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Parallels and differences between heavy-ion collisions and NS cores:

 Both feature strongly interacting matter at high energy densities — up
to and exceeding 1 GeV/fm?

o At these energy densities, QCD strongly coupled — need to account
for non-perturbative effects in some fashion

At high T, lattice simulations have found a crossover deconfinement
transition at T~155 MeV, e~400 MeV/fm?3, while at high ng order and
location of transition unknown (lattice results not available)

o Need alternative (experimental?) access to non-perturbative physics

* In heavy-ion physics, creation of deconfined matter confirmed
indirectly through presence of a near-thermal medium with T > T,

o Can this be repeated in NS context, perhaps through EoS inference?




NS matter: from dilute crust to ultradense core



Proceeding inwards from the crust:

Low-density EoS constrained by experiment; ook ;ylrtlemat|cerrors §24% |8
after neutron drip point interactions matter g /
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to neutron liquid and beyond
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Proceeding inwards from the crust:

* Up increases gradually, starting from ug,

* Baryon/mass density increase beyond
saturation density ~ 0.16/fm?

e Composition changes from ions to nuclei
to neutron liguid and beyond

* Good approximations: T = 0 = n,

1.0p

At high density, asymptotic freedom =
weakening coupling and deconfinement

e State-of-the-art pQCD EoS at partial . 06}

P/ Dtrec

NNNLO, with purely soft and mixed
sectors fully determined [Gorda et al., PRL 127

(2021); PRL 131 (2023)] 02}

 Missing hard contribution shown to bring
dramatic improvements in accuracy
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Proceeding inwards from the crust:

* Up increases gradually, starting from ug,

* Baryon/mass density increase beyond
saturation density ~ 0.16/fm?

e Composition changes from ions to nuclei
to neutron liguid and beyond

* Good approximations: T = 0 = n,

. Low- and high-density limits under control
but extensive no-man’s land at intermed.
densities. Possibilities for proceeding:

1) Solve the sign problem of lattice QCD

2) Use phenomenological models for
nuclear and quark matter

3) Allow all possible behaviors for the EoS
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outer crust 0.3-0.5 km

Proceeding inwards from the crust: .
o ions, electrons

* Up increases gradually, starting from ug,

* Baryon/mass density increase beyond
saturation density ~ 0.16/fm?

e Composition changes from ions to nuclei
to neutron liguid and beyond

* Good approximations: T = 0 = ng

inner crust 1-2 km

-#—— electrons, neutrons, nuclei

outer core ~ 9 km
neutron-proton Fermi liquid
few % electron Fermi gas

» Low- and high-density limits under control %~
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NS-matter EoS: model-independent interpolation



Useful strategy: First interpolate speed of sound between CET and pQCD
limits, then integrate to obtain the pressure and other thermodynamic
guantities [Annala et al., Nature Physics (2020) and PRX (2022)]
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Useful strategy: First interpolate speed of sound between CET and pQCD
limits, then integrate to obtain the pressure and other thermodynamic
guantities [Annala et al., Nature Physics (2020) and PRX (2022)]

Allows accurate tracking of ¢ — an interesting quantity with tension between
expectations from nuclear theory and experience from other contexts
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On top of the usual low- and high-
density limits, always require:

* EoS must support 2M, stars

* LIGO/Virgo 90% tidal deformability

limit must be satisfied
[Annala et al., Nature Physics (2020)]

In addition, can also take into account:
 NICER data for PSR J0740+6620:

o R(2Mg) > 11.0km (95%)

o R(2Mg) > 12.2km (68%)
 BH formation in GW170817 via
o Supramassive or hypermassive NS

[Annala et al., PRX 12 (2022)]
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On top of the usual low- and high-
density limits, always require:

* EoS must support 2M, stars

* LIGO/Virgo 90% tidal deformability

limit must be satisfied
[Annala et al., Nature Physics (2020)]

In addition, can also take into account:
 NICER data for PSR J0740+6620:

o R(2Mg) > 11.0km (95%)
o R(2Mg) > 12.2km (68%)

 BH formation in GW170817 via
o Supramassive or hypermassive NS

[Annala et al., PRX 12 (2022)]
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On top of the usual low- and high- i ?QO__
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The EoS band features clear two-phase
dinp

dlne
transitioning from hadronic (y = 2) to

near-conformal (y = 1) behavior below
TOV densities: evidence for QM cores

structure, with polytropic index y =

[Annala et al., Nature Physics (2020)]

However, open questions remain:

1) Do other quantities display similar
signs of conformalization?

2) Does conformalization necessarily
imply onset of deconfinement?

3) How likely are QM cores in TOV stars?
4) What is the role of the pQCD limit?
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NS-matter EoS: recent Bayesian results



Improvements in recent work:

* Factor in measurement uncertainties =
ability to utilize many more observations
in the analysis

* Track also conformal anomaly and its log
€—3 dA
p’ A, —
3€ dlne
 For comparison, construct EoSs with non-

parametric Gaussian Process regression

derivative A =

Ultimate goal: Approx. likelihoods of various
scenarios (QM core, destabilizing FOPT,...)

Tools: MCMC utilizing Bayesian inference:
__ P(data|EoS)P(EoS)
P(EoS|data) = P (data)

[Annala, Gorda, Hirvonen, Komoltsev, Kurkela, Nattila, AV, Nature
Comm. 14 (2023)]
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Main results:

1) All quantities studied —y, c2, A, A" —
consistently approach their conformal
limits close to (but below) the central
densities of Mgy stars

[Annala, Gorda, Hirvonen, Komoltsev, Kurkela, Nattila, AV, Nature
Comm. 14 (2023)]
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Main results:
2) Optimal quantity to track: “conformal
distance” d,. = \/Az + (A")?

Its conformalization ensures that of
all other quantities considered
Values in dense NM and perturbative
QM sufficiently far apart

In FOPTs d, > 1/(3V2) = 0.24

*. Our intentionally conservative criterion
for near-conformality: d, < 0.2

[Annala, Gorda, Hirvonen, Komoltsev, Kurkela, Nattila, AV, Nature
Comm. 14 (2023)]
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Main results:

3) Likelihood of conformalized matter in

centers of 0.6 6% Cl ¢,
I PEE N / 2
* 1.4Mg NSs: 0% N R\ 95% Cl c5,4
0.0 P \ —-— 68% CI GP
* 2.0Mg NSs: 11% d | \
+ 0.4
¢ MTOV NSs: 88% 2] -
New criterion very conservative: with old o No QM 2l e o
criterion (y < 1.75) from our 2020 Nat. =~ |
0.1
Phys., the above 88% would be 99.8%. SN
For remaining 12% of TOV-star centers, all 10° M, Moy 10!

Baryon number density n [nga]

EoSs feature FOPT-like behavior.

[Annala, Gorda, Hirvonen, Komoltsev, Kurkela, Nattila, AV, Nature
Comm. 14 (2023)] 20



Main results:

4) For weak coupling and CFTs, normalized
pressure &< number of active degrees of
freedom.

In centers of TOV stars, p/pgrp at approx.

2/3 of its value in pQCD, while at high T
crossover transition from hadron gas to
QGP at much smaller values of p/pg5.

Ill

= “Near-conformal” very likely implies

“deconfined”.

[Annala, Gorda, Hirvonen, Komoltsev, Kurkela, Nattila, AV, Nature
Comm. 14 (2023)]
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Main results:

5) Results independent of the details of
interpolation, with those from non-
parametric Gaussian Process regression
well in line with c? ones.

With GP method, possible to show that it is
precisely the pQCD constraint that softens
the EoS in the cores of TOV stars.

[Gorda, Komoltsev, Kurkela, Astrophys. J. 950 (2023)]

[Annala, Gorda, Hirvonen, Komoltsev, Kurkela, Nattila, AV, Nature
Comm. 14 (2023)]
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Remaining caveat: strong first-order PTs

Most current results approximate PTs as
rapid crossovers, but some preliminary
results with discontinuous transitions exist:
* |n hard-limit setups, possible to exit EoS
bounds based on rapid crossovers
o Destabilizing solutions often extreme,
but not unreasonably so

* |Implications for likelihood of QM cores
inconclusive so far

[Gorda, Hebeler, Kurkela Schwenk, AV, Astrophys. J. 955 (2023)]
[Komoltsev, arXiv:2404.05637]
[Blomqvist, Ecker, Gorda, AV, In preparation]
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Conclusions



Main takeaways:
1) Strong evidence for rapid conformalization of matter near central
densities of TOV stars, identifiable as onset of deconfinement

2) Only remaining alternative to QM cores: strong destabilizing first-
order phase transition, responsible for the value of Mgy

* (Can this transition be constrained with postmerger GW signal?

3) In near future, dramatic improvements expected from pQCD
calculations and observations (perhaps also from CET?), bringing
robust discovery of QM cores within sight
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