Factorization for Jet propagation in Heavy lon collisions

Varun Vaidya,

University of South Dakota

EFT/Factorization is ubiquitous for pp jets

$$
p+p \rightarrow j e t\left(R, p_{T}\right)+X
$$

$\uparrow \quad$ jet $p_{T} \rightarrow$ UV scale. \rightarrow
Energy Energy correlator

$$
\text { jet } p_{T}
$$

$$
p_{T} R \quad p_{T} \theta_{E}
$$

Hadron Mass $\Lambda_{Q C D} \rightarrow \mathrm{IR}$ scale $\rightarrow \Lambda_{Q C D}$

The semi-inclusive jet function in SCET and small radius resummation for inclusive jet production

Zhong-bo Kang, Felix Ringer and Ivan Vitev JHEP 10 (2016) 125

$$
\frac{d \sigma^{p p \rightarrow \mathrm{jet} X}}{d p_{T} d \eta}=\frac{2 p_{T}}{s} \sum_{a, b, c} \int_{x_{a}^{\min }}^{1} \frac{d x_{a}}{x_{a}} f_{a}\left(x_{a}, \mu\right) \int_{x_{b}^{\min }}^{1} \frac{d x_{b}}{x_{b}} f_{b}\left(x_{b}, \mu\right)
$$

$$
\times \int_{z_{c}^{\min }}^{1} \frac{d z_{c}}{z_{c}^{2}} \frac{d \hat{\sigma}_{c b}^{c}\left(\hat{s}, \hat{p}_{T}, \hat{\eta},\right.}{d v d z} J_{c}\left(z_{c}, p_{T}, R, \mu\right) \quad+O\left(R^{2}\right)+O\left(\frac{\Lambda_{Q C D}^{2}}{\left(p_{T} R\right)^{2}}\right)
$$

Hard function
at p_{T}

Perturbatively calculable jet function at $p_{T} R$

EFT/Factorization is ubiquitous for pp jets

- The EFT captures the leading contribution in the ratio of well separated scales(expansion parameters).
- The EFT automatically identifies all contributions consistent with a given expansion parameter.
- It helps to isolate and parametrize the universal non-perturbative physics in terms of matrix elements of gauge invariant operators (PDFs).
- It allows us to resum large logarithms in a systematically improvable manner.
- Systematically keep track of errors.

Goal of this talk:

- To reorganize jet-in-medium an an EFT calculation.
- Explicitly isolate the universal, observable and model independent physics of the medium in terms of a gauge invariant operator

Identifying two distinct regimes

The EFT at $p_{T} R$

$$
\begin{aligned}
& 1 / \mathrm{L} \rightarrow \quad 1 / \text { Medium size } \rightarrow \text { Size } \\
& \text { of the Nucleus } \sim \text { few fermi } \\
& \text { Coherence time of the probe } \\
& t_{F} \sim \frac{E}{q_{T}^{2}} \sim \frac{1}{p_{T} R^{2}} \\
& \text { Emergent scales } \\
& \lambda_{\text {mfp }}, \hat{q} \\
& \text { Color screening length in the medium } \\
& L_{D}
\end{aligned}
$$

$\cdot \mathrm{x} \sim 1 \rightarrow 200 \mathrm{GeV}$ jet with $p_{T} R \sim 20 \mathrm{GeV} \rightarrow t_{F} \sim 0.1$ fermi $\ll L \rightarrow$ not-so-small $\theta_{E} \sim 0.1$
$\cdot \mathrm{x} \ll 1 \rightarrow 200 \mathrm{GeV}$ jet with $p_{T} R \sim 5 \mathrm{GeV} \rightarrow t_{F} \sim 1.6$ fermi $\sim L \rightarrow$ small $\theta_{E} \sim 0.05$

- In the small x regime, the interaction of the jet with the medium is completely coherent.

An EFT for Small x physics

Soft Collinear Effective Theory(SCET)

Step 1: Identify the relevant degrees of freedom.

- The jet is made up of collinear partons

Px

$$
p_{c} \sim \frac{p_{T} R}{x}\left(1, x^{2}, x\right)
$$

- QGP is a bath made of soft partons

$$
p_{s} \sim \frac{p_{T} R}{x}(x, x, x)
$$

Step 2: Write down an effective Lagrangian at leading power in x(expansion parameter)

- Interaction between d.o.f s is dominated by forward(small angle) scattering mediated by the Glauber mode.

$$
L_{Q C D}=L_{\text {collinear }}+L_{\text {soft }}+L_{\text {Glauber }}+O\left(x^{2}\right)
$$

Tree level Glauber exchange

The probe as an open quantum system

Step 3: Evolve the system with this effective action.

QGP density matrix
$\rho(0)=\left|e^{+}\right\rangle\left\langle e^{-}\right| \otimes \rho_{B}$

$$
\Sigma=\lim _{t \rightarrow \infty} \operatorname{Tr}\left[e^{-i \int d t H_{e f f}(t)} \rho(0) e^{i \int d t H_{e f f}(t)} \Theta_{\mathrm{alg}}\right]
$$

$H_{\mathrm{eff}}=H_{c}+H_{s}+H_{G}$
$H_{G}(t) \equiv H_{G} \Theta\left(t_{M}-t\right) \quad$ Forward scattering is restricted for time t_{M} : Temporal extent of medium
Step 3: Prove factorization of soft physics from collinear order by order in the interactions.

$$
\begin{array}{r}
\Sigma(t)=\operatorname{Tr}[\rho(t) M]=\Sigma^{(0)}(t)+\Sigma^{(1)}(t)+\Sigma^{(2)}(t)+\ldots \\
O\left(H_{G}^{0}\right) \quad O\left(H_{G}^{1}\right) \quad O\left(H_{G}^{2}\right)
\end{array}
$$

The single interaction jet function $J^{(1)}$

- The jet function contains corrections from both vacuum and medium induced radiation.
- The vacuum corrections lead to DGLAP evolution with a logarithm $\ln R$.
- The medium induced corrections lead to a BFKL rapidity logarithm $\ln x \sim \ln \frac{p_{T} R^{2}}{T}$.
- There is a finite correction which is interference between the hard interaction and medium evolution.

$$
F(w)=\operatorname{Cos} \operatorname{Int}[w]-\operatorname{Sinc}[w] \quad w=\frac{L}{t_{F}}
$$

All radiative corrections consistent with the expansion parameter are automatically captured!

The medium TMDPDF

$$
S_{\mathrm{med}}^{A B}\left(k_{\perp}\right)=\frac{1}{k_{\perp}^{2}} \int \frac{d k^{-}}{2 \pi} \int d^{4} x e^{-i k \cdot x} \operatorname{Tr}\left[O_{S}^{A}(x) O_{S}^{B}(0) \rho_{Q G P}\right]
$$

Model independent and universal!

- SCET Operator version of color source density function ρ^{A} in the CGC

Resumming logs in a single interaction

The regime of multiple scatterings

A definition of the mean free path

$$
\Sigma(t)=\operatorname{Tr}[\rho(t) M]=\Sigma^{(0)}(t)+\Sigma^{(1)}(t)+\Sigma^{(2)}(t)+\ldots
$$

Leading log sum of the Glauber series to all orders.

$$
\Sigma_{\text {med }}=\int d^{2} b[\sigma(b)]_{\mathrm{vac}} \int_{y \in \mathrm{Med}} d^{2} y_{\perp} d y^{+}\left[1-\mathbf{P} \exp \left\{-\int \frac{d y^{-}}{\lambda_{\mathrm{mfp}}\left(p_{T} R, \vec{b}, y\right)}\right\}\right]+O\left(R^{2}\right)
$$

Vacuum evolution
Medium evolution of

of probe \rightarrow DGLAP probe \rightarrow BFKL

$$
\begin{array}{cc}
\lambda_{\mathrm{mfp}}^{-1}\left(R,, p_{T}, y\right)=H_{G}\left(p_{T}, \mu\right) \int & d^{2} k_{\perp} S_{\mathrm{med}}\left(k_{\perp}, y, \mu, \nu\right) J_{c}^{\mathrm{med}}\left(R, p_{T}, \quad k_{\perp}\right) \\
& \begin{array}{c}
\text { Universal observable } \\
\text { indenendent }
\end{array}
\end{array}
$$

independent structure function

An emergent expansion parameter

$$
\Sigma=\int d^{2} b[\sigma(b)]_{\mathrm{vac}} \int_{y \in \operatorname{Med}} d^{2} y_{\perp} d y^{+}[1-\mathbf{P} \exp \{-\underbrace{\int \frac{d y^{-}}{\lambda_{\mathrm{mfp}}(Q, \vec{b}, y)}}_{\lambda_{1}}\}]
$$

$\lambda_{1} \sim 1 \rightarrow$ Multiple interactions need to be resummed

$$
\int^{\text {Nucleus }} \frac{d y^{-}}{\lambda_{\mathrm{mfp}}\left(Q_{s}, 1 / Q_{s}, y\right)}=1
$$

For Heavy ion jet physics, this defines the breakdown of opacity expansion.
For small x DIS, this defines the saturation scale.

A non-perturbative medium

$$
\lambda_{\mathrm{mfp}}^{-1}\left(R, N, p_{T}, y\right)=H_{G}\left(p_{T}, \mu\right) \int d^{2} k_{\perp} S_{\mathrm{med}}\left(k_{\perp}, y, \mu, \nu\right) J_{c}^{\operatorname{med}}\left(R, p_{T}, N, k_{\perp}\right)+O\left(R^{2}\right)
$$

$$
p_{T} \gg p_{T} R \gg T
$$

- Jet function is perturbative and calculable.
- Can the EFT at scale $p_{T} R \sim Q$ be matched onto the medium PDF at $\mathrm{T} \sim \Lambda_{Q C D}$?
- Medium PDF: Non perturbative but observable independent!
- Only need to recompute the jet function for different jet substructure observables.

Summary

- For a coherent(unresolved) interaction, radiative corrections in medium described by BFKL.
- Universality of a gauge invariant, model independent medium structure function can be derived rigorously.

Open Questions

- How to match and isolate the non-perturbative physics at the scale $\Lambda_{Q C D}$.
-Formulate the EFT for $\mathrm{x} \sim 1 \rightarrow$ Ongoing work !
- Extract the universal non-perturbative structure functions from data.

An EFT in a (slightly) boosted frame

- Work in a frame where the medium is boosted by a factor $\gamma=\frac{p_{T} R}{T}$,
- Allows us to conveniently use an EFT framework already developed in literature
I. Rothstein, I. Stewart, JHEP 1608 (2016) 025
- Energy of medium partons $\sim T \frac{P_{T} R}{T}=p_{T} R$
- Energy of jet partons $\sim p_{T} \frac{T}{p_{T} R}=\frac{p_{T} R}{x}$

Renormalization for the medium jet function

$J_{\text {Med, BFKL }}^{A B(1)}\left(\vec{k}_{\perp}, \vec{q}_{T_{n}}\right)=-\frac{\alpha_{s} N_{C}}{\pi^{2}} \int \frac{d^{2} q_{\perp}}{\left(\vec{q}_{\perp}-\vec{k}_{\perp}\right)^{2}}\left\{J_{\text {Med }}^{A B}\left(\vec{q}_{\perp}, \vec{q}_{T_{n}}\right)-\frac{1}{2} \frac{J_{\text {Med }}^{(A B)}\left(\vec{k}_{\perp}, \vec{q}_{T n}\right) k_{\perp}^{2}}{q_{\perp}^{2}}\right\}\left\{\ln \frac{\nu}{Q z_{c}}-F\left[\frac{\left(\vec{q}_{\perp}^{2}+m_{D}^{2}\right) t_{M}}{Q z_{c}}\right]\right\}$
$t_{F}=\frac{Q z_{c}}{q_{\perp}^{2}+m_{D}^{2}}$
Formation time for radiation
$t_{t_{u} \gg t_{r}}$: Long Lived medium: $\mathrm{F}_{\rightarrow} 0$: $\nu_{\nu_{s} \sim Q_{z_{c}}}$
${ }_{t_{w} \ll t_{F}}$: Short Lived medium: $\mathrm{F}(\mathrm{X}) \rightarrow \operatorname{In} \mathrm{X}: \nu_{\nu} \sim q_{I_{m}}<Q_{z_{c}}$

An EFT within SCET

Step 2: Write down an effective Lagrangian at leading power in x for these d.o.fs

- Interaction between d.o.f s is dominated by forward(small angle) scattering mediated by the Glauber mode.

$$
\begin{aligned}
L_{Q C D}= & L_{\text {collinear }}+L_{\text {soft }}+L_{\text {Glauber }}+O\left(x^{2}\right) \\
& \equiv L_{S C E T}+L_{G}
\end{aligned}
$$

An effective field theory for forward scattering and factorization violation
I. Rothstein, I. Stewart, JHEP 1608 (2016) 025

$$
L_{G} \sim O_{c s}^{q q}=O_{n}^{q \alpha} \frac{1}{P_{\perp}^{2}} O_{S}^{q \alpha}
$$

$$
\begin{aligned}
O_{S}^{q \alpha} & =\bar{\psi}_{s} S_{n} T^{\alpha} \frac{n}{2} S_{n}^{+} \psi_{s}^{n} \\
O_{n}^{q \alpha} & =\bar{\chi}_{n} W_{n} T^{\alpha} \frac{\bar{n}}{2} W_{n}^{+} \chi_{n}
\end{aligned}
$$

