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I. Introduction
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II. Classification of Random Matrix Theories
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Basics of Topological Insulators

Second quantized Hamiltonian

H =
∑

αβ

Hαβψαψβ ,

where Hαβ is a lattice Hamiltonian with disorder.

The idea is that the d-dimensional bulk is disordered so that the wave

functions are localized but the edge states are not localized

The edge states are described by a nonlinear σ model of Goldstone

bosons based on a coset G/H.

Nontrivial ground states exists if the homotopy group

πd−1(G/H) 6= 0.

Kaplan-1992, Golterman-Jansen-Kaplan-1992,

Schnyder-Ryu-Fursaku-Ludwig-2008, Kitaev-2008, Ludwig-2012
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Possible Issues

� The many-body Hamiltonian may have different localization

properties than the single particle Hamiltonian. At best the

particle-hole excitations might be in the universality class of the

single-particle Hamiltonian

� Interactions may change the universality class Fidkowski-Kitaev-2011

� Fermi-liquid theory underlies the theory of (topological) insulators.

We are interested non-Fermi liquids where concepts like a

Fermi-sphere and single-particle excitations are invalid

� Nonlinear sigma models can only be realized if the microscopic

theory is chaotic or disordered

� The low energy sector of a physical system may be a transition

between two different sigma models
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Random Matrix Theories

Nonlinear sigma models are in one-to-one correspondence to random

matrix theories which can be classified according to anti-unitary and

involutive symmetries:

� 3 Wigner-Dyson ensembles

� 3 Chiral ensembles JV-Shuryak-1991, JV-1994

� Anti-symmetric and anti-selfdual Hermitian

matrices Mehta-Rosenzweig-1968,

Mehta-Pandey-1983

� Chiral ensembles where the off-diagonal

block is complex symmetric or complex anti-

symmetric Altland-Zirnbauer, PRL 76 (1996)

3420

(
H = H†

)


 0 H

H† 0




The classification also corresponds to the classification of Dirac

operators in three dimensions for the Wigner-Dyson ensembles, in four

dimensions for the chiral ensembles, and in two or five dimensions for

the other ensembles.
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RMT and Topology

Each of the RMT’s has a corresponding nonlinear sigma model based

the large symmetric spaces in the Cartan classification. For the

complex random matrix theories we have:

RMT Physics G/H Π2(G/H) Π3(G/H)

GUE (A) QCD3 U(2n)/U(n)×U(n)(∗) Z 0

chGUE (AIII) QCD4 U(n)× U(n)/U(n) 0 Z
(∗) Other symmetry breaking patterns are possible in the presence of a

Chern-Simons term, U(2n) → U(n+p)× U(n-p).

Komargodski-Seiberg-2017, Kanazawa-Kieburg-JV-2021

� A non-linear sigma model based on G/H requires the presence of

disorder or chaos.

� The nonlinear sigma model of the chiral ensembles first entered

the literature in the context of lattice QCD Kogut-etal-1983 and

sublattice symmetry Gade 1993
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Phase Diagram of QCD3

λ̃

T

λ̃

T

Nf = 2 Nf = 3

Figure 1: The phase diagram for Nf = 2 and Nf = 3 at µ = 0 with g̃1 = 1 and g̃2 = 3.75

in the large-N limit. The magnitude of |e1−e2| is plotted. The strip of first order transitions

for high temperature is interrupted roughly between λ̃ = 1 and λ̃ = 2, but is present close

to the broken phase around the origin and at high temperatures.

Kanazawa-Kieburg-JV-2021
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Goals and Questions

� We have seen that topological insulators can be classified

according to random matrix theories. This requires the presence of

disorder or chaos.

� We will now study how the classification is constrained for

non-Fermi liquid many-body systems.

� When are many-body systems fully quantum chaotic?

� How does dissipation affect the possible phases of matter?
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I. Introduction

The SYK Model

Variants of the SYK Model

Coupled SYK Models
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The Sachdev-Ye-Kitaev (SYK) Model

The SYK model is a model of N interacting Majorana fermions. For

q = 4 the model is given Kitaev-2015

H =
∑

α<β<γ<δ

Wαβγδχαχβχγχδ, q = 4.

The Majorana operators satisfy the commutation relations

{χα, χβ} =
1

2
δαβ, χ2k =

1√
2
(ak + a†k), χ2k−1 =

i√
2
(ak − a†k).

The two-body matrix elements are taken to be Gaussian distributed

with variance that is chosen such that the ground state energy scales

with N . The model does not conserve particle number.

The Hilbert space is 2N/2 dimensional.
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The Complex SYK Model

A variant of the SYK model introduced by French and Wong (1970)

and Bohigas and Flores (1971) in the context of nuclear physics was

generalized by Mon and French (1975) to the complex SYK model,

H =
∑

αβγδ

Wαβγδa
†
αa

†
βaγaδ.

The labels of the fermionic creation and annihilation operators run over

N single particle states. The Hilbert space is given by all many particle

states containing m particles with m = 0, 1, · · · , N .

� Wαβγδ is Gaussian random.

� The Hamiltonian is particle number conserving.

� The matrix elements of the Hamiltonian are strongly correlated.

Brody-et-al-1981, Brown-Zelevinsky-Horoi-Frazier-1997,

Izrailev-1990,Kota-2001,Benet-Weidenmüller-2002,Zelevinsky-Volya-2004,

Borgonovi-Izrailev-Santos-Zelevinsky-2016
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Motivation for Studying the SYK Model

� Model of compound nuclei

� Model for many-body quantum chaos

� It is a non-Fermi liquid with a zero temperature entropy that is

extensive

� At low temperatures, it saturates the MSS bound for the Lyapunov

exponent

λL <
2πβ

~

which is Lyapunov exponent for shockwaves in a black hole.

� The low temperature limit of the SYK model has a

reparameterization invariance which leads to the Schwatzian

action which is also the low energy limit of Jackiw-Teitelboim

gravity.
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Classification of the SYK Model

� Follows from the anti-unitary and chiral symmetries symmetries of

the gamma matrices

C1 =
∏

k

iγ2kK, C2 =
∏

k

iγ2k+iK. γc = iN
2/4

∏

k

γ2k,

C2
1 = ±1, C2

2 = ±1, γcC1 ± C1γc = 0.

� This gives 8 possibilities and is the reason that we have Bott

periodicity.

� For the SYK model with q = 4 only three possibilities are realized.

The reason is that γc is a unitary symmetry, and C1 may not

commute with the chiral projector.

� E.g. For N = 2, χ1 = σ1, χ2 = σ2, γc = iσ1σ2 and

Pc =
1
2 (1± iσ1σ2) but C1 = σ2K and [Pc, C1] 6= 0.

You-Ludwig-Xu-2016, García-García-2016, Cotler-etal-2016,
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III. Chaos in the SYK Model

Bohigas Conjecture

OTOC

Spectral Statistics

Spectral Form Factor
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Bohigas Conjecture

According to the Bohigas-Giannoni-Schmidt conjecture the

eigenvalues of a classically chaotic quantum system are correlated

according to Random Matrix theory Bohigas-Giannoni-Schmidt-1984,

Seligman-JV-Zirnbauer-1984, JV-Seligman-1985.

Classically, chaoticity is measured by the Lyapunov exponent, the

exponential rate of divergence of classical trajectories. The quantum

equivalent of that is the Out of Time Order Correlator (OTOC)

〈Tre−βHχ(t)χ(0)χ(t)χ(0)〉 ∼ 1− αe2λt.

Maldacena-Shenker-Stanford upper limit (2014)

λ <
2πβ

~

This upper limit is saturated in the low-temperature limit of the SYK

model.
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Time Scales

� Lyapunov Time: tL ∼ 1/λL

� Ehrenfest Time: Time scale at which quantum fluctuations become

macroscopic, tE ∼ (logN)/λL. Also known as the scrambling time.

� Thouless Time: The time scale beyond which eigenvalue

correlations are given by Random Matrix Theory.

� The Heisenberg Time: The inverse level spacing.

Altland-Sonner-2020
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Correlations of eigenvalues

Pair correlation function

〈ρ(λ)ρ(λ′)〉 − 〈ρ(λ)〉〈ρ(λ′)〉 = 〈ρ(λ)〉δ(λ− λ′)− 〈ρ(λ)〉2 sin
2(π〈ρ(λ)〉(λ− λ′)

(π〈ρ(λ)〉(λ− λ′))2
,

where we gave the result for the simplest random matrix theory.

� This behavior has been found in systems all over physics ranging

from the hydrogen in a strong magnetic field to nuclei and black

holes. It is most likely the strongest universality property in nature,

even much stronger than the universality in critical phenomena.
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Spectral Statistics

Random Matrix correlations can be measured by different statistics

� Level spacing distribution Wigner-1955

� The number variance which is the variance of the of the number of

eigenvalues in an interval containing n eigenvalues on average. It

can be obtained from the pair correlation function.

� The spectral form factor which is the Fourier transform of the pair

correlation function. It is a global observable involving all

eigenvalues in the spectrum and the universal RMT result is only

recovered after local rescaling of the average eigenvalue spacing

to a constant (unfolding).

Today I will only discuss the spectral form factor.
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Spectral Form Factor

Kc(t) =
1

D

[
〈TreiHtTre−iHt〉 − 〈TreiHt〉〈Tre−iHt〉

]

=
1

D
〈
∑

kl

eit(Ek−E1)〉c

=
1

D

∫
dEdE′ρ2c(E,E

′)eit(E−E′).

The connected two-point correlation function is given by

ρ2c(E,E
′) =

∑

kl

〈δ(E − Ek)δ(E
′ − El)〉 −

∑

kl

〈δ(E − Ek)〉〈δ(E′ − El)〉.

=

〈
∑

k 6=l

〈δ(E − Ek)δ(E
′ − El)

〉

c

+

〈
∑

k

δ(E − E′)δ(E − Ek)

〉
.

For large t only the second term survives.
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Spectral Form Factor of RMT
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Spectral form factor for the Wigner-Dyson ensembles. The average

level density is unfolded to unit average spacing.
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Spectral Form Factor of the SYK Model

SYK, w = 500

GUE

= = Q-
Ensemble Unfolding

0 2 4 6 8 10

0 � 0
0 � 2

0 � �
0 � 6

0 � �
1 � 0

1 � 2

t

Kc(t)

The spectral form factor of the SYK model after rescaling the

eigenvalues according to the local average level spacing (unfolding).

The contribution of the collective spectral fluctuations has been filtered

out. JV-Jia-2020
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Folding in the Average Spectral Density

SYK, N = � � � q = 4

N = 26

E0 t π D

S � � � 	 
 � � � 
 � � G � �

0 5 � � � 10000 � 5 000 20000 � 5 000 3 � 000

� � �
� � �

� � �
� � �

� � �
� � �

t

Kc(t)

Spectral form factor of the SYK model using the raw eigenvalues with

the average spectral density folded into the universal RMT result

Kc(τ) =

∫
dEρ(E)Kuniv.(τ/ρ(E)) =

∑

g

ag
τ2g−1

ρ2g(E)
.

For the above figure we have used the Q-Hermite spectral density for

ρ(E), no fitting. García-García-JV-2017, JV-2021
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IV. Coupled SYK Models

The Maldacena-Qi Model

Constraints on Classification
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The Maldacena-Qi Model

H =
∑

α<β<γ<δ

(
Wαβγδχ

L
αχ

L
βχ

L
γχ

L
δ +Wαβγδχ

R
αχ

R
β χ

R
γ χ

R
δ

)
+ iµ

∑

α

χLαχ
R
α .

� the χL and χR are from the same Clifford algebra.

� Ground state is gapped, and is almost a TFD state,

|TFD〉 = ∑
e−βEk |k〉|k〉.

� The model is chaotic for µ not very small or very large.

� A first order phase transition separates a gapped Wormhole phase

from a 2 Black-Hole phase.

Maldacena-Qi-2018, García-García-Jia-Rosa-JV-2019
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Symmetries of the MQ Model

� Unitary symmetries

[γc, H] = 0, [Q,H] = 0,

with QχL = χR and QχR = −χL

� Take a representation of gamma matrices where the even gamma

matrices are real and the odd gamma matrices purely imaginary

� Assign the even gamma matrices to L and the odd gamma

matrices to R

� Then the Hamiltonian is invariant under complex conjugation, and

this is the only anti-unitary symmetry

� Since K is the only anti-unitary symmetry we have that for all even

N the symmetry class is AI (GOE).
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V. Chaos and Disspation in the SYK Model

Lindblad evolution

Vectorization

Dissipative Form Factor

Anomalous Dissipation
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Dissipation in the SYK Model

The Lindblad operator that describes the evolution of the density matrix

ρ =
∑
k,lAkl|k〉〈l| coupled to a bath is given by

d

dt
ρ = −i[HSYK , ρ] + µ

∑

k

ψkρψk − µ
N

2
.

For large times the density matrix relaxes to the identity operator or a

the TFD state in the doubled Hilbert space after a Choi-Jamielkowski

transformation

ρ =
∑

k,l

Akl|k〉〈l| →
∑

k,l

Akl|k〉|l〉.

∑

k

|k〉〈k| →
∑

k

|k〉|k〉.

García-García-Sá-JV-Zheng-2022
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Vectorized Lindblad operator

After the Choi-Jamielkowski transformation the Lindblad operator

becomes Kulkarni-Numasawa-Ryu-2021, Sá-Ribewiro-Prosen-2021,

García-García-Sá-JV-Zheng-2022,

Kawabata-Kulkarni-Li-Numasawa-Ryu-2022

L = iHL
SYK − iHR

SYK + iµ
∑

k

ψLk ψ
R
k + µ

N

2
.

This is non-Hermitian Hamiltonian. Its structure is similar to the

Maldacena-Qi Hamiltonian

HMQ = HL
SYK +HR

SYK + iµ
∑

k

ψLk ψ
R
k .
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Vectorized Lindblad operator

This raise the question of the classification on nonhermitian SYK

Hamiltonian. It turns out that they are also given by the tenfold

classification – just replace complex conjugation by transposition.

García-Barcía-Sá-JV-PRX-2022, Kawabata-Kulkarni-Li-Numasawa-Ryu-2022,

Sá-Riebeiro-Prosen-2022. For the general classification on

non-Hermitian random matrix models see Bernard-LeClair-2002,

Kawabata-Shiozaki-Ueda-Sato-2019

MQ type Hamiltonians and Lindblad based Hamiltonian further restrict

possible non-linear sigma models. Can-García-Garía-Sá-JV-2023.
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Dissipative Form Factor

Introduced by Tankut Can (2018),

〈
TreLt

〉
=

〈
Tre(iHL−iHR+iµψL

k ψ
R
k )t+µN

2

〉
.

For µ = 0 this becomes the spectral form factor

〈
TreLt

〉
=

〈
TreiHtTre−iHt

〉
,

where we used that HL = H ⊗ I+ I⊗H. For large t > tH it is given by

the expectation value of the TFD state, |TDF 〉 = ∑ |k〉|k〉.
〈
TreiHtTre−iHt

〉
≈ D〈TFD|eit(HL−HR)|TFD〉 = D.
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Spectrum of the Lindblad SYK Model

Let us look at the Hamiltonian

H = iHL ⊗ 1− i1⊗ HR + iµ
∑

k

ψkLψ
k
R + µ

N

2

H|TFD〉 = H
∑

|k〉|k〉 = 0.

0

µ4

µN 
2

For large τ we have that

e−τF = 1 + e−
µN
2
τ

〈
∑

k,l

eiτ(Ek−El)

〉
,

or reversely,

K(τ) = e
µN
2
τ
(
e−τF − 1

)
.

Using that the form factor of one SYK asymptotes to 2N/2, a phase

transition occurs for µτ = 1. Chaos, INT 2023 – p. 35/40



Phase Transition

SYK, 2N = 20

� � � � � � � � � � �  ! to 2N = 20

2N = 20, " = 4, μ =# $ # %
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1

( )

The free energy obtained from the solution of the Schwinger-Dyson

equation. A phase transition takes place at T = 1/τ = µ .
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Spectral Form Factor From Free Energy

K(τ), μ = 0

(exp[-τ F]-1) exp[μ N τ/2]
(exp[-τ F]-1)exp[μ N τ/2], SD
exp[-τ F]

2N = 20, q = 4, μ =0.01

1-+ , - + - + ,

0 50 100 150 200
0.1

1

10

100

1000

τ

K(τ)

The spectral form factor obtained from the free energy at non zero µ

compared to the exact spectral form factor.
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Anomalous Dissipation
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Decay rate of Green’s functions, G(t) ∼ e−Γt cos(Ωt). What is the origin

of this phase transition?
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Finite N Results
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The exp[−4µt] tail is absent in the solutions of the Schwinger-Dyson

equations. This is consistent with the tail of the dissipative form factor

for finite N , which is not there for the solution of the Schwinger-Dyson

equations.
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VI. Conclusions

� SYK models and coupled SYK models can be classified according

to Random Matrix Theories,
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