Factorization for Jet propagation in Heavy lon collisions

Varun Vaidya, University of South Dakota

EFT/Factorization is ubiquitous for pp jets

The semi-inclusive jet function in SCET and small radius resummation for inclusive jet production

Zhong-bo Kang, Felix Ringer and Ivan Vitev JHEP 10 (2016) 125

$\frac{d\sigma^{pp \to \text{jet}X}}{dp_T d\eta} = \frac{2p_T}{s} \sum_{a,a} X_{a,a}$

Varun Vaidya, Univ of South Dakota

 $p + p \rightarrow jet(R, p_T) + X$

Energy Energy correlator

jet p_T

jet $p_T \rightarrow UV$ scale. \rightarrow

 $p_T R$

 $p_T \theta_E$

Hadron Mass $\Lambda_{QCD} \rightarrow \text{IR scale} \rightarrow \Lambda_{QCD}$

$$\int_{b,c}^{1} \int_{x_{a}^{\min}}^{1} \frac{dx_{a}}{x_{a}} f_{a}(x_{a},\mu) \int_{x_{b}^{\min}}^{1} \frac{dx_{b}}{x_{b}} f_{b}(x_{b},\mu) = \int_{a}^{1} \frac{dz_{c}}{z_{c}^{2}} \frac{d\hat{\sigma}_{ab}^{c}(\hat{s},\hat{p}_{T},\hat{\eta},}{dvdz} \int_{c}(z_{c},p_{T},R,\mu) + O(R^{2}) + O\left(\frac{\Lambda_{QCD}^{2}}{(p_{T}R)^{2}}\right) = Hard function = at p_{T}$$

$$Perturbatively calculable = jet function at p_{T}R Obeys time-like DGLAP equation$$

EFT/Factorization is ubiquitous for pp jets

- The EFT captures the leading contribution in the ratio of well separated scales(expansion parameters).
- The EFT automatically identifies all contributions consistent with a given expansion parameter.
- It helps to isolate and parametrize the **universal** non-perturbative physics in terms of matrix elements of gauge invariant operators (PDFs).
- It allows us to resum large logarithms in a systematically improvable manner.
- Systematically keep track of errors.

- To reorganize jet-in-medium an an EFT calculation. Explicitly isolate the universal, observable and model independent physics of the medium in terms of a
- gauge invariant operator

Goal of this talk:

Varun Vaidya, Univ of South Dakota

Identifying two distinct regimes

Two regimes 2203.09407 P. Caucal, Y. Mehtar-Tani

•x ~ 1 \rightarrow The three scales are equally spaced \rightarrow large x physics •x << 1 $\rightarrow p_T R$ is much closer to T than $p_T \rightarrow$ small x physics.

- The EFT is distinct for the two hierarchies and so are the dominant radiative corrections.
- Exploit the hierarchy of scales to make an expansion at the level of the Lagrangian, i.e before computing any diagrams.

- x << 1 \rightarrow 200 GeV jet with $p_T R \sim 5$ GeV $\rightarrow t_F \sim 1.6$ fermi $\sim L \rightarrow$ small $\theta_E \sim 0.05$

• In the small x regime, the interaction of the jet with the medium is completely coherent.

Varun Vaidya, Univ of South Dakota

 $1/L \rightarrow 1/$ Medium size \rightarrow Size of the Nucleus ~ few fermi

Coherence time of the probe

$$t_F \sim \frac{E}{q_T^2} \sim \frac{1}{p_T R^2}$$

Emergent scales

 $\lambda_{\rm mfp}, \hat{q}$

Color screening length in the medium L_D

•x ~ 1 \rightarrow 200 GeV jet with $p_T R \sim$ 20 GeV $\rightarrow t_F \sim 0.1$ fermi $\ll L \rightarrow$ not-so-small $\theta_E \sim 0.1$

An EFT for Small x physics

The probe as an open quantum system

We assume Q_B is initially unentangled from the partons that are involved in the hard interaction.

$$-i\int dt H_{eff}(t) \rho(0) e^{i\int dt H_{eff}(t)} \Theta_{alg}$$

 $H_G(t) \equiv H_G\Theta(t_M - t)$ Forward scattering is restricted for time t_M : Temporal extent of medium

Step 3: Prove factorization of soft physics from collinear order by order in the interactions.

+
$$\Sigma^{(2)}(t)$$
 + ...

$$O(H_G^2)$$

Factorization for O(n) interaction

Path Ordered in y⁻

$$\ldots, k_n^{\perp}, p_T, R) \bigg\}$$

Jet(collinear) function at order n

Valid for inhomogeneous medium

- The jet function contains corrections from both vacuum and medium induced radiation.
- The vacuum corrections lead to DGLAP evolution with a logarithm $\ln R$.

All radiative corrections consistent with the expansion parameter are automatically captured!

V.Vaidya 2109.11568

• The medium induced corrections lead to a BFKL rapidity logarithm $\ln x \sim \ln \frac{p_T R^2}{T}$.

• There is a finite correction which is interference between the hard interaction and medium evolution. $F(w) = \operatorname{CosInt}[w] - \operatorname{Sinc}[w]$

The medium TMDPDF

$$S_{\text{med}}^{AB}(k_{\perp}) = \frac{1}{k_{\perp}^2} \int \frac{dk^-}{2\pi} \int d^4x e^{-ik}$$

• SCET Operator version of color source density function ρ^A in the CGC

One loop corrections in the thermal medium using Real Time formalism

Model independent and $^{ik\cdot x}\mathrm{Tr}\left[O_S^A(x)O_S^B(0)\rho_{QGP}\right]$ universal !

$$\begin{split} \frac{1}{2} S(\vec{k}_{\perp}) &= \frac{\alpha_s N_c}{\pi^2} \int d^2 q_{\perp} \left(\frac{S(\vec{q}_{\perp})}{(\vec{q}_{\perp} - \vec{k}_{\perp})^2} - \frac{k_{\perp}^2 S(k_{\perp})}{2q_{\perp}^2 (\vec{q}_{\perp} - \vec{k}_{\perp})^2} \right) \\ & \text{BFKL equation} \\ & \text{Vaidya 2107.00029} \\ \mu \frac{d}{d\mu} S(\vec{k}_{\perp}) &= -\frac{\alpha_s \beta_0}{\pi} \quad \begin{array}{c} \text{Running of the QCD} \\ \text{coupling} \\ \mu \sim k_{\perp} \\ \end{split}$$

Resumming logs in a single interaction

The regime of multiple scatterings

A definition of th

$$\Sigma(t) = Tr[\rho(t)M] = \Sigma^{(0)}(t) + \Sigma^{(1)}(t) + \Sigma^{(0)}(t) + \Sigma$$

Leading log sum of the Glauber series to all orders. $\Sigma_{\text{med}} = \int d^2 b [\sigma(b)]_{\text{vac}} \int_{y \in \text{Med}} d^2 y_{\perp} dy^+ \left[1 - \mathbf{P} \exp\left\{ -\int \frac{dy^-}{\lambda_{\text{mfp}}(p_T R, \overrightarrow{b}, y)} \right\} \right] + O(R^2)$

Vacuum evolutionMedium evolution ofof probe \rightarrow DGLAPprobe \rightarrow BFKL

$$\lambda_{mfp}^{-1}(R, p_T, y) = H_G(p_T, \mu) \int d^2k_{\perp}S_{med}(x)$$
Universal oblight independent structure for

he mean free path

 $(k_{\perp}, y, \mu, \nu) J_c^{\mathsf{med}}(R, p_T, k_{\perp})$

bservable It nction Medium jet function

V. Vaidya

An Effective Field Theory for jet substructure in Heavy Ion Collisions. JHEP 11, 064 (2021)

An emergent ex

$$\Sigma = \int d^2 b [\sigma(b)]_{\text{vac}} \int_{y \in \text{Med}} d^2 y_{\perp} dy^{-1}$$

 $\lambda_1 \sim 1 \rightarrow$ Multiple interactions need to be resummed

$$\int^{\text{Nucleus}} \frac{dy^{-}}{\lambda_{\text{mfp}}(Q_s, 1/Q_s, y)} =$$

For Heavy ion jet physics, this defines the breakdown of opacity expansion.

For small x DIS, this defines the **saturation** scale.

pansion parameter $\chi^{+} \left[1 - \mathbf{P} \exp\left\{ -\int \frac{dy^{-}}{\lambda_{\mathrm{mfp}}(Q, \vec{b}, y)} \right\} \right]$ Λ^{-}

$$A \text{ non-perturb}$$

$$\lambda_{mfp}^{-1}(R, N, p_T, y) = H_G(p_T, \mu) \int d^2k_{\perp}S_{med}$$

$p_T \gg p_T R \gg T$

• Jet function is perturbative and calculable.

- Can the EFT at scale $p_T R \sim Q$ be matched onto the medium PDF at T $\sim \Lambda_{OCD}$?
- Medium PDF: Non perturbative but observable independent!
- Only need to recompute the jet function for different jet substructure observables.

ative medium

$\mathsf{d}^{(k_{\perp}, y, \mu, \nu)} J_c^{\mathsf{med}}(R, p_T, N, k_{\perp}) + O(R^2)$

Summary

- For a coherent (unresolved) interaction, radiative corrections in medium described by BFKL. • Universality of a gauge invariant, model independent medium structure function can be
- derived rigorously.

Open Questions

- How to match and isolate the non-perturbative physics at the scale Λ_{OCD} .
- Formulate the EFT for $x \sim 1 \rightarrow Ongoing$ work !
- Extract the universal non-perturbative structure functions from data.

An EFT in a (slightly) boosted frame

- Work in a frame where the medium is boosted by a factor $\gamma = \frac{p_T R}{T}$,
- Allows us to conveniently use an EFT framework already developed in literature
 - I. Rothstein, I. Stewart, JHEP 1608 (2016) 025
 - Energy of medium partons $\sim T \frac{P_T R}{T} = p_T R$ • Energy of jet partons $\sim p_T \frac{T}{p_T R} = \frac{p_T R}{x}$

d by a factor $\gamma = \frac{p_T R}{T}$, vork already developed in

Renormalization for the medium jet function

$$J_{\text{Med, BFKL}}^{AB(1)}(\vec{k}_{\perp}, \vec{q}_{Tn}) = -\frac{\alpha_s N_C}{\pi^2} \int \frac{d^2 q_{\perp}}{(\vec{q}_{\perp} - \vec{k}_{\perp})^2} \left\{ J_{\text{Med}}^{AB}(\vec{q}_{\perp}, \vec{q}_{Tn}) - \frac{1}{2} \frac{J_{\text{Med}}^{(AB)}(\vec{k}_{\perp}, \vec{q}_{Tn})k_{\perp}^2}{q_{\perp}^2} \right\} \left\{ \ln \frac{\nu}{Qz_c} - F\left[\frac{(\vec{q}_{\perp}^2 + m_D^2)t_M}{Qz_c}\right] \right\} \left\{ I_F = \frac{Qz_c}{q_{\perp}^2 + m_D^2} \right\}$$
Formation time for radiation

$$t_F = \frac{Qz_c}{q_\perp^2 + m_D^2}$$

 $t_M \gg t_F$: Long Lived medium: $t_M \ll t_F$: Short Lived medium: F

$$F \rightarrow 0 : \nu_J \sim Qz_c$$

$$F(\mathbf{X}) \rightarrow \ln \mathbf{X} : \nu_J \sim q_{\perp}^2 t_M \ll Qz_c$$

An EFT within SCET

Step 2: Write down an effective Lagrangian at leading power in x for these d.o.fs

Interaction between d.o.f s is dominated by forward(small angle) scattering mediated by the Glauber mode.

$$L_{QCD} = L_{collinear} + L_{soft} + L_{Glauber} + O(x^2)$$
$$\equiv L_{SCET} + L_G$$

$$L_G \sim O_{cs}^{qq} = O_n^{q\alpha} \frac{1}{P_\perp^2} O_S^{q\alpha}$$

An effective field theory for forward scattering and factorization violation I. Rothstein, I. Stewart, JHEP 1608 (2016) 025

$$O_{S}^{q\alpha} = \overline{\psi}_{s} S_{n} T^{\alpha} \frac{n}{2} S_{n}^{*} \psi_{s}^{n}$$
$$O_{n}^{q\alpha} = \overline{\chi}_{n} W_{n} T^{\alpha} \frac{\overline{n}}{2} W_{n}^{*} \chi_{n}$$

Gauge invariant building blocks

