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Neutron stars

▶ Neutron star (NS) formed at the end of the “life”
of an intermediate-mass star (supernova)

▶ M ∼ 1− 2 M⊙ in a radius of R ∼ 10− 15 km
→ average density ∼ 5× 1014 g/cm3

(∼ 2× nuclear matter saturation density)

▶ Cools down rapidly by neutrino emission
within ∼ 1 month: T ≲ 109 K ∼ 100 keV

▶ Internal structure of a neutron star:

outer crust: Coulomb lattice of neutron rich
nuclei in a degenerate electron gas

inner crust: unbound neutrons form a
neutron gas between the nuclei

outer core: homogeneous matter (n, p, e−)

inner core: new degrees of freedom:
hyperons? quark matter?
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Structure of the inner crust

▶ For nB ∼ 0.001 . . . 0.08 fm−3

(1.7× 1012 . . . 1.3× 1014 g/cm3),
clusters made of neutrons and protons
are surrounded by a dilute neutron gas

▶ For nB ≲ 0.06 fm−3 (1014 g/cm3),
clusters arrange in a BCC lattice (3D)
to minimize the Coulomb energy

▶ At higher densities, one expects so-called
“pasta phases”:

rods (“spaghetti”, 2D hexagonal lattice)

or slabs (“lasagna”, 1D)

▶ Neutrons are supposed to be superfluid
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Pulsar glitches

▶ Neutron star: rotating magnetic dipole,
period increases slowly with time

▶ Glitch = sudden speed-up of the rotation,
followed by a slow relaxation

▶ First glitch observed 1969 in the Vela pulsar,
since then 520 glitches in 180 different pulsars
[Manchester (2017)]

▶ Possible explanation: pinning of quantized
vortices to the clusters in the inner crust
[Manchester & Itoh (1975)]

▶ While the normal part of the star is slowing
down (Ωn), the superfluid neutrons are
spinning at constant frequency (Ωs)

▶ When Ωs −Ωn becomes too large, the vortices
get unpinned and the superfluid transfers
angular momentum to the normal part

Ω

B

[Chandra]

[Radhakrishnan & Manchester,
Nature 222 (1969)]



Superfluid fraction (“entrainment”)

▶ Question: how many neutrons in the inner crust are superfluid?

▶ Current in a uniform superfluid (T = 0):

j = n ℏ
2m∇ϕ where ∆ = |∆|e iϕ

assuming that ϕ varies only on large enough length scales

▶ In an inhomogeneous system, define superfluid and normal densities nS and nN
in terms of coarse grained quantities j̄, ϕ̄, n̄ such that:

j̄ = nS
ℏ
2m

∇ϕ̄+ nNvN with nS + nN = n̄

(vN = velocity of the inhomogeneities)

φ
φ

x[see e.g. Pethick, Chamel & Reddy (2010)]

▶ If the system is non-uniform, then nS < n̄ even at T = 0
[A. Leggett, J. Stat. Phys. 93, 927 (1998)]

▶ Some of the particles are “entrained” by the motion of the inhomogeneities

▶ In general (e.g., in pasta phases), nS and nN are matrices



Band theory vs. hydrodynamics

▶ Normal band theory
[Carter & Chamel (2004); Chamel (2005-. . . );

Figure: Chamel & Haensel, Liv. Rev. Rel. 11 (2008)]

analogous to band theory in solids

valid for weak coupling (∆ → 0)

▶ Superfluid hydrodynamics
[Sedrakian (1996); Magierski & Bulgac (2004);

N. Martin & MU (2016); Th. Kaskitsi (Master student)]

assume also microscopic current j and
microscopic phase ϕ fulfil j = n ℏ

2m∇ϕ

valid for strong coupling:

ξ ∼ kF
πm∆ ≪ R, L

R

L

ξ



Vela glitches and superfluid fraction in the crust

▶ Contradictory predictions for the crust
superfluid fraction from
superfluid hydrodynamics
[Martin & MU, PRC 94 (2016)]

and normal band structure theory
[Chamel, PRC 85 (2012)]

▶ Observed Vela glitches require
substantial contribution Is of superfluid
neutrons to the moment of inertia Icrust

▶ Observed glitches incompatible with
superfluid fraction Is/Icrust = 0.17 from
band theory [Chamel, PRL 110 (2013)]

▶ Do we need to include also the core?
[Andersson et al. PRL 109 (2012)]

▶ Does normal band theory
underestimate the superfluid fraction?
[see also Watanabe & Pethick, PRL 119 (2017)]
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Hartree-Fock-Bogoliubov (HFB) with periodicity

HFB can interpolate between normal band theory in weak coupling and
superfluid hydrodynamics in strong coupling(

h − µ −∆
−∆† −h̄ + µ

)(
U∗
α

−Vα

)
= Eα

(
U∗
α

−Vα

)

working in momentum space: hpp′ =
p2

2m
δpp′ + Upp′

mean field: Upp′ = −∑
qq′ Vpqp′q′ ρq′q (Skyrme functional)

gap: ∆pp′ = −∑
qq′ Vpp′q′q κq′q (separable interaction ∼ Vlow−k)

Periodicity: example: 1D case (lasagna)

px = nx
2π
L + kx , with nx ∈ Z, kx ∈ (−π

L ,
π
L ]

→ HFB matrix is diagonal in kx (Bloch momentum), py , and pz ,
non-diagonal only in discrete index nx



Hartree-Fock-Bogoliubov (HFB) with periodicity

HFB can interpolate between normal band theory in weak coupling and
superfluid hydrodynamics in strong coupling(

h − µ −∆
−∆† −h̄ + µ

)(
U∗
α

−Vα

)
= Eα

(
U∗
α

−Vα

)

working in momentum space: hpp′ =
p2

2m
δpp′ + Upp′

mean field: Upp′ = −∑
qq′ Vpqp′q′ ρq′q (Skyrme functional)

gap: ∆pp′ = −∑
qq′ Vpp′q′q κq′q (separable interaction ∼ Vlow−k)

Periodicity: 3D crystal with primitive reciprocal lattice vectors bi

p = n1b1 + n2b2 + n3b3 + k , with ni ∈ Z, k ∈ BZ

→ HFB matrix is diagonal in k (Bloch momentum),
non-diagonal in discrete indices ni



Band structure: example for a simple cubic cell

▶ In principle, diagonalization must
be done for all k ∈ BZ

(in practice only for a finite
number of integration points)

▶ Diagonalizing only h:
single particle bands

ξα,k = ϵα,k − µ

▶ Diagonalizing full HFB matrix:
quasiparticle bands

Eα,k ≳ ∆

Γ − X − M − Γ − R − X = path on

symmetry lines between special points

(with |k| = 0, π
L ,

√
2π

L , 0,
√
3π

L ,
π
L )
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Density profile and gap: 1D example (lasagna)
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[Almirante & MU, PRC 109 (2024)]

▶ gap inside the slab is smaller than in the neutron gas

▶ but this suppression is weaker than what one would get when using the
local-density approximation (LDA)



Introducing a stationary flow

▶ Consider relative velocity

v = vN − vS (vS = ℏ
2m

∇ϕ̄)

between clusters and superfluid φ

φφ
φ

x x−vt

of the clusters

in the rest frame

of the superfluid

in the rest frame

▶ In the rest frame of the superfluid:

▶ ∆ = |∆|e iϕ is periodic

▶ Hamiltonian h → h − p · v (additional term does not destroy periodicity)

▶ vS = 0, vN = v ⇒ j̄ = ρNv = (ρ̄n − ρS)v

▶ Make sure that v is small enough to be in the linear regime (no pair breaking)

▶ Estimate v just before a Vela glitch (δΩ ≃ 10−2 − 10−1 s−1
[Ruderman, ApJ 203 (1976)]):

v = RNSδΩ ≃ RNS

12 km
× 4× (10−7 − 10−6)c

≪ vLandau ≃
∆

ℏkF
≃ ∆

1MeV
× 1.3 fm−1

kF
× 4× 10−3c



Phase of the gap and current: 1D example (lasagna)

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0 0.2 0.4 0.6 0.8 1

ϕ

x/L

v/c = 1× 10−3

˙
v/c = 2× 10−3

˙

−0.01

0

0.01

0.02

0.03

0.04

0 0.2 0.4 0.6 0.8 1

ρ
/v

N
(
fm

−
3
)

x/L

neutrons, µn = 12 MeV
10 MeV

protons, µn = 12 MeV
10 MeV

[Almirante & MU, Phys. Rev. C 109 (2024)]

▶ phase ϕ ∝ v → linear regime

▶ proton current = v× proton density

▶ neutron current shifted down by a constant (superfluid part doesn’t move)



Density and current in 2D (spaghetti)

Neutron density ρn and velocity vn = jn/ρn in square and hexagonal lattices
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ρb = 0.062 fm−3, ρS/ρ̄n = 95%



Density and current in 3D (BCC crystal)

Neutron density ρn and velocity vn = jn/ρn in two cuts through the unit cell
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Results and comparison with normal band theory

µn L ρb ρS/ρn ρS/ρn
(MeV) (fm) (fm−3) (HFB %) (HF %)

crystal 9 33 0.0334 92.1 7
crystal 10 31 0.0425 92.8 9
crystal 11 29 0.0518 94.1 27

spaghetti 12 24 0.0619 94.5 75
spaghetti 12.5 24 0.0670 95.4 82
lasagna 13 20 0.0723 96.3 93
lasagna 13.5 20 0.0768 97.2 94

→ HFB superfluid fractions closer to the results of superfluid hydrodynamics
than to the ones of normal band theory.



Band structure effect vs. pairing gap

▶ Normal band theory should be valid in the weak-coupling limit (∆ → 0)

▶ Superfluid hydrodynamics only valid for ξ ≪ L → ∆ ≫ kF
πmL

▶ HFB should be valid all the way between these two limits!

▶ Varying artificially the strength of the pairing interaction:
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Linear response on top of BCS

Simpler approach than full HFB:

▶ linear response on top of BCS with constant gap

▶ need to diagonalize only h (additional approximation: m∗ = m)

▶ treat −p · v term as perturbation

Notice the analogy between normal density ρN = ρ̄n − ρS and moment of inertia



Geometric contribution
▶ Final expression, neglecting the change of the gap (i.e., the phase ϕ):

ρS =
1

3m

∫
BZ

d3k

(2π)3

∑
αβ

2∆2 |⟨αk|p|βk⟩|2

EαkEβk(Eαk + Eβk)

k = Bloch momentum,

α, β = band labels,

Eαk =
√

(ϵαk − µ)2 +∆2

▶ Using ⟨αk|p|αk⟩ = m
∂ϵαk

∂k
,
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[Almirante & MU, arXiv:2503.21635]

the contribution for α = β becomes:

ρdiag.S =
m

3

∫
BZ

d3k

(2π)3

∑
α

∆2

E 3
αk

(∂ϵαk

∂k

)2

Notice: lim
∆→0

∆2

E 3
αk

= 2δ(ϵαk − µ)

→ Chamel’s formula

▶ The contribution α ̸= β can be large
and is called “geometric contribution”
in condensed-matter physics
[e.g. Peotta & Törmä, Nature Comm. 6, 8944 (2015)]

▶ Potential problem at large ∆ due to violation of continuity equation (neglected ϕ)



Superfluid hydrodynamics and Leggett’s upper bound

▶ Assumption of superfluid hydrodynamics: vn(r) =
ℏ
2m

∇ϕ(r)

▶ In the rest frame of the superfluid:

▶ Continuity: ∇ · jn(r) = −ρ̇n(r) ⇒ ∇ · ρn(r)∇ϕ(r) = v ·∇ρn(r)

▶ Periodicity: ϕ(r+ ai ) = ϕ(r) (ai = primitive lattice vector)

ϕ(r) can be easily solved for any periodic density profile ρn(r),
e.g., by expanding ρn and ϕ in a Fourier series

▶ 1D case: solution can be written explicitly:

▶ Continuity (ρnϕ
′)′ = vρ′n ⇒ ϕ′(x) = v +

C

ρn(x)

▶ Periodicity ϕ(L) = ϕ(0) ⇒ C−1 = − 1

vL

∫ L

0

dx

ρn(x)
≡ −v−1 ρ−1

n

▶ ρS = −C

v
=

(
ρ−1
n

)−1
: Leggett’s upper bound [J. Stat. Phys. 93, 927 (1998)]

▶ Conjecture: also in 2D and 3D, superfluid hydrodynamics gives an upper limit for ρS



Conclusions

▶ Superfluid fraction important for glitches
(also for cooling and star oscillations)

▶ HFB band theory interpolates between normal band theory (for ∆ → 0)
and superfluid hydrodynamics (for ∆ large)

▶ ρS/ρ̄n depends strongly on the gap if the gap is small, but reaches rapidly
values of ∼ 90% for realistic values of the gap

▶ Superfluid fraction of the crust is high enough to explain glitches
without need for superfluidity in the core

▶ The strong gap dependence can be understood from the so-called
“geometric contribution” in the linear response expression for ρS

▶ In inhomogeneous systems, the continuity equation imposes an upper limit
on ρS/ρ̄n


