^{\text{D200}} = 0.2102(19),$ $\epsilon_{\pi}^{\text{phys}} = 0.12064(74), \qquad \mu^{\text{phys}} = 0.14875(05)$

Compare with χPT

[□]The formula for the scattering length are known at 4th order in the chiral expansion They are expressed in terms of what is called scalar and vector scattering lengths 2/9

$$a_0^{3/2} = a_0^+ - a_0^- \,,$$

DAt NLO, these are given by

$$m_{\pi} a_0^{3/2} [\text{NLO}] = -\epsilon_{\pi}^2 \frac{2\pi}{1+\mu} \left\{ 1 + \frac{\epsilon_{\pi}}{2} \frac{\Lambda_{\chi}}{m_N} (g_A^2 + m_{\pi} a_0^{1/2} [\text{NLO}] \right\} = \epsilon_{\pi}^2 \frac{2\pi}{1+\mu} \left\{ 1 - \frac{\epsilon_{\pi}}{4} \frac{\Lambda_{\chi}}{m_N} (g_A^2 + m_{\pi} a_0^{1/2} [\text{NLO}] \right\} = \epsilon_{\pi}^2 \frac{2\pi}{1+\mu} \left\{ 1 - \frac{\epsilon_{\pi}}{4} \frac{\Lambda_{\chi}}{m_N} (g_A^2 + m_{\pi} a_0^{1/2} [\text{NLO}] \right\}$$

$LO] = -\epsilon_{\pi}^{2} \frac{2\pi}{1+\mu} \left\{ 1 + \frac{\epsilon_{\pi}}{2} \frac{\Lambda}{m} \right\}$ $LO] = -\epsilon_{\pi}^{2} \frac{2\pi}{1+\mu} \left\{ 1 - \frac{\epsilon_{\pi}}{4} \frac{\Lambda}{m} \right\}$	$\left\{\frac{\chi}{n_N}(g_A^2 + 8C)\right\}$ $\left\{\frac{\chi}{n_N}(g_A^2 + 8C)\right\}$,	COMPARIS order pheno nlo 0.30 n2lo -0.01 n3lo 0.24	50N of 00(24) 19(24) 14(29)	C = mN * (2c D200 Fit 0.648(62) NA NA	1 - c2 ·
	$m_{\pi} \; ({ m MeV})$		$m_{\pi}a_{0}^{1/2}$		$m_{\pi}a_{0}^{3/2}$	
This work	200		0.142(22)	-0	.2735(81)	
LO χPT	200		0.321(04)(57)	-0	.161(02)(28)	
LO χPT	140		0.159(02)(19)	-0	.080(01)(10)	
Pheno. $(isospin limit)[27]$	140		0.1788(38)	-0	.0775(35)	

$$a_0^{1/2} = a_0^+ + 2a_0^-$$

D Hoferichter et al, 1510.06039, Hoferichter et al, 1507.07552 □ Fettes, Meissner [Steininger] [hep-ph/9803266] hep-ph/0002162

Conclusions

 \Box We have performed N π scattering — for the first time — at a pion mass of $m_{\pi} \approx 200$ MeV

□We used the stochastic Laplacian Heaviside (sLapH) method - a stochastic variant of distillation

 \Box We found that our results are in tension with predictions from SU(2) χ PT and LECs determined to high-precision N π scattering phase shift data

□We are therefore not yet in a position to usefully contribute to the nucleon-pion sigma term "puzzle" — the contrast between the pheno determination and most precise LQCD ones

□Lighter pion masses seem reachable (given our results) and are necessary to understand the apparent tension with SU(2) χ PT predictions

