Quantifying EFT uncertainties with lattice QCD

INT 23-1b: New Physics Searches at the Precision Frontier May, 2023

André Walker-Loud

Quantifying EFT uncertainties with lattice QCD

INT 23-1b: New Physics Searches at the Precision Frontier
May, 2023

Quantifying EFT uncertainties with lattice QCD

INT 23-1b: New Physics Searches at the Precision Frontier May, 2023

André Walker-Loud

Motivation

D Various observables - with little or no experimental data - and we'd like to know how well we can predict them (Uncertainty Quantification - UQ) \square neutrinoless double beta-decay $(0 \nu \beta \beta)$
\square nucleon and nuclear EDMs
] hyperon-nucleon, NNN, YNN interactions
口 ...

$\square 0 \nu \beta \beta$ - what is the importance of the short-distance contribution to the $\mathrm{nn} \rightarrow \mathrm{pp}(\mathrm{ee})$ amplitude Cirigliano et al. PRC 97 (2018) [1710.01729] Cirigliano et al. PRL 120 (2018) [1802.10097] Cirigliano et al. PRC 100 (2019) [1907.11254]

\square Can we predict everything we need using just lattice QCD (LQCD)?
OR - do we need to rely upon extrapolating the LQCD calculations to the physical pion mass?

- How effective are our Effective (Field) Theories (EFTs)?

Motivation

\square Historically - LQCD and EFT (χ PT) have a very symbiotic relationship

- EFT was necessary to extrapolate LQCD results to the physical pion mass (and assisted with infinite volume extrapolation and continuum extrapolation)
- In turn - unknown low-energy-constants (LECs) would be determined through the extrapolation LECs are universal - determine them in one quantity, predict another
- < 2013 : EFT was necessary to extrapolate LQCD results to $m_{\pi}^{\text {phys }}$
$\square>2013$: LQCD calculations carried out @ $m_{\pi}^{\text {phys }}$ for mesons
$\square>2018$: LQCD calculations carried out for simple nucleon quantities @ $m_{\pi}^{\text {phys }}$ (but precision of final result still aided by results at heavier m_{π})
- > 202X : LQCD calculations of two-nucleon systems carried out at $m_{\pi}^{\text {phys }}$
for the foreseeable future - it will be necessary to extrapolate NN results to $m_{\pi}^{\text {phys }}$ how reliable are those extrapolations? does the power-counting change as a function of m_{π} ?

Motivation

- Can we map out the convergence pattern of our EFTs versus m_{π} ?
- $m_{\pi}, m_{K}, F_{\pi}, F_{K}$: MILC Collaboration has demonstrated that $\mathrm{SU}(3)$ XPT provides a qualitative, but not a precise quantitative description at $m_{s} \approx m_{s}^{\text {phys }}$
C. Bernard, CD2015 [1510.02180]

ㅁ $F_{K^{ \pm}} / F_{\pi^{ \pm}}=1.1934(19)$ [FLAG 2021] - 0.15% uncertainty
\square roughly speaking: $\mathrm{NLO} \approx 20 \% \rightarrow \mathrm{~N}^{2} \mathrm{LO} \approx 4 \%, \mathrm{~N}^{3} \mathrm{LO} \approx 0.8 \%, \mathrm{~N}^{4} \mathrm{LO} \approx 0.16 \%$?

- Relying upon $\mathrm{SU}(3)$ XPT to achieve this precision is not realistic...
- M_{B} : $\mathrm{SU}(3)$ heavy baryon XPT (HBXPT) is not a convergent expansion @ $m_{s}^{\text {phys }}$ LHP Collaboration [0806.4549] - baryon spectrum PACS-CS Collaboration [0905.0962] - baryon spectrum NPLQCD Collaboration [0912.4243] - meson-baryon scattering lengths

Motivation

- I believe $\operatorname{SU}(2)$ baryon XPT (w/o Δ) is most likely not convergent at $m_{\pi}^{\text {phys }}$
- Based on LQCD results we have generated since ~ 2018
- What can we do with LQCD to conclusively show this is true or not?
- If this is true - what does it mean about NN EFT (with pions) @ $m_{\pi}^{\text {phys? }}$?
- It seems to me, this would essentially invalidate the convergence pattern of NN as well
\square It is possible that adding explicit Δ degrees of freedom (dof) will restore convergence
- Testing this requires more LQCD calculations including
- πN scattering in the Δ resonance region
$\square N \rightarrow \Delta$ transition matrix elements

Motivation

- Before discussing LQCD results
discuss in high-level detail various extrapolations needed for LQCD
this will highlight the symbiotic relationship between LQCD and EFT in general and hopefully give you a feeling for the complexities of the systematics we aim to control

Chiral, Continuum, Infinite Volume Extrapolations

- LQCD calculations must be extrapolated to the continuum and infinite volume limits and extrapolated/ interpolated to the physical quark-mass limit (in order to compare with experiment)
- To carry out these extrapolations - very useful to define small, dimensionless parameters that parameterize the various effects
useful if the parameters are defined in terms of quantities that can be "measured" in the calculation

$$
\begin{array}{ccc}
\epsilon_{\pi}=\frac{m_{\pi}}{4 \pi F_{\pi}} & \epsilon_{a}=\frac{a}{2 w_{0}} & \delta_{L} \approx \frac{e^{-m_{\pi} L}}{\left(m_{\pi} L\right)^{2}}, \quad z=\frac{1}{2}, 1, \ldots \\
\text { chiral } & \text { continuum } & \text { infinite volume }
\end{array}
$$

Chiral Extrapolations: $\epsilon_{n}=\frac{m_{n}}{4 \pi F_{n}}$

- χ PT (and its extensions)
- systematic description of low-energy hadronic/nuclear physics about $m_{\pi}=0$ limit
[theoretical truncation errors scale (in principle) as ϵ_{π}^{n+1} if one has worked to $\mathrm{O}\left(\epsilon_{\pi}^{n}\right)$
\square there may be additional small/large scales that invalidate this power-counting, eg. $\Delta \equiv M_{\Delta}-M_{N}$ \square all quark mass (pion mass) dependence is explicit
- Nearly all quantities of interest are known to 1-loop order (loop order and ϵ_{π}^{n}-order are often not synonymous)
- Precision matrix elements: need 2-loop order known for most simple quantities unknown for some quantities of interest (particularly involving nucleons)

Infinite Volume Extrapolations: $\delta_{t} \sim \frac{e^{-m} L}{\left(m_{L} L\right)^{2}}$

- Finite Volume (FV) effects are easily incorporated in $\chi \mathrm{PT}$ (and its extensions)

■ inherently IR effects - to large extent, separable from short-distance effects (LECs) ie. the leading FV corrections to observables does not depend upon (unknown) LECs

- FV effects are not universal - they depend upon the quantity
\square Determined by considering $T \rightarrow \infty$ limit at finite L

$$
\begin{aligned}
\approx \frac{2 B \hat{m}_{l}}{F^{2}} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{i}{k^{2}-m_{\pi}^{2}} & \longrightarrow \frac{2 B \hat{m}_{l}}{F^{2}} \int \frac{d k_{0}}{2 \pi} \frac{1}{L^{3}} \sum_{\vec{k}} \frac{i}{\left(k_{0}-\omega_{k}\right)\left(k_{0}+\omega_{k}\right)} \\
& =\frac{2 B \hat{m}_{l}}{F^{2}}\left[I^{\infty}\left(m_{\pi}\right)+\delta_{L} I\left(m_{\pi}, L\right)\right] \\
& =2 B \hat{m}_{l} \epsilon_{\pi}^{2}\left[\ln \left(\frac{m_{\pi}^{2}}{\mu^{2}}\right)+4 \sum_{\vec{n} \neq 0} \frac{K_{1}\left(|\vec{n}| m_{\pi} L\right)}{|\vec{n}| m_{\pi} L}\right] \quad K_{1}\left(|\vec{n}| m_{\pi} L\right)=\sqrt{\frac{\pi}{2}} \frac{e^{-|\vec{n}| m_{\pi} L}}{\sqrt{|\vec{n}| m_{\pi} L}}\left[1+\mathrm{O}\left(\frac{1}{|\vec{n}| m_{\pi} L}\right)\right]
\end{aligned}
$$

- The leading FV corrections from such pion-loop effects provides a good qualitative estimate for $m_{\pi} L \gtrsim 3.5$ For the precision of LQCD results for many quantities, 2-loop corrections are needed for accurate determination of FV corrections - Colangelo, Durr, Haefeli, NPB721 (2005) [hep-lat/0503014]

Continuum Extrapolations: $\epsilon_{a}=\frac{a}{2 w_{0}}$

- The continuum extrapolation can be carried out in at least two ways

1. For fixed quark mass, take the continuum limit of a given quantity
2. Perform a simultaneous extrapolation in ϵ_{π} and ϵ_{a}
\square In practice, 1. is challenging to carry out
\square as one varies the lattice spacing, choosing input parameters that hold eg. the pion mass fixed in physical units requires fine-tuning
\square holding the physical volume fixed is nearly impossible - small volume corrections will get mixed in with continuum extrapolation (which will also have small changes in the quark mass mixed in)

- For both options, the first step is what is known as the Symanzik Expansion (an EFT):
\square Expand the discretized lattice action for small lattice spacing, a, about the continuum limit
\square organize the operators in a series expansion in powers of a

$$
\mathscr{L}^{L Q C D}=a^{4} \mathscr{L}^{Q C D}+\sum_{n=1}^{\infty} a^{4+n} c_{4+n} o^{4+n}(x) \longrightarrow \text { Operators of mass-dimension 4+n }
$$

Continuum Extrapolations: $\epsilon_{a}=\frac{a}{2 w_{0}}$

- Symanzik Expansion: example of Wilson fermions

$$
S^{L Q C D}=a^{4} \sum_{n} \bar{\psi}(n)\left[\gamma_{\mu} D_{\mu}+m_{0}\right] \psi(n)+\frac{a^{5} \sum_{n} \bar{\psi}(n) D_{\mu} D_{\mu} \psi(n)+S^{G}}{\text { Wilson Operator }} \quad D_{\mu} \psi(n)=\frac{1}{2 a}\left[U_{\mu}(n) \psi(n+\mu)-U_{\mu}^{\star}(n) \psi(n-\mu)\right]
$$

\square Things to note:

- Wilson Operator breaks chiral symmetry
- UV momentum modes, $p \approx \pi / a$, lead to an additive mass term that scales like $1 / a$
— Symanzik Expansion (after EOM to remove redundant operators)

$$
S^{L Q C D}=\int d^{4} x \bar{\psi}(x)\left[\gamma_{\mu} D_{\mu}+m_{0}+m_{c}\right] \psi(x)+a c_{S W} \bar{\psi}(x) \sigma_{\mu \nu} G_{\mu \nu} \psi(x)+\frac{1}{4 g^{2}} G_{\mu \nu} G_{\mu \nu}+\mathrm{O}\left(a^{2}\right)
$$

\square One fine-tunes m_{0} such that $m_{0}+m_{c}$ gives a small quark mass

- One can (usually does) add an operator like $c_{S W}$ to remove the $\mathrm{O}(a)$ effects
\square Lorentz violation begins at $\mathrm{O}\left(a^{2}\right)$: eg. $a^{2} \bar{\psi}(x) \gamma_{\mu} D_{\mu} D_{\mu} D_{\mu} \psi(x)$
(Lorentz symmetry is an "accidental" symmetry of LQCD)

Continuum Extrapolations: $\epsilon_{a}=\frac{a}{2 w_{0}}$

- Including discretization errors in χ PT — Sharpe and Singleton, PRD 48 (1998) [hep-lat/9804028]
- Perform Symanzik expansion for a given lattice action
- Map the operators, including higher dimensional ones into a chiral Lagrangian using spurions

$$
\begin{gathered}
S^{L Q C D}=\int d^{4} x \bar{\psi}(x)\left[\gamma_{\mu} D_{\mu}+m_{0}+m_{c}\right] \psi(x)+a c_{S W} \bar{\psi}(x) \sigma_{\mu \nu} G_{\mu \nu} \psi(x)+\frac{1}{4 g^{2}} G_{\mu \nu} G_{\mu \nu}+\mathrm{O}\left(a^{2}\right) \\
\mathscr{L}_{a}^{\chi P T}=\frac{F^{2}}{4} \operatorname{Tr}\left(D_{\mu} \Sigma D_{\mu} \Sigma^{\dagger}\right)+\frac{F^{2}}{4} \operatorname{Tr}\left(2 B_{0} M_{q} \Sigma^{\dagger}+\left(2 B_{0} M_{q}\right)^{\dagger} \Sigma\right)+a \operatorname{Tr}\left(2 W_{0} c_{S W} \Sigma^{\dagger}+\left(2 W_{0} c_{S W}\right)^{\dagger} \Sigma\right)+\mathrm{O}\left(M_{q}^{2}, a M_{q}, a^{2}\right)
\end{gathered}
$$

[NOTE:

- The mixed discretization - quark mass effects can be significant
- unlike quark mass effects - the LECs parameterizing discretization effects have implicit dependence upon the lattice spacing $(\ln (a)$ effects from radiative gluon corrections)

Scale Setting versus dimensionless ratios

- The optimal way to perform an extrapolation is in terms of a dimensionless quantity, formed from a ratio of two dimensionful ones, if necessary - why?
- Example of recent scale setting I was involved in: Miller et al (CalLat) PRD 103 (2021) [2011.12166]
\square Used Ω-baryon mass, combined with what are known as a Gradient-Flow scales w_{0}, t_{0}

scheme	a_{15} / fm	a_{12} / fm	a_{09} / fm	a_{06} / fm	
	$t_{0, \text { orig }} / a^{2}$	$0.1284(10)$	$0.10788(83)$	$0.08196(64)$	$0.05564(44)$
$t_{0, \text { imp }} / a^{2}$	$0.1428(10)$	$0.11735(87)$	$0.08632(65)$	$0.05693(44)$	
$w_{0, \text { orig }} / a$	$0.1492(10)$	$0.12126(87)$	$0.08789(71)$	$0.05717(51)$	
$w_{0, \text { imp }} / a$	$0.1505(10)$	$0.12066(88)$	$0.08730(70)$	$0.05691(51)$	

$w_{0} m_{\Omega}=1.4483(82)^{s}(15)^{\chi}(45)^{a}(00)^{V}(26)^{\mathrm{phys}}(18)^{M} \quad \sqrt{t_{0}} m_{\Omega}=1.2051(82)^{s}(15)^{\chi}(46)^{a}(00)^{V}(21)^{\mathrm{phys}}(61)^{M}$

$$
=1.4483(97)
$$

$$
\begin{aligned}
\frac{w_{0}}{\mathrm{fm}} & =0.1709(10)^{s}(02)^{\chi}(05)^{a}(00)^{V}(03)^{\mathrm{phys}}(02)^{M} & \frac{\sqrt{t_{0}}}{\mathrm{fm}} & =0.1422(09)^{s}(02)^{\chi}(05)^{a}(00)^{V}(02)^{\mathrm{phys}}(07)^{M} \\
& =0.1709(11), & & =0.1422(14),
\end{aligned}
$$

$$
w_{0}: 0.64 \% \text { uncertainty } \quad \sqrt{t_{0}}: 0.98 \% \text { uncertainty }
$$ $a: 0.66-0.90 \%$ uncert. $a: 0.70-0.77 \%$ uncert.

$$
\frac{a M_{B}}{a}=M_{B}[\mathrm{MeV}]
$$

the most significant uncertainty often comes from a and it introduces a correlation between all ensembles

$$
\sigma_{a M_{B}} / a M_{B} \approx 0.2 \%
$$

Scale Setting versus dimensionless ratios

\square If Scale Setting introduces dominant uncertainty, what about forming a dimensionless ratio? $w_{0} M_{N}, \quad \frac{M_{N}}{4 \pi F_{\pi}}, \quad \frac{M_{N}}{M_{\Omega}}, \quad \cdots$
\square The problem with such options is that each other quantity also depends upon the pion mass

- LECs are pion-mass independent we can not ignore this pion mass dependence as it would pollute our determination of LECs
\square A choice that is possibly the easiest to control the systematics for is a quantity for which we have a good understanding of the chiral corrections - F_{π} (plus ϵ_{a} and FV corrections)

$$
F_{\pi}=F\left\{1+\epsilon_{\pi}^{2}\left(\bar{l}_{4}^{r}-\ln \epsilon_{\pi}^{2}\right)+\epsilon_{\pi}^{4}\left(\frac{5}{4} \ln ^{2} \epsilon_{\pi}^{2}+\left(\hat{c}_{1 F}^{r}+2\right) \ln \epsilon_{\pi}^{2}+\hat{c}_{2 F}^{r}-2 \bar{l}_{4}^{r}\right)\right\}
$$

Scale Setting versus dimensionless ratios

■ Side-bar - for this expression - Ananthanarayan, Bijnens, Ghosh, EPJC 77 (2017) [1703.00141]

$$
F_{\pi}=F\left\{1+\epsilon_{\pi}^{2}\left(\bar{l}_{4}^{r}-\ln \epsilon_{\pi}^{2}\right)+\epsilon_{\pi}^{4}\left(\frac{5}{4} \ln ^{2} \epsilon_{\pi}^{2}+\left(\hat{c}_{1 F}^{r}+2\right) \ln \epsilon_{\pi}^{2}+\hat{c}_{2 F}^{r}-2 \bar{l}_{4}^{r}\right)\right\}
$$

we have set the dim-reg scale $\mu=4 \pi F_{\pi}$, which is not a static quantity
Beane, Bedaque, Orginos, Savage, PRD 75 (2007) [hep-lat/0606023]
However, corrections from this choice arise at a higher order - the NLO log induces an NNLO term
We can correct for this, such that the error made does not appear until $\mathrm{N}^{3} \mathrm{LO}$
Miller et al., PRD102 (2020) [2005.04795]
First, start with $\mu=4 \pi F$

$$
\begin{aligned}
\ln \frac{m_{\pi}^{2}}{(4 \pi F)^{2}}=\ln \left(\frac{m_{\pi}^{2}}{\left(4 \pi F_{\pi}\right)^{2}} \frac{F_{\pi}^{2}}{F^{2}}\right) & =\ln \epsilon_{\pi}^{2}+\ln \left[1+2 \epsilon_{\pi}^{2}\left(\bar{l}_{4}^{r}-\ln \epsilon_{\pi}^{2}\right)+\mathrm{O}\left(\epsilon_{\pi}^{4}\right)\right] \\
& =\ln \epsilon_{\pi}^{2}+2 \epsilon_{\pi}^{2}\left(\bar{l}_{4}^{r}-\ln \epsilon_{\pi}^{2}\right)+\mathrm{O}\left(\epsilon_{\pi}^{4}\right)
\end{aligned}
$$

then LECs still defined at $\mu=4 \pi F$

Scale Setting versus dimensionless ratios

■ Side-bar - for this expression - Ananthanarayan, Bijnens, Ghosh, EPJC 77 (2017) [1703.00141]

$$
F_{\pi}=F\left\{1+\epsilon_{\pi}^{2}\left(\bar{l}_{4}^{r}-\ln \epsilon_{\pi}^{2}\right)+\epsilon_{\pi}^{4}\left(\frac{5}{4} \ln ^{2} \epsilon_{\pi}^{2}+\left(\hat{c}_{1 F}^{r}+2\right) \ln \epsilon_{\pi}^{2}+\hat{c}_{2 F}^{r}-2 \bar{l}_{4}^{r}\right)\right\}
$$

we have set the dim-reg scale $\mu=4 \pi F_{\pi}$, which is not a static quantity Beane, Bedaque, Orginos, Savage, PRD 75 (2007) [hep-lat/0606023]

However, corrections from this choice arise at a higher order - the NLO log induces an NNLO term
We can correct for this, such that the error made does not appear until $\mathrm{N}^{3} \mathrm{LO}$
Miller et al., PRD102 (2020) [2005.04795]
First, start with $\mu=4 \pi F$

$$
\begin{aligned}
\ln \frac{m_{\pi}^{2}}{(4 \pi F)^{2}}=\ln \left(\frac{m_{\pi}^{2}}{\left(4 \pi F_{\pi}\right)^{2}} \frac{F_{\pi}^{2}}{F^{2}}\right) & =\ln \epsilon_{\pi}^{2}+\ln \left[1+2 \epsilon_{\pi}^{2}\left(\bar{l}_{4}^{r}-\ln \epsilon_{\pi}^{2}\right)+\mathrm{O}\left(\epsilon_{\pi}^{4}\right)\right] \\
& =\ln \epsilon_{\pi}^{2}+2 \epsilon_{\pi}^{2}\left(\bar{l}_{4}^{r}-\ln \epsilon_{\pi}^{2}\right)+\mathrm{O}\left(\epsilon_{\pi}^{4}\right)
\end{aligned}
$$

then LECs still defined at $\mu=4 \pi F$

Scale Setting versus dimensionless ratios

\square If Scale Setting introduces dominant uncertainty, what about forming a dimensionless ratio?
$w_{0} M_{N}, \quad \frac{M_{N}}{4 \pi F_{\pi}}, \quad \frac{M_{N}}{M_{\Omega}}, \quad \cdots$
\square The problem with such options is that each other quantity also depends upon the pion mass

- LECs are pion-mass independent we can not ignore this pion mass dependence as it would pollute our determination of LECs
D A choice that is possibly the easiest to control the systematics for is a quantity for which we have a good understanding of the chiral corrections - F_{π} (plus ϵ_{a} and FV corrections)

$$
F_{\pi}=F\left\{1+\epsilon_{\pi}^{2}\left(\bar{l}_{4}^{r}-\ln \epsilon_{\pi}^{2}\right)+\epsilon_{\pi}^{4}\left(\frac{5}{4} \ln ^{2} \epsilon_{\pi}^{2}+\left(\hat{c}_{1 F}^{r}+2\right) \ln \epsilon_{\pi}^{2}+\hat{c}_{2 F}^{r}-2 \bar{l}_{4}^{r}\right)\right\}
$$

- Then perform simultaneous extrapolation of $\frac{M_{N}}{4 \pi F_{\pi}}, \quad F_{\pi}$ to determine LECs describing M_{N}

The extrapolation of a few quantities and tests of convergence

$\square M_{N}$
$\square M_{n}-M_{p}$
$\square g_{A}$
$\square \pi N$ scattering lengths

$M_{N} \mathrm{VS} m_{\pi}$

\square The nucleon mass is known through $\mathrm{O}\left(m_{\pi}^{5}\right)$ in $\mathrm{SU}(2) \mathrm{HB} \chi \mathrm{PT}$
McGovern, Birse PRD74 (2006) [hep-lat/0608002]
\square Generically

$$
\left.\begin{array}{ll}
\text { McGovern, Birse PRD74 (2006) [hep-lat/0608002] } \\
\text { Generically } \\
M_{N}=M_{0}+\Lambda_{\chi}
\end{array} \begin{array}{lll}
-\epsilon_{\pi}^{2} 4 \bar{c}_{1}-\epsilon_{\pi}^{3} \frac{3 \pi g_{A}^{2}}{2}+\epsilon_{\pi}^{4}\left(\alpha_{4}+\beta_{4} \ln \epsilon_{\pi}^{2}\right)+\epsilon_{\pi}^{5}\left(\frac{3 \pi g_{A}^{4}}{2}\left(1+4 \ln \epsilon_{\pi}^{2}\right)+\alpha_{5}\right)+\mathrm{O}\left(\epsilon_{\pi}^{6}\right)
\end{array}\right] \begin{aligned}
& \epsilon_{\pi}=\frac{m_{\pi}}{4 \pi F_{\pi}} \\
& \mathrm{LO}_{\chi}=4 \pi F_{\pi} \\
& \bar{c}_{1}=\frac{c_{1}}{4 \pi F}
\end{aligned}
$$

\square Note:
$\square \mathrm{N}^{2} \mathrm{LO}$ term is LEC-free (if we take g_{A} from other results) and negative and has a large coefficient
$\square \mathrm{N}^{4} \mathrm{LO}$ term has an even larger coefficient as well $\ln \epsilon_{\pi}^{2}$ enhancement (that is negative)
\square If we study M_{N} / Λ_{χ}, the known chiral corrections to F_{π} contribute at $\mathrm{N}^{3} \mathrm{LO}$, then $\mathrm{N}^{5} \mathrm{LO}$ (even powers of ϵ_{π} only)
\square How does this compare with LQCD results?

$M_{N} \mathrm{VS} m_{\pi}$

$$
M_{N}=M_{0}+\Lambda_{\chi}\left[-\epsilon_{\pi}^{2} 4 \bar{c}_{1}-\epsilon_{\pi}^{3} \frac{3 \pi g_{A}^{2}}{2}+\epsilon_{\pi}^{4}\left(\alpha_{4}+\beta_{4} \ln \epsilon_{\pi}^{2}\right)+\epsilon_{\pi}^{5}\left(\frac{3 \pi g_{A}^{4}}{2}\left(1+4 \ln \epsilon_{\pi}^{2}\right)+\alpha_{5}\right)+\mathrm{O}\left(\epsilon_{\pi}^{6}\right)\right]
$$

$\mathrm{N}^{3} \mathrm{LO}-m_{\pi}^{4}$, with $g_{A}=1.2(1), g_{\Delta \mathrm{N}}=0$

Walker-Loud et al. (LHP) PRD79 [0806.4549]

$\square m_{\pi} \gtrsim 300 \mathrm{MeV}, \quad$ both extrapolations have good $\chi^{2} / d o f$
\square Ruler Fit (physical point not included): $\quad M_{N} \simeq 800+m_{\pi} \quad\left[806(14)+0.984(49) m_{\pi}\right]$

■ m_{π} is clearly too heavy to draw conclusions - how does it compare to more modern results?

$M_{N} \mathrm{VS} m_{\pi}$

CalLat (under analysis)

$---=800+m_{\pi} \mathrm{MeV}$
$\square=\mathrm{N}^{3} \mathrm{LO} \operatorname{SU}(2)$ HBXPT

\square Ruler line is the same (x -axis is not quite the same) \square Note the large $a m_{\pi}$ correction $\left(a^{2} m_{\pi}^{2}\right)$ in new results

$M_{N} \operatorname{vs} m_{\pi}$

-What are the lessons?

\square Nucleon mass goes up while leading non-analytic correction goes down - M_{N} results want small g_{A}
\square Need simultaneous fit of M_{N}, g_{A} to stabilize
$\square \mathrm{QCD}$ seems to conspire to produce linear in m_{π} behavior $\left(\sqrt{\hat{m}_{u, d}}\right)$
\square This requires strong cancellations between different orders - not a sign of a healthy expansion

\square At $m_{\pi}^{\text {phys }}$, the series is converging
\square Adding explicit Δ makes the convergence worse non-convergent? need more LQCD results
$M_{N}=M_{0}+\Lambda_{\chi}\left[-\epsilon_{\pi}^{2} 4 \bar{c}_{1}-\epsilon_{\pi}^{3} \frac{3 \pi g_{A}^{2}}{2}+\epsilon_{\pi}^{4}\left(\alpha_{4}+\beta_{4} \ln \epsilon_{\pi}^{2}\right)+\epsilon_{\pi}^{5}\left(\frac{3 \pi g_{A}^{4}}{2}\left(1+4 \ln \epsilon_{\pi}^{2}\right)+\alpha_{5}\right)+\mathrm{O}\left(\epsilon_{\pi}^{6}\right)\right]$

$$
M_{n}-M_{p} \operatorname{vs} m_{\pi}
$$

\square In order to compute strong-isospin breaking quantity, like $M_{n}-\left.M_{p}\right|_{m_{d} \neq m_{u}}$ one can use isospin-symmetric sea-quarks and split the quark mass in the valence sector Tiburzi, Walker-Loud, NPA 764 (2006) [hep-lat/0501018] Beane, Orginos, Savage, NPB 768 (2007) [hep-lat/0605014] Walker-Loud, [0904.2404]
"Symmetric breaking of isospin symmetry"

$$
\begin{aligned}
& m_{u, d}^{\text {sea }}=m_{l}, \quad m_{u}^{\text {valence }}=m_{l}-\delta, \quad m_{d}^{\text {valence }}=m_{l}+\delta \\
& \mathcal{Z}_{u, d}=\int D U_{\mu} \operatorname{Det}\left(D+m_{l}-\delta \tau_{3}\right) e^{-S\left[U_{\mu}\right]} \\
&=\int D U_{\mu} \operatorname{Det}\left(D+m_{l}\right) \operatorname{det}\left(1-\frac{\delta^{2}}{\left(D+m_{l}\right)^{2}}\right) e^{-S\left[U_{\mu}\right]}
\end{aligned}
$$

$$
M_{n}-M_{p} \operatorname{vs} m_{\pi}
$$

\square In order to compute strong-isospin breaking quantity, like $M_{n}-\left.M_{p}\right|_{m_{d} \neq m_{u}}$ one can use isospin-symmetric sea-quarks and split the quark mass in the valence sector Tiburzi, Walker-Loud, NPA 764 (2006) [hep-lat/0501018] Beane, Orginos, Savage, NPB 768 (2007) [hep-lat/0605014] Walker-Loud, [0904.2404]

"Symmetric breaking of isospin symmetry"

$$
\begin{aligned}
& m_{u, d}^{\text {sea }}=m_{l}, \quad m_{u}^{\text {valence }}=m_{l}-\delta, \quad m_{d}^{\text {valence }}=m_{l}+\delta \\
& \mathcal{Z}_{u, d}=\int D U_{\mu} \operatorname{Det}\left(D+m_{l}-\delta \tau_{3}\right) e^{-S\left[U_{\mu}\right]} \\
&=\int D U_{\mu} \operatorname{Det}\left(D+m_{l}\right) \operatorname{det}\left(1-\frac{\delta^{2}}{\left(D+m_{l}\right)^{2}}\right) e^{-S\left[U_{\mu}\right]} \quad \begin{array}{l}
\text { Isospin symmetric quantities: error } \mathcal{O}\left(\delta^{2}\right) \\
\text { Isospin violating quantities: error } \mathcal{O}\left(\delta^{3}\right)
\end{array} \\
& \text { see also de Divitis etal JHEP I204 (2012) } \\
& \text { de Divitis etal Phys. Rev. D87 (2013) }
\end{aligned}
$$

$$
M_{n}-M_{p} \text { vs } m_{\pi}
$$

\square The iso-vector nucleon mass is known through $\mathrm{O}\left(m_{\pi}^{4}\right)$ in $\mathrm{SU}(2) \mathrm{HB} \chi \mathrm{PT}$
Walker-Loud [0904.2404]

$$
\delta_{M_{N}}^{m_{d}-m_{u}} \equiv M_{n}-M_{p}=\delta\left\{\alpha_{N}\left[1-\frac{6 g_{A}^{2}+1}{2} \epsilon_{\pi}^{2} \ln \epsilon_{\pi}^{2}\right]+\beta_{N} \epsilon_{\pi}^{2}\right\}
$$

-Compare with LQCD results, Brantley et al [1612.07733]

$\mathrm{HB} \chi \mathrm{PT}$ prediction

Taylor expansion (polynomial)
\square single lattice spacing
$\square 3$ pion masses
$\square 3$ values of $\delta=\frac{m_{d}-m_{u}}{2}$
\square scale setting with m_{Ω}
】determine $\delta^{\text {phys }}$ with kaon mass splitting (after removing estimated QED corrections)
\square shift data to $\delta^{\text {phys }}$ for plot

$$
M_{n}-M_{p} \text { vs } m_{\pi}
$$

$\mathrm{HB} \chi \mathrm{PT}$ prediction

\square prior g_{A} from LQCD result posterior [prior] logGBF $g_{A}=1.271(13) \quad[1.271(13)] \quad 65.088$

■prior g_{A} "agnostically"

$$
g_{A}=1.15(52) \quad[1.3(2.0)] \quad 63.817
$$

\square prior g_{A} from PDG

$$
g_{A}=1.2754(13) \quad[1.2754(13)] \quad 65.084
$$

relative weight $w_{k}=e^{\operatorname{logGBF}_{k}}$

$$
M_{n}-M_{p} \operatorname{vs} m_{\pi}
$$

convergence is tolerable

Taylor expansion (polynomial)

convergence is not very good

Bayes Model Average

$\delta_{M_{N}}^{m_{d}-m_{u}}=2.43(13)^{s}(26)^{M}(18)^{\delta}(04)^{\text {scale }}$

Model $\quad \chi^{2} / d o f \operatorname{logGBF}$ weight

HB			
χ PT	0.347	65.088	0.749

Taylor
$0.786 \quad 63.993$
0.251

$$
M_{n}-M_{p} \operatorname{vs} m_{\pi}
$$

\square What are the lessons?

$$
\delta_{M_{N}}^{m_{d}-m_{u}} \equiv M_{n}-M_{p}=\delta\left\{\alpha_{N}\left[1-\frac{6 g_{A}^{2}+1}{2} \epsilon_{\pi}^{2} \ln \epsilon_{\pi}^{2}\right]+\beta_{N} \epsilon_{\pi}^{2}\right\}
$$

\square Interesting to note that this iso-vector mass is related to the CP-odd pion-nucleon coupling arising from a QCD θ-term

Use various "models" to extrapolate

Chang et al (CalLat) Nature 558 (2018) [1805.12130]

Final result

$$
g_{A}^{\mathrm{QCD}}=1.2711(103)^{s}(39)^{\chi}(15)^{a}(19)^{V}(04)^{I}(55)^{M}
$$

Fit	$\chi^{2} /$ dof	$\mathcal{L}\left(D \mid M_{k}\right)$	$P\left(M_{k} \mid D\right)$	$P\left(g_{A} \mid M_{k}\right)$
NNLO χ PT	0.727	22.734	0.033	$1.273(19)$
NNLO+ct χ PT	0.726	22.729	0.033	$1.273(19)$
NLO Taylor ϵ_{π}^{2}	0.792	24.887	0.287	$1.266(09)$
NNLO Taylor ϵ_{π}^{2}	0.787	24.897	0.284	$1.267(10)$
NLO Taylor ϵ_{π}	0.700	24.855	0.191	$1.276(10)$
NNLO Taylor ϵ_{π}	0.674	24.848	0.172	$1.280(14)$
average				$1.271(11)(06)$

Use various "models" to extrapolate

Chang et al (CalLat) Nature 558 (2018) [1805.12130]

Final result

$g_{A}^{\mathrm{QCD}}=1.2711(103)^{s}(39)^{\chi}(15)^{a}(19)^{V}(04)^{I}(55)^{M}$

						Fit $\chi^{2} /$ dof $\mathcal{L}\left(D \mid M_{k}\right) P\left(M_{k} \mid D\right)$				$P\left(g_{A} \mid M_{k}\right)$
				NNLO χ PT	0.727	22.734	0.033	1.273 (19)		
				$\mathrm{NNLO}+\mathrm{ct} \chi \mathrm{P}^{\prime} \mathrm{T}$	0.726	22.729	0.033	1.273 (19)		
				NLO Taylor ϵ_{π}^{2}	0.792	24.887	0.287	$1.266(09)$		
				NNLO Taylor ϵ_{π}^{2}	0.787	24.897	0.284	$1.267(10)$		
						NLO Taylor ϵ_{π}	0.700	24.855	0.191	$1.276(10)$
						NNLO Taylor ϵ_{π}	0.674	24.848	0.172	$1.280(14)$
						average			$1.271(11)(06)$	
$\begin{array}{lllll}1.24 & 1.26 & 1.28 & 1.30 & 1.32\end{array}$	$\begin{array}{llll}1.26 & 1.28 & 1.30 & 1.32\end{array}$									
	The numerical results "do not like $\chi \mathrm{PT}$ "									

convergence of the chiral expansion...

$$
\begin{aligned}
g_{A}= & g_{0}-\epsilon_{\pi}^{2}\left(g_{0}+2 g_{0}^{3}\right) \ln \left(\epsilon_{\pi}^{2}\right) \\
& +c_{2} \epsilon_{\pi}^{2}+g_{0} c_{3} \epsilon_{\pi}^{3}
\end{aligned}
$$

$$
\epsilon_{\pi}=\frac{m_{\pi}}{4 \pi F_{\pi}}
$$

$$
\begin{aligned}
g_{A}= & g_{0}-\epsilon_{\pi}^{2}\left(g_{0}+2 g_{0}^{3}\right) \ln \left(\epsilon_{\pi}^{2}\right) \\
& +c_{2} \epsilon_{\pi}^{2}+g_{0} c_{3} \epsilon_{\pi}^{3}+c_{4} \epsilon_{\pi}^{4}
\end{aligned}
$$

\square Chiral corrections to gA $@ m_{\pi}^{\text {phys }}$				
$\mathrm{N}^{n} \mathrm{LO}$	LO	NLO	$\mathrm{N}^{2} \mathrm{LO}$	$\mathrm{N}^{3} \mathrm{LO}$
$\mathrm{N}^{\mathrm{N} D O}$	$1.237(34)$	$-0.026(30)$	$0.062(14)$	-
$\mathrm{N}^{3} \mathrm{LO}$	$1.296(76)$	$-0.19(12)$	$0.045(63)$	$0.117(66)$

$$
\begin{aligned}
& g_{A}= g_{0}-\epsilon_{\pi}^{2}\left(g_{0}+2 g_{0}^{3}\right) \ln \left(\epsilon_{\pi}^{2}\right) \\
&+c_{2} \epsilon_{\pi}^{2}+g_{0} c_{3} \epsilon_{\pi}^{3} \\
&+\epsilon_{\pi}^{4}\left[c_{4}+\tilde{\gamma}_{4} \ln \left(\epsilon_{\pi}^{2}\right)\right. \\
&\left.+\left(\frac{2}{3} g_{0}+\frac{37}{12} g_{0}^{3}+4 g_{0}^{5}\right) \ln ^{2}\left(\epsilon_{\pi}^{2}\right)\right] \\
& \text { Bernard and Meissner (CD06) }
\end{aligned}
$$

Phys.Lett.B639 [hep-lat/0605010]

Nature 558 (2018) no. 7708, 91-94
Chang et al. [arXiv:1805.12130]
1 year on Titan $(\mathrm{ORNL})+2$ years

Sierra Early Science
PRELIMINARY
\square The a12m130 ($48^{3} \times 64 \times 20$) with 3 sources cost as much as all other ensembles combined
$\square 2.5$ weekends on Sierra $\rightarrow 16$ srcs
-Now, 32 srcs (un-constrained, 3-state fit)
\square We generated a new a15m135XL ($48^{3} \times 64$) ensemble (old a15m130 is $32^{3} \times 48$)
Walker-Loud et al (CalLat) PoS CD2018 [1912.08321]
$\square \mathrm{M} \pi \mathrm{L}=4.93$ (old $\mathrm{M} \pi \mathrm{L}=3.2$)
$\square L_{5}=24, N_{\text {src }}=16$

$$
\mathrm{g}_{\mathrm{A}}=1.2711(125) \rightarrow 1.2641(93) \quad[0.74 \%]
$$

Nature 558 (2018) no. 7708, 91-94 Chang et al. [arXiv:1805.12130] 1 year on Titan $(O R N L)+2$ years

Sierra Early Science
PRELIMINARY
\square The a12m130 ($48^{3} \times 64 \times 20$) with 3 sources cost as much as all other ensembles combined
$\square 2.5$ weekends on Sierra $\rightarrow 16$ srcs
-Now, 32 srcs (un-constrained, 3-state fit)
\square We generated a new a15m135XL ($48^{3} \times 64$) ensemble (old a15m130 is $32^{3} \times 48$)
Walker-Loud et al (CalLat) PoS CD2018 [1912.08321]
$\square \mathrm{M} \pi \mathrm{L}=4.93$ (old $\mathrm{M} \pi \mathrm{L}=3.2$)
$\square L_{5}=24, N_{\text {src }}=16$

$$
\mathrm{g}_{\mathrm{A}}=1.2711(125) \rightarrow 1.2641(93) \quad[0.74 \%]
$$

Sierra Early Science
PRELIMINARY

\square The a12m130 ($48^{3} \times 64 \times 20$) with 3 sources cost as much as all other ensembles combined
$\square 2.5$ weekends on Sierra $\rightarrow 16$ srcs
\square Now, 32 srcs (un-constrained, 3-state fit)
\square We generated a new a15m135XL ($48^{3} \times 64$) ensemble (old a15m130 is $32^{3} \times 48$)
Walker-Loud et al (CalLat) PoS CD2018 [1912.08321]
$\square \mathrm{M} \pi \mathrm{L}=4.93$ (old $\mathrm{M} \pi \mathrm{L}=3.2$)
$\square L_{5}=24, N_{\text {src }}=16$

$$
\mathrm{g}_{\mathrm{A}}=1.2711(125) \rightarrow 1.2641(93)[0.74 \%]
$$

$\square W e$ have 2 additional pion masses $(180,260)$ and a 4th finer lattice spacing, $a \approx 0.06 \mathrm{fm} @ \mathrm{M} \pi \approx 220,310 \mathrm{MeV}$ \square We anticipate improving g_{A} to $\sim 0.5 \%$ - we need to address the radiative QED correction to make this useful
convergence of the chiral expansion...

\square Chiral corrections to g_{A} from $S U(2) \mathrm{HB} \chi \mathrm{PT}(\not \boxed{)}$) at the physical pion mass

$\mathrm{N}^{n} \mathrm{LO}$	LO	NLO	$\mathrm{N}^{2} \mathrm{LO}$	$\mathrm{N}^{3} \mathrm{LO}$
$\mathrm{N}^{2} \mathrm{LO}$	$1.237(34)$	$-0.026(30)$	$0.062(14)$	-
$\mathrm{N}^{3} \mathrm{LO}$	$1.296(76)$	$-0.19(12)$	$0.045(63)$	$0.117(66)$

PRELIMINARY 2019

\square Worth noting - if you use $S U(2) \mathrm{HB} \chi \mathrm{PT}(\Delta)$ and force the delta-axial couplings, the value of the pion-nucleon sigma term is also large
\square large Nc gives de-coherent nucleon and delta loop corrections to g_{A}, but coherent to M_{N}

- $S U(2) \mathrm{HB} \chi \mathrm{PT}(\Delta)$ has a chance of being a converging expansion - but it won't be pretty
convergence of the chiral expansion...

\square Chiral corrections to g_{A} from $S U(2) \mathrm{HB} \chi \mathrm{PT}(\not \boxed{)}$) at the physical pion mass

$\mathrm{N}^{n} \mathrm{LO}$	LO	NLO	$\mathrm{N}^{2} \mathrm{LO}$	$\mathrm{N}^{3} \mathrm{LO}$
$\mathrm{N}^{2} \mathrm{LO}$	$1.237(34)$	$-0.026(30)$	$0.062(14)$	-
$\mathrm{N}^{3} \mathrm{LO}$	$1.296(76)$	$-0.19(12)$	$0.045(63)$	$0.117(66)$

\square We need LQCD results with Δ to study convergence of $\mathrm{SU}(2) \mathrm{HB} \chi \mathrm{PT}(\Delta)-\pi N$ scattering

PRELIMINARY 2019

\square Worth noting - if you use $S U(2) \mathrm{HB} \chi \mathrm{PT}(\Delta)$ and force the delta-axial couplings, the value of the pion-nucleon sigma term is also large
\square large Nc gives de-coherent nucleon and delta loop corrections to g_{A}, but coherent to M_{N}

- $S U(2) \mathrm{HB} \chi \mathrm{PT}(\Delta)$ has a chance of being a converging expansion - but it won't be pretty

πN scattering at $m_{\pi} \approx 200 \mathrm{MeV}$

```
aI\iV > hep-lat > arXiv:2208.03867
```

High Energy Physics - Lattice
[Submitted on 8 Aug 2022 (v1), last revised 7 Feb 2023 (this version, v3)]

Elastic nucleon-pion scattering at $m_{\pi}=200 \mathrm{MeV}$ from lattice QCD

John Bulava, Andrew Hanlon, Ben Hörz, Colin Morningstar, Amy Nicholson, Fernando Romero-López, Sarah Skinner, Pavlos Vranas, André Walker-Loud Nucl. Phys. B 987 (2023) 116105
-Exciting in its own right
\square Stepping stone towards NN (at this light pion mass)
$\square m_{\pi}$ is light enough that
\square the Δ is unstable
Doptimistic that EFT could be convergent-ish

Elastic nucleon-pion scattering at $\mathrm{M} \pi \approx 200 \mathrm{MeV}$ from lattice QCD
\square Various irreps used to determine the spectrum

\boldsymbol{d}	Λ	dim.	contributing $(2 J, \ell)^{n_{\text {occ }}}$ for $\ell_{\max }=2$
$(0,0,0)$	$G_{1 \mathrm{u}}$	2	$(1,0)$
	$G_{1 \mathrm{~g}}$	2	$(1,1)$
	H_{g}	4	$(3,1),(5,2)$
	H_{u}	4	$(3,2), 5,2)$
	$G_{2 \mathrm{~g}}$	2	$(5,2)$
$(0,0, n)$	G_{1}	2	$(1,0),(1,1),(3,1),(3,2),(5,2)$
	G_{2}	2	$(3,1),(3,2),(5,2)^{2}$
$(0, n, n)$	G	2	$(1,0),(1,1),(3,1)^{2},(3,2)^{2},(5,2)^{3}$
(n, n, n)	G	2	$(1,0),(1,1),(3,1),(3,2),(5,2)^{2}$
	F_{1}	1	$(3,1),(3,2),(5,2)$
	F_{2}	1	$(3,1),(3,2),(5,2)$

Note: the gray bands and green energy levels are correlated, which is not reflected visually in the plots

Elastic nucleon-pion scattering at $\mathrm{M} \pi \approx 200 \mathrm{MeV}$ from lattice QCD
$\square F V$ Spectrum to Scattering Amplitudes [Lüscher, ... many others]

$$
\operatorname{det}\left[\tilde{K}^{-1}\left(E_{\mathrm{cm}}\right)-B^{P}\left(E_{\mathrm{cm}}\right)\right]+\mathrm{O}\left(\mathrm{e}^{-M L}\right)=0
$$

$\square \tilde{K}$ proportional to the K -matrix
口 $B^{\mathrm{P}}\left(E_{\mathrm{cm}}\right)$ is the "Box Matrix" that encodes information about the finite-volume and BCs
\square Solving this expression is equivalent to looking for poles in a coupled-channel scattering amplitude
\square for a single channel

$$
p \cot \delta-i p=0 \longrightarrow p \cot \delta-\frac{1}{\pi L} \lim _{\Lambda \rightarrow \infty}\left(\sum_{|\vec{n}|<\Lambda} \frac{1}{|\vec{n}|^{2}-\frac{p^{2} L^{2}}{4 \pi^{2}}}-4 \pi \Lambda\right)=0
$$

Elastic nucleon-pion scattering at $\mathrm{M} \pi \approx 200 \mathrm{MeV}$ from lattice QCD [2208.03867]
ロFV Spectrum to Scattering Amplitudes - spectrum method comparison - resulting amplitude

$\mathrm{I}=3 / 2$ fit using s - and p -wave approximation

open symbol: contributes to single partial wave closed symbol: contributes to both partial waves

Elastic nucleon-pion scattering at $\mathrm{M} \pi \approx 200 \mathrm{MeV}$ from lattice QCD
\square Results for scattering lengths and effective Delta-resonance parameters

$$
\begin{aligned}
m_{\Delta} & =1268(17) \mathrm{MeV} \quad \frac{m_{\Delta}}{m_{\pi}}=6.257(35), \quad g_{\Delta N \pi}=14.41(53) \\
m_{\pi} a_{0}^{3 / 2} & =-0.2735(81), \quad m_{\pi} a_{0}^{1 / 2}=0.142(22)
\end{aligned}
$$

Compare with χ PT

-The formula for the scattering length are known at 4th order in the chiral expansion (w/o Δ)
-They are expressed in terms of what is called scalar and vector scattering lengths

$$
a_{0}^{3 / 2}=a_{0}^{+}-a_{0}^{-}
$$

$$
a_{0}^{1 / 2}=a_{0}^{+}+2 a_{0}^{-}
$$

\square At NLO, these are given by

- Hoferichter et al, 1510.06039, Hoferichter et al, 1507.07552
- Fettes, Meissner [Steininger] [hep-ph/9803266] hep-ph/0002162

$$
C=M_{N}\left(2 c_{1}-c_{2}-c_{3}\right)
$$

$$
\epsilon_{\pi}=\frac{m_{\pi}}{4 \pi F_{\pi}}, \mu=\frac{m_{\pi}}{M_{N}}, \Lambda_{\chi}=4 \pi F_{\pi} \quad \begin{array}{ll}
\epsilon_{\pi}^{\mathrm{D} 200}=0.1759(12), & \mu^{\mathrm{D} 200}=0.2102(19) \\
\epsilon_{\pi}^{\mathrm{phys}}=0.12064(74), & \mu^{\text {phys }}=0.14875(05)
\end{array}
$$

$$
\begin{aligned}
& m_{\pi} a_{0}^{3 / 2}[\mathrm{NLO}]=-\epsilon_{\pi}^{2} \frac{2 \pi}{1+\mu}\left\{1+\frac{\epsilon_{\pi}}{2} \frac{\Lambda_{\chi}}{m_{N}}\left(g_{A}^{2}+8 C\right)\right\}, \underset{\text { order pheno }}{\text { COMPARISON of } \mathrm{C}=\mathrm{mN} *(2 \mathrm{c} 1-\mathrm{c} 2-\mathrm{c} 3)} \\
& m_{\pi} a_{0}^{1 / 2}[\mathrm{NLO}]=\epsilon_{\pi}^{2} \frac{2 \pi}{1+\mu}\left\{1-\frac{\epsilon_{\pi}}{4} \frac{\Lambda_{\chi}}{m_{N}}\left(g_{A}^{2}+8 C\right)\right\}, \begin{array}{rr}
\text { nlo } & 0.300(24) \\
\text { n2lo } & -0.019(24) \\
\text { n3lo } & 0.244(29)
\end{array} \\
& 0.648(62) \\
& \text { NA }
\end{aligned}
$$

Compare with $\chi \mathrm{PT}$

-The formula for the scattering length are known at 4th order in the chiral expansion (w/o Δ)
-They are expressed in terms of what is called scalar and vector scattering lengths

$$
a_{0}^{3 / 2}=a_{0}^{+}-a_{0}^{-}, \quad a_{0}^{1 / 2}=a_{0}^{+}+2 a_{0}^{-}
$$

\square At NLO, these are given by

- Hoferichter et al, 1510.06039, Hoferichter et al, 1507.07552
- Fettes, Meissner [Steininger] [hep-ph/9803266] hep-ph/0002162

$$
\begin{aligned}
& m_{\pi} a_{0}^{3 / 2}[\mathrm{NLO}]=-\epsilon_{\pi}^{2} \frac{2 \pi}{1+\mu}\left\{1+\frac{\epsilon_{\pi}}{2} \frac{\Lambda_{\chi}}{m_{N}}\left(g_{A}^{2}+8 C\right)\right\}, \underset{\text { order pheno }}{\text { COMPARISON of } \mathrm{C}=\mathrm{mN} *(2 \mathrm{c} 1-\mathrm{c} 2-\mathrm{c} 3)} \\
& m_{\pi} a_{0}^{1 / 2}[\mathrm{NLO}]=\epsilon_{\pi}^{2} \frac{2 \pi}{1+\mu}\left\{1-\frac{\epsilon_{\pi}}{4} \frac{\Lambda_{\chi}}{m_{N}}\left(g_{A}^{2}+8 C\right)\right\}, \begin{array}{rrr}
\text { nlo } & 0.300(24) & 0.648(62) \\
\text { n2lo } & -0.019(24) & \text { NA } \\
\text { n3lo } & 0.244(29) & \text { NA }
\end{array}
\end{aligned}
$$

	$m_{\pi}(\mathrm{MeV})$	$m_{\pi} a_{0}^{1 / 2}$	$m_{\pi} a_{0}^{3 / 2}$
This work	200	$0.142(22)$	$-0.2735(81)$
LO $\chi \mathrm{PT}$	200	$0.321(04)(57)$	$-0.161(02)(28)$
LO $\chi \mathrm{PT}$	140	$0.159(02)(19)$	$-0.080(01)(10)$
Pheno. (isospin limit)[27]	140	$0.1788(38)$	$-0.0775(35)$

Outlook

■ There is a growing body of LQCD evidence that $\mathrm{SU}(2)$ baryon $\chi \mathrm{PT}$ is not converging @ $m_{\pi}^{\text {phys }}$
\square nucleon mass: convergent - adding Δ may make it marginally convergent

- $g_{A}:$ not convergent - adding Δ may make it convergent
- πN scattering lengths: seemingly very different @ $m_{\pi} \approx 200 \mathrm{MeV}$ than @ $m_{\pi}^{\text {phys }}$
\square We are gearing up to perform LQCD calculations with Δ-dof to be able to determine all relevant LECis with LQCD results and not have to rely upon phenol-extractions
- This will likely take 2-3 years
\square This will enable a QCD determination of the convergence pattern of $\mathrm{SU}(2)$ baryon $\chi \mathrm{PT}(\Delta)$
- What additional observables/tests would you like to see to settle this convergence/non-convergence of $\mathrm{SU}(2)$ baryon χ PT?
\square If $\mathrm{SU}(2)$ baryon $\chi \mathrm{PT}$ is non-convergent - what does this mean about NN EFT with dynamical pions?
\square It seems to me that this would invalidate a critical foundation of "chiral EFT"
- We (the community) often present EFT as better than models
\square This is true - provided the EFT is converging fast enough (if at all)
- LQCD is maturing to the point where we can really map out the convergence pattern/radius of nuclear EFTs
\square This scrutiny is essential for us to truly quantify our EFT uncertainties

Thank You

Collaborators

CoSMoN

(Connecting the Standard Model to Nuclei)

> (postdoc, grad student, undergrad)

Grant Bradley	Brown University
John Bulava	DESY
Kate Clark	NVIDIA
Zack Hall	University of North Carolina Chapel Hill
Andrew Hanlon	Brookhaven National Laboratory
Jinchen He	University of Maryland College Park
Ben Hörz	INTEL
Dean Howarth	Lawrence Berkeley National Laboratory
Bálint Joó	Oak Ridge National Laboratory
Aaron Meyer	Lawrence Livermore National Laboratory/NTN
Henry Monge-Camacho	Oak Ridge National Laboratory
Colin Morningstar	Carnegie Mellon University
Joseph Moscoso	University of North Carolina Chapel Hill
Amy Nicholson	University of North Carolina Chapel Hill
Fernando Romero-López	
Andrea Shindler	UIT
Sarah Skinner	UC Berkeley / Aachen
Pavlos Vranas	Carnegie Mellon University
André Walker-Loud	Lawrence Livermore National Laboratory
Daniel Xing	Lawrence Berkeley National Laboratory
Yizhou Zhai	University of California Berkeley

(Baryon Scattering)

(postdoc, grad student, undergrad)

Bárbara Cid-Mora	GSI
Jeremy Green	DESY
R. Jamie Hudspith	GSI
M. Padmanath	IMSc, Chennai
Parikshit Junnarkar	Darmstadt
Nolan Miller	University of Mainz
Daniel Mohler	GSI
Srijit Paul	University of Edinburgh
Hartmut Wittig	University of Mainz

