Chiral anomaly in polarized DIS: WZW terms and finite mass effects

Raju Venugopalan Brookhaven National Laboratory

INT workshop, June 2-6, 2025

Work* in collaboration with Andrey Tarasov (NCSU and CFNS Stony Brook)

* Based on: https://arxiv.org/abs/2008.08104, https://arxiv.org/abs/2109.10370 and https://arxiv.org/abs/2501.10519

Interplay of perturbative and non-perturbative dynamics in polarized DIS

In the parton model, it is the net quark helicity

$$\Sigma(Q^2) = \sum_f \int_0^1 dx_B \left(\Delta q_f(x_B, Q^2) + \Delta \bar{q}_f(x_B, Q^2) \right)$$

 Δq_f = Diff. in parton densities of left and right handed quarks of flavor f $\Delta \overline{q}_f$ = Ditto for anti-quarks

Interplay of perturbative and non-perturbative dynamics in polarized DIS

In QCD, the physics is far more subtle and rich - elements include

- The chiral anomaly and validity of QCD factorization theorems
- \succ Anomalous Ward identities, top. screening of $\Delta\Sigma$, large N and lattice
- Novel axion-like dynamics, and sphaleron-like transitions at small x

Remarkable result by Veneziano et al.

 $\chi_{QCD}(l^2) = \int d^4x \ e^{il \cdot x} < \Omega(x)\Omega(0) > \text{with the top. charge density } \Omega(x) = F\tilde{F}$

Inclusive polarized DIS directly sensitive to the topology of the QCD vacuum – at any Q² !

Not entirely surprising if $\Delta\Sigma(Q^2) \propto \langle P, S | J^5_{\mu} | P, S \rangle$, since J^5_{μ} is not a conserved current - satisfies the anomaly eqn.

$$\partial^{\mu} J_{\mu,f}^{5} = 2im_{f} \, \bar{q}_{f} \gamma_{5} q_{f} + \frac{\alpha_{S}}{2\pi} \operatorname{Tr}\left(F_{\mu\nu} \tilde{F}^{\mu\nu}\right)$$

In the chiral limit, $\chi_{QCD}(0) = 0$ Topological screening of quark helicity Veneziano, Mod. Phys. Lett. A4 (1989) 1605 Shore, Veneziano, PLB244 (1990) 75; NPB 381(1992)23 Narison, Shore, Veneziano, NPB546 (1999) 235 Review: Shore, hep-ph/0701171

G. Veneziano

Worldline approach to polarized DIS: box diagram

Anti-symmetric piece of hadron tensor $\tilde{W}_{\mu\nu}(q,P,S) = \frac{2M_N}{P \cdot q} \epsilon_{\mu\nu\alpha\beta} q^{\alpha} \Big\{ S^{\beta} g_1(x_B,Q^2) + \Big[S^{\beta} - \frac{(S \cdot q)P^{\beta}}{P \cdot q} \Big] g_2(x_B,Q^2) \Big\}$ $i\tilde{W}^{\mu\nu}(q,P,S) = \frac{1}{2\pi e^2} \operatorname{Im} \int d^4x \, e^{-iqx} \int \frac{d^4k_1}{(2\pi)^4} \int \frac{d^4k_3}{(2\pi)^4} e^{-ik_1\frac{x}{2}} e^{ik_3\frac{x}{2}} \langle P,S|\tilde{\Gamma}^{\mu\nu}_A[k_1,k_3]|P,S\rangle$

with the polarization tensor $\Gamma_A^{\mu\nu}[k_1,k_3] = \int \frac{d^4k_2}{(2\pi)^4} \int \frac{d^4k_4}{(2\pi)^4} \Gamma_A^{\mu\nu\alpha\beta}[k_1,k_3,k_2,k_4] \operatorname{Tr}_{c}(\tilde{A}_{\alpha}(k_2)\tilde{A}_{\beta}(k_4))$ Antisymmetric piece of box diagram

$$\begin{split} \Gamma_A^{\mu\nu\alpha\beta}[k_1,k_3,k_2,k_4] &\equiv -\frac{g^2 e^2 e_f^2}{2} \int_0^\infty \frac{dT}{T} \int \mathcal{D}x \int \mathcal{D}\psi \, \exp\left\{-\int_0^T d\tau \left(\frac{1}{4}\dot{x}^2 + \frac{1}{2}\psi\cdot\dot{\psi}\right)\right\} \\ & \times \left[V_1^{\mu}(k_1)V_3^{\nu}(k_3)V_2^{\alpha}(k_2)V_4^{\beta}(k_4) - (\mu\leftrightarrow\nu)\right] \end{split}$$
Product of boson and Grassmann worldline currents
$$V_i^{\mu}(k_i) &\equiv \int_0^T d\tau_i(\dot{x}_i^{\mu} + 2i\psi_i^{\mu}k_j\cdot\psi_j)e^{ik_i\cdot x_i}$$

"Pert. Theory without Feynman diagrams", M. Strassler, NPB 385 (1992) 145 Review: C. Schubert, Phys. Repts. (2001)

A. Tarasov, RV, PRD (2019, 2021, 2022)

Finding triangles in boxes in Bjorken and Regge asymptotics

$$S^{\mu}g_{1}(x_{B},Q^{2})\Big|_{Q^{2}\to\infty} = \sum_{f} e_{f}^{2} \frac{\alpha_{s}}{i\pi M_{N}} \int_{x_{B}}^{1} \frac{dx}{x} \left(1 - \frac{x_{B}}{x}\right) \int \frac{d\xi}{2\pi} e^{-i\xi x} \lim_{l_{\mu}\to 0} \frac{l^{\mu}}{l^{2}} P', S|\operatorname{Tr}_{c}F_{\alpha\beta}(\xi n)\tilde{F}^{\alpha\beta}(0)|P,S\rangle + \text{non-pole}$$

$$S^{\mu}g_{1}(x_{B},Q^{2})\Big|_{x_{B}\to0} = \sum_{f} e_{f}^{2} \frac{\alpha_{s}}{i\pi M_{N}} \int_{x_{B}}^{1} \frac{dx}{x} \int \frac{d\xi}{2\pi} e^{-i\xi x} \lim_{l_{\mu}\to 0} \frac{l^{\mu}}{l^{2}} P', S|\operatorname{Tr}_{c}F_{\alpha\beta}(\xi n)\tilde{F}^{\alpha\beta}(0)|P,S\rangle + \text{non-pole}$$

This is the "anomaly pole obtained by integrating over x and inverting the anomaly equation We discovered it is not just a property of first moment but in $g_1(x,Q^2)$ itself

How is the anomaly pole regulated ?

A. Tarasov, RV, PRD (2021, 2022)

Also obtained in a Feynman diagram analysis Bhattacharya, Hatta, Vogelsang, arxiv:2210.13419, arXiv:2305.09431 Bhattacharya, Hatta, Schloenleber, arXiv:2411.07024

Remarkable result by Veneziano et al.

 $\Delta\Sigma(Q^2) = \sqrt{\frac{2}{3}} \frac{N_f}{M_N} g_{\overline{\eta}NN} \sqrt{\chi'_{QCD}(0)}$

Forward slope of QCD topological susceptibility in chiral limit

G. Veneziano

Axial Vector-Vector-Vector (AVV) triangle operator

The authors of refs. [12, 13] suggest that the triangle diagram provides a *local* probe of the gluon distribution in the target. If this were true, $\Delta\Gamma$ would be protected from infrared problems and the calculation would be reliable in the usual sense. However, we believe there are strong arguments that the triangle is not local in the sense required. It is therefore not necessarily protected from infrared effects, in particular from the non-perturbative effects which give the η' a mass^{*}.

Jaffe, Manohar, NPB337 (1990) 509

Veneziano, Mod. Phys. Lett. A4 (1989) 1605 Shore, Veneziano, PLB244 (1990) 75; NPB 381(1992)23 Narison, Shore, Veneziano, NPB546 (1999) 235 Review: Shore, hep-ph/0701171

$\Delta\Sigma$ and the U_A(1) problem

Veneziano et al showed that starting from the Wess-Zumino action for QCD (and an OZI variant of the Veneziano topological expansion in N_f and N_c) one could derive not just the anomaly equation for J^5_{μ} but also higher point correlators of J^5_{μ} that involve the η'

In particular, the corresponding anomalous chiral Ward identities also explain why the η' is so massive - more than the proton's mass !

The result of manipulating these Ward identities is that the anomaly $\frac{l^{\mu}}{l^2} \rightarrow \frac{l^{\mu}}{l^2 - m_{\eta'}^2}$ where the η' mass is given by the Witten-Veneziano formula: $m_{\eta'}^2 \equiv -\frac{2 n_f}{F_{\bar{\eta}}^2} \chi_{YM}(0)$ Witten, NPB 156 (1979)269; Veneziano, NPB 159 (1979) 213

We will show that much of these results can be recovered in the language of Wess-Zumino-Witten (WZW) terms in the worldline framework – that allows a further study of dynamical pert. - nonpert. interplay

Anomalies in the worldline formulation of QFT

Fermion action in background of scalar, pseudoscalar, vector and axial vector fields:

$$S_{\text{fermion}}[\bar{\Psi}, \Phi, \Pi, A, B, \Psi] = \int d^4x \,\bar{\Psi}^I \left[i\partial \!\!\!/ - \Phi + i\gamma^5\Pi + A + \gamma^5 B \right]^{IJ} \Psi^J$$

Effective action: $-\mathcal{W}[A, B, \Phi, \Pi] = \operatorname{Ln}\operatorname{Det}\left[\mathcal{D}\right]$ with $\mathcal{D} = p - i\Phi(x) - \gamma_5 \Pi - A - \gamma_5 B$

Split into real and imaginary parts: $\mathcal{W}_R = -\frac{1}{2} \operatorname{Ln} \left(\mathcal{D}^{\dagger} \mathcal{D} \right) \; ; \; \mathcal{W}_I = \frac{1}{2} \operatorname{Arg} \operatorname{Det} \left(\mathcal{D}^2 \right)$

Entire dynamics of the anomaly comes from W_I - the phase of the Dirac determinant

Heat kernel regularization of the phase as a worldline path integral

 W_I can also be expressed as a worldline Lagrangian of 0+1- bosonic (coordinate) and Grassmann fields D'Hoker, Gagne, hep-th/9508131, hep-th/9512080

$$W_{\mathcal{I}} = -\frac{i}{32} \int_{-1}^{1} d\alpha \int_{0}^{\infty} dT \, \mathcal{N} \int_{\mathcal{J}PBC} \mathcal{D}x \, \mathcal{D}\psi \, \operatorname{tr} \, \chi \, \bar{\omega}(0) \exp\left[-\int_{0}^{T} d\tau \mathcal{L}_{(\alpha)}(\tau)\right]$$
Worldline Lagrangian with chiral symmetry breaking interpolating parameter α

$$\mathcal{L}_{(\alpha)}(\tau) = \mathcal{L}(\tau) \Big|_{\Phi \to \alpha \Phi, B \to \alpha B} \text{ with } \mathcal{L}(\tau) = \frac{\dot{x}^{2}}{2\mathcal{E}} + \frac{1}{2} \psi \dot{\psi} - i \dot{x}^{\mu} \mathcal{A}_{\mu} + \frac{\mathcal{E}}{2} \mathcal{H}^{2} + i \mathcal{E} \psi^{\mu} \psi_{5} \mathcal{D}_{\mu} \mathcal{H} + \frac{i \mathcal{E}}{2} \psi^{\mu} \psi^{\nu} \mathcal{F}_{\mu \nu}$$
in the chiral basis $\mathcal{A}_{\mu} \equiv \begin{pmatrix} A_{\mu}^{L} & 0 \\ 0 & A_{\mu}^{R} \end{pmatrix} = \begin{pmatrix} A_{\mu} + B_{\mu} & 0 \\ 0 & A_{\mu} - B_{\mu} \end{pmatrix} \text{ and } \mathcal{H} \equiv \begin{pmatrix} 0 & iH \\ -iH^{\dagger} & 0 \end{pmatrix} = \begin{pmatrix} 0 & i\Phi + \Pi \\ -i\Phi + \Pi & 0 \end{pmatrix}$

Similar to so-called η -invariant parametrization of the Dirac operator in chiral gauge theories

Alvarez-Gaume, della Peitra², PLB 166 (1986) 177; Alvarez-Gaume, Ginsparg, Ann. Phys. 161 (1986) 423 Ball, Osborn, PLB 165 (1985) 410; Kaplan and Schmaltz, PLB 368 (1986) 44; Witten, Yonekura, arXiv:1909.08775

Heat kernel regularization of the phase as a worldline path integral

 W_I can also be expressed as a worldline Lagrangian of 0+1- bosonic (coordinate) and Grassmann fields

$$W_{\mathcal{I}} = -\frac{i}{32} \int_{-1}^{1} d\alpha \int_{0}^{\infty} dT \, \mathcal{N} \int_{\mathcal{J}PBC} \mathcal{D}x \, \mathcal{D}\psi \, \operatorname{tr} \, \chi \, \bar{\omega}(0) \exp\left[-\int_{0}^{T} d\tau \mathcal{L}_{(\alpha)}(\tau)\right]$$
Worldline Lagrangian with chiral symmetry breaking interpolating parameter α

Can combine real and imaginary parts in a "perturbative" expansion (consistent anomaly)

$$W = \sum_{n=1}^{\infty} \frac{1}{n} \int \frac{d^D p_1}{(2\pi)^D} \cdots \frac{d^D p_n}{(2\pi)^D} (2\pi)^D \delta^{(D)}(p_1 + \dots + p_n) \int \frac{d^D q}{(2\pi)^D} \operatorname{tr} \frac{1}{\not{q-im}} \\ \times \left(i\tilde{\varphi}_1 + \gamma_5 \tilde{\Pi}_1 + \tilde{\mathcal{A}}_1 \right) \cdots \frac{1}{\not{q-p_1} - \dots - \not{p_{n-1}} - im} \left(i\tilde{\varphi}_n + \gamma_5 \tilde{\Pi}_n + \tilde{\mathcal{A}}_n \right)$$

A systematic expansion in these external sources also generate WZW terms - agree exactly with "nonet" chiral pert. theory _{Kaiser,Leutwyler, EPJ C17 (2000)623}

Quark loop with external sources

What's in a phase? WZW terms and "QCD axion" from worldline action

Likewise, expanding to O($\Phi \Pi A^2$),

$$S^{ar{\eta}}_{\mathrm{WZW}} = -i rac{\sqrt{2 \, n_f}}{F_{ar{\eta}}} \int d^4 x \, ar{\eta} \, \Omega$$

 $\overline{\eta}$ is the primordial η', Ω the topological charge density, F_{η} the $\overline{\eta}$ decay const.

It is the QCD axion in the chiral limit and at large Nc

A.Bernstein, B.Holstein, RMP (2013)

Triangles in QED and QCD and the forward limit

Adler, hep-th/0405040 Recently, Castelli et al., PLB 857, 138999 (2024)

Au contraire, massless QCD is anomaly free (N_f \geq 2). Hint: setting $\Phi = S(x)$ introduces the chiral condensate

Isosinglet form factors and chiral Ward identities

 $\partial_{\mu}\frac{\delta Z}{\delta B_{\mu}} - 2N_f\frac{\delta Z}{\delta\Theta} - 2m\frac{\delta Z}{\delta\Pi} + 2\mathcal{S}\frac{\delta Z}{\delta\Pi} - 2\Pi\frac{\delta Z}{\delta\mathcal{S}} = 0$

obtain

Gives anomaly equation when sources are put to zero

Isosinglet form factors and chiral Ward identities

$$\langle P', S|J_5^{\mu}|P, S\rangle = \bar{u}(P', S) \left[\gamma^{\mu} \gamma_5 G_A(l^2) + l^{\mu} \gamma_5 G_P(l^2) \right] u(P, S) \text{ with } G_A(0) = \Delta \Sigma$$

From the Wess-Zumino action

$$S[A,\bar{\Psi},\Psi,B,\mathcal{S},\Pi,\Theta] = \int d^4x \left(\mathcal{L}_{QCD} + B_\mu \bar{\Psi} \gamma^\mu \gamma_5 \Psi + \mathcal{S} \bar{\Psi} \Psi + \Pi \bar{\Psi} i \gamma_5 \Psi + \Theta \Omega \right)$$

obtain

$$G_P(l^2) = -i\frac{l_\mu}{l^2} \left[\frac{\delta^2 Z}{\delta B_\mu \delta \Theta}(l^2) g_{\Omega NN}(l^2) + \frac{\delta^2 Z}{\delta B_\mu \delta \Pi}(l^2) g_{\phi_5 NN}(l^2) \right]$$

Ward identities for 2-point functions:

$$il_{\mu}\frac{\delta^{2}Z}{\delta B_{\mu}\delta\Theta}(l^{2}) - 2N_{f}\frac{\delta^{2}Z}{\delta\Theta\delta\Theta}(l^{2}) - 2m\frac{\delta^{2}Z}{\delta\Pi\delta\Theta}(l^{2}) = 0$$

$$il_{\mu}\frac{\delta^{2}Z}{\delta B_{\mu}\delta\Pi}(l^{2}) - 2N_{f}\frac{\delta^{2}Z}{\delta\Theta\delta\Pi}(l^{2}) - 2m\frac{\delta^{2}Z}{\delta\Pi\delta\Pi}(l^{2}) - 2\langle\phi\rangle = 0$$
Chiral contained in the second secon

$$\frac{\delta^2 Z}{\delta B_\mu \delta \Theta}(l^2) = i \int d^4 x \, e^{ilx} \, \langle 0|T J_5^\mu(x) \Omega(0)|0\rangle$$
$$\frac{\delta^2 Z}{\delta B_\mu \delta \Pi}(l^2) = i \int d^4 x \, e^{ilx} \, \langle 0|T J_5^\mu(x) \phi_5(0)|0\rangle$$

with
$$\phi_5 = i\Psi\gamma_5\Psi$$

ndensate

Topology, polology and large N

Putting it all together...

Employing, a) the anomaly equation, b) the Dirac equation, c) chiral Ward identities, d) WZW and e) pole dominance, we have sufficient info to establish the following:

A Goldberger-Treiman relation: $2M_N \, G_A(0) = \sqrt{2N_f} \, F_{ar\eta} \, g_{ar\eta NN} \, {}^{\mathsf{R}}_{\mathsf{a}}$

Relates isosinglet axial-vector and pseudo-scalar form factors ($\tilde{H}and \tilde{E}$)

$$\begin{split} \Delta \Sigma &= \frac{\sqrt{2N_f}}{2M_N} F_{\bar{\eta}} g_{\bar{\eta}NN} = \frac{2N_f}{2M_N} \sqrt{\chi'_{\rm QCD}(0)} \left(1 - m_{\bar{\eta}}^2 \frac{2\chi'_{\rm QCD}(0) - \chi'_{\rm YM}(0)}{\chi_{\rm YM}(0)}\right)^{1/2} g_{\bar{\eta}NN} \\ \\ \text{Finite mass correction to Witten-Veneziano formula} \\ m_{\eta'}^2 &= -\frac{2N_f}{F_{\bar{\eta}}^2} \chi_{\rm YM}(0) + m_{\bar{\eta}}^2 \text{ & the relation } \chi'_{\rm YM}(0) = 4\chi'_{\rm QCD}|_{m=0}(0) \end{split}$$

> The finite mass corrections to $\Delta\Sigma$ are at most a few percent. Corrections to the Witten-Veneziano formula are on the order of 10%.

Experiment, Lattice and OZI violations

The OZI rule (Ellis-Jaffe in this context) tells us that the iso-singlet axial charge is proportional to the iso- octet axial charge. The latter is well-known from hyperon decays

$$\begin{split} \Delta\Sigma^{\mathrm{OZI}} &\equiv G_A^{\mathrm{OZI}} = 0.579 \pm 0.021 \quad \text{Likewise,} \quad \sqrt{\chi'_{\mathrm{QCD,OZI}}(0)} = F_{\pi}/\sqrt{6} \approx 32 \, \mathrm{MeV} \qquad \text{Shore (2007), Narison (2021)} \\ & \text{Hence} \quad \Delta\Sigma^{\mathrm{expt.}} = \Delta\Sigma^{\mathrm{OZI}} \frac{\sqrt{\chi'_{\mathrm{QCD}}(0)}}{\sqrt{\chi'_{\mathrm{QCD,OZI}}(0)}} \\ & \text{HERMES: } \Delta\Sigma^{expt.}(Q^2 = GeV^2) = 0.33 \pm 0.011(th.) \pm 0.025(expt.) \pm 0.028(evol.) \\ & \text{COMPASS: } \Delta\Sigma^{expt.}(Q^2 \to \infty) = 0.33 \pm 0.03(stat.) \pm 0.05(syst.) \\ & \text{From the above, the central value of 0.33, gives} \qquad \sqrt{\chi'_{\mathrm{QCD}}(0)} \approx 18 \, \mathrm{MeV} \quad \text{or} \quad \sqrt{\chi'_{\mathrm{YM}}(0)} \approx 36 \, \mathrm{MeV} \\ & \text{MeV} \end{split}$$

A recent lattice computation has central value of YM slope of 17.1 MeV – not bad, given many uncertainties... C. Bonanno, JHEP 01 (2024) 116

Further lattice studies at finite m, and refinements of our studies can test OZI violations in more systematically

Distribution of large x color sources

$$g_{1}^{\text{Regge}}(x_{B}, Q^{2}) = \left(\sum_{f} e_{f}^{2}\right) \frac{n_{f}\alpha_{s}}{\pi M_{N}} i \int d^{4}y \int_{x_{B}}^{1} \frac{dx}{x} \left(1 - \frac{x_{B}}{x}\right) \int \frac{d\xi}{2\pi} e^{-i\xi x} \int \mathcal{D}\rho W_{Y}[\rho] \int D\bar{\eta} \tilde{W}_{P,S}[\bar{\eta}] \int [DA] \times \text{Tr}_{c}F_{\alpha\beta}(\xi n)\tilde{F}^{\alpha\beta}(0) \eta_{0}(y) \exp\left(iS_{\text{CGC}} + i\int d^{4}x \left[\frac{1}{2}\left(\partial_{\mu}\bar{\eta}\right)\left(\partial^{\mu}\bar{\eta}\right) - \frac{\sqrt{2n_{f}}}{F_{\bar{\eta}}}\bar{\eta}\Omega\right]\right) \text{Generalization of } g_{\bar{\eta}NN}$$

Axion-like action (DeVecchia-Veneziano)

$$S_{
m CGC}[A,
ho]=-rac{1}{4}\int d^4x F^{\mu
u}_aF^a_{\mu
u}+rac{i}{N_c}\int d^2x_\perp\;{
m tr}_cig[
ho(x_\perp)\lnig(U_{[\infty,-\infty]}(x_\perp)ig)ig]$$

Spin diffusion via sphaleron transitions

Two scales – the height of the barrier given by $m_{\eta'}^2 = 2n_f \frac{\chi_{\rm YM}}{F^2}$

- the gluon saturation scale Q_{S}

When $Q_S^2 >> m_{\eta \prime}^2$ over the barrier gauge configurations dominate over instanton configurations

Over the barrier (sphaleron) transitions between different topological sectors of QCD vacuum... characterized by integer valued Chern-Simons #

Axion-like dynamics in a hot QCD plasma - McLerran, Mottola, Shaposhnikov (1990)

Spin diffusion in topologically disordered media

Two scales – the height of the barrier given by $m_{\eta'}^2 = 2n_f rac{\chi_{
m YM}}{F^2}$

- the gluon saturation scale Q_S

When $Q_S^2 >> m_{\eta'}^2$ over the barrier sphaleron-like configurations dominate over instanton configurations

Sphaleron transition rate off-equilibrium

Numerical results of 3+1-D classical Yang-Mills of overoccupied configurations

- Sphaleron transition rate scales as the string tension of spatial Wilson loops
- The rate is large $\propto Q_S^4$

g_1 at small x_{Bi} from sphaleron transitions

Spin diffusion due to "drag force" on "axion" propagation in the shock wave background -drag force is proportional to sphaleron transition rate McLerran, Mottola, Shaposhnikov (1990)

$$g_1^{
m Regge}(x_B, Q^2) \propto \left(\mathsf{F}(\mathsf{x}_{\mathsf{B}}) \times \frac{Q_S^2 m_{\eta'}^2}{F_{\bar{\eta}}^3 M_N} \exp\left(-4 n_f C \frac{Q_S^2}{F_{\bar{\eta}}^2}
ight)$$

Very rapid quenching of spin diffusion at small x_{Bj}

Opportunity for discovery of sphaleron transitions at the EIC

