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Neutron stars

> Neutron star (NS) formed at the end of the "“life”
of an intermediate-mass star (supernova)

» M~1—2 Mg in a radius of R ~ 10 — 15 km
— average density ~ 5 x 10'* g/cm?3
(~ 2x nuclear matter saturation density)

» Cools down rapidly by neutrino emission
within ~ 1 month: T S 10° K ~ 100 keV RCW103 [Chandra X-ray telescope]

» Internal structure of a neutron star:

outer crust: Coulomb lattice of neutron rich
nuclei in a degenerate electron gas

f1-2 km

inner crust: unbound neutrons form a

neutron gas between the nuclei
_ ~10 km
outer core: homogeneous matter (n, p, )

inner core: new degrees of freedom:
hyperons? quark matter?



Structure of the inner crust

» For ng ~ 0.001...0.08 fm—3
(1.7 x 1012...1.3 x 10* g/cm?3),
clusters made of neutrons and protons
are surrounded by a dilute neutron gas

> For ng < 0.06 fm=3 (10%* g/cm?),
clusters arrange in a BCC lattice (3D)
to minimize the Coulomb energy

» At higher densities, one expects so-called
“pasta phases”:

rods (“spaghetti”, 2D hexagonal lattice)

or slabs (“lasagna”, 1D)

» Neutrons are supposed to be superfluid
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Pulsar glitches

» Neutron star: rotating magnetic dipole,
period increases slowly with time

» Glitch = sudden speed-up of the rotation,
followed by a slow relaxation

» First glitch observed 1969 in the Vela pulsar,
since then 520 glitches in 180 different pulsars
[Manchester (2017)]

» Possible explanation: pinning of quantized
vortices to the clusters in the inner crust
[Manchester & ltoh (1975)]

» While the normal part of the star is slowing
down (£2,), the superfluid neutrons are
spinning at constant frequency ()

» When Qs — Q, becomes too large, the vortices
get unpinned and the superfluid transfers
angular momentum to the normal part
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Superfluid fraction ( “entrainment”)

>

>

Question: how many neutrons in the inner crust are superfluid?
Current in a uniform superfluid (T = 0):

j=nkVo where A = |Ale™

assuming that ¢ varies only on large enough length scales

In an inhomogeneous system, define superfluid and normal densities ns and ny
in terms of coarse grained quantities j, ¢, 1 such that:

j:

a=al

B -
”S%Vfﬁ + nyvy with ns+ny=n 0

(vy = velocity of the inhomogeneities)
[see e.g. Pethick, Chamel & Reddy (2010)] X

If the system is non-uniform, then ng < nevenat T =0
[A. Leggett, J. Stat. Phys. 93, 927 (1998)]

Some of the particles are “entrained” by the motion of the inhomogeneities

In general (e.g., in pasta phases), ns and ny are matrices



Band theory vs. hydrodynamics

» Normal band theory

[Carter & Chamel (2004); Chamel (2005-...);
Figure: Chamel & Haensel, Liv. Rev. Rel. 11 (2008)]

analogous to band theory in solids
valid for weak coupling (A — 0)

» Superfluid hydrodynamics

[Sedrakian (1996); Magierski & Bulgac (2004);
N. Martin & MU (2016); Th. Kaskitsi (Master student)]

assume also microscopic current j and
microscopic phase ¢ fulfil j = nJ- V¢
valid for strong coupling:
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Vela glitches and superfluid fraction in the crust

» Contradictory predictions for the crust 1

superfluid fraction from 08 /"/

superfluid hydrodynamics

[Martin & MU, PRC 94 (2016)] = 06

and normal band structure theory iy 04 s.f. hydro

[Chamel, PRC 85 (2012)] : Chamel
0.2}

» Observed Vela glitches require
substantial contribution /s of superfluid
neutrons to the moment of inertia /oust
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» Observed glitches incompatible with
superfluid fraction /s/lerust = 0.17 from
band theory [Chamel, PRL 110 (2013)]

» Do we need to include also the core?
[Andersson et al. PRL 109 (2012)]

» Does normal band theory

underestimate the superfluid fraction?
[see also Watanabe & Pethick, PRL 119 (2017)]




Hartree-Fock-Bogoliubov (HFB) with periodicity

HFB can interpolate between normal band theory in weak coupling and
superfluid hydrodynamics in strong coupling

AT —hyu) v ) TRy,

2
working in momentum space: hpy = ;5pp/ + Upp
m
mean field:  Upy = — 3" Vow'a P (Skyrme functional)
gap: Appy = — qu, Vip'arq Kqrq  (Separable interaction ~ Vigw—x)

Periodicity: example: 1D case (lasagna)

px = N2 + ke, with nc€Z, k€ (—T,7%]

— HFB matrix is diagonal in k, (Bloch momentum), p,, and p,,
non-diagonal only in discrete index ny



Hartree-Fock-Bogoliubov (HFB) with periodicity

HFB can interpolate between normal band theory in weak coupling and
superfluid hydrodynamics in strong coupling

—Af —h+,Uz Vo - —Va

2
working in momentum space: hpy = ;5pp/ + Upp
m
mean field:  Upy = — 3" Vow'a P (Skyrme functional)
gap: Appy = — qu, Vip'arq Kqrq  (Separable interaction ~ Vigw—x)

Periodicity: 3D crystal with primitive reciprocal lattice vectors b;

p = mbs + mby+n3bs+k, with ne€eZ, keBZ

— HFB matrix is diagonal in k (Bloch momentum),
non-diagonal in discrete indices n;



Band structure: example for a simple cubic cell

» In principle, diagonalization must
be done for all k € BZ

(in practice only for a finite
number of integration points)

» Diagonalizing only h:
single particle bands
ga,k =€k — MU

» Diagonalizing full HFB matrix:
quasiparticle bands

Eax > A

r—X—-M-—-T—-R— X = pathon
symmetry lines between special points

(with [k| =0, F,v2%,0,V3F, T)
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Density profile and gap: 1D
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[Almirante & MU, PRC 109 (2024)]

» gap inside the slab is smaller than in the neutron gas
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» but this suppression is weaker than what one would get when using the

local-density approximation (LDA)



Introducing a stationary flow

>

Consider relative velocit in the rest frame in the rest frame
Y of the clusters of the superfluid
v=vy—Vs (vs= %Vo)
between clusters and superfluid ¢ 0 %ﬁ%
X ———Xx-W

In the rest frame of the superfluid:
> A =|Ale’ is periodic
» Hamiltonian h — h — p - v (additional term does not destroy periodicity)

> vs =0, vw =V = J=pnv = (pn—ps)v

Make sure that v is small enough to be in the linear regime (no pair breaking)

Estimate v just before a Vela glitch (69 ~ 1072 — 107 57 Ruderman, ApJ 203 (1976)]):
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Phase of the gap and current: 1D example (lasagna)
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[Almirante & MU, Phys. Rev. C 109 (2024)]

» phase ¢ x v — linear regime
» proton current = v X proton density

» neutron current shifted down by a constant (superfluid part doesn't move)



Density and current in 2D (spaghetti)

Neutron density p, and velocity v, = j,/pn in square and hexagonal lattices
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Density and current in 3D (BCC crystal)

Neutron density p, and velocity v,, = j,/pn in two cuts through the unit
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Results and comparison with normal band theory

fn L Pb ps/pn ps/Pn

(MeV) | (fm) | (fm=3) | (HFB %) | (HF %)
crystal 9 33 | 0.0334 921 7
crystal 10 31 0.0425 92.8 9
crystal 11 29 | 0.0518 94.1 27
spaghetti 12 24 | 0.0619 94.5 75
spaghetti 12.5 24 | 0.0670 95.4 82
lasagna 13 20 | 0.0723 96.3 93
lasagna 13.5 20 | 0.0768 97.2 94

— HFB superfluid fractions closer to the results of superfluid hydrodynamics
than to the ones of normal band theory.



Band structure effect vs. pairing gap

v

Normal band theory should be valid in the weak-coupling limit (A — 0)

k
Superfluid hydrodynamics only valid for { < L — A > —

>
TmlL
» HFB should be valid all the way between these two limits!
» Varying artificially the strength of the pairing interaction:
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Linear response on top of BCS

Simpler approach than full HFB:
» linear response on top of BCS with constant gap
> need to diagonalize only h  (additional approximation: m* = m)
P> treat —p - v term as perturbation

Notice the analogy between normal density py = p, — ps and moment of inertia
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Geometric contribution

» Final expression, neglecting the change of the gap (i.e., the phase ¢):

k = Bloch momentum,

3 2 2
m ™
& o5 FoxEpr(Eox Bk Eu = flem — P T A7
. O€ak
> Using (ak|plak) = m k!
the contribution for o = 3 becomes: 100
dog  m [ d’k A? (aeak)z 80
S T q 3 3 .
3 S (27) E ok <
= pp = 0.030 fm~3 : diagonal - - -
A? = 40 3 _ total
Notice: lim —— = 26(eak — 1) < pp = 0.055 fm =3 : diagonal - - -
a—0 EZ, % total
B CToooIIIIoIIIIILLi:
> . . 0 L L L L
The contribution a # 3 can be large 0 0.2 04 06 08 1

and is called “geometric contribution”
in condensed-matter physics
[e.g. Peotta & Térma, Nature Comm. 6, 8944 (2015)]

A (MeV)
[Almirante & MU, arXiv:2503.21635]

> Potential problem at large A due to violation of continuity equation (neglected ¢)



Superfluid hydrodynamics and Leggett's upper bound

» Assumption of superfluid hydrodynamics: v,(r) = %V@ﬁ(r)

» In the rest frame of the superfluid:
» Continuity: V -j,(r) = —pa(r) = V- pu(r)Ve(r) =v - Vpu(r)
> Periodicity: ¢(r + a;) = ¢(r) (ai = primitive lattice vector)

¢(r) can be easily solved for any periodic density profile p,(r),
e.g., by expanding p, and ¢ in a Fourier series

» 1D case: solution can be written explicitly:

C

> Continuity (pn¢’) =vp, = ¢KX)=v+——

() (9= v+~

. _ 1 Lax 1T
> Periodicity ¢(L) = ¢(0) = C'=—-— =—vip,
(L) = ¢(0) L) e
» _ C _ —1\—1 ,
ps = v (pn ) : Leggett's upper bound [J. Stat. Phys. 93, 927 (1998)]

» Conjecture: also in 2D and 3D, superfluid hydrodynamics gives an upper limit for ps



Conclusions

» Superfluid fraction important for glitches
(also for cooling and star oscillations)

» HFB band theory interpolates between normal band theory (for A — 0)
and superfluid hydrodynamics (for A large)

» ps/pn depends strongly on the gap if the gap is small, but reaches rapidly
values of ~ 90% for realistic values of the gap

» Superfluid fraction of the crust is high enough to explain glitches
without need for superfluidity in the core

» The strong gap dependence can be understood from the so-called
“geometric contribution” in the linear response expression for pg

» In inhomogeneous systems, the continuity equation imposes an upper limit
on pS/ﬁn



