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NUCLEAR MATTER IS CHIRAL 

Hot nuclear matter/quark-gluon plasma:

Sphaleron transitions generate domains with chiral 
imbalance ⇒ Chiral magnetic effect

If the domain size is a few fm ⇒ charge separation in HIC

Cold nuclear matter:

Long-range topological order from the lattice calculations.  

Emergent chiral domains in Weyl semimetals:
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FRAMEWORK: AXION ELECTRODYNAMICS

r ·B = 0 ,

r ·E = ⇢� cr✓ ·B ,

r⇥E = �@tB ,

r⇥B = @tE + j + c(@t✓B +r✓ ⇥E) ,

Sikivie (84), Wilczek (87), Carroll et al (90)

Chiral magnetic effect:

Anomalous Hall Effect

LMCS = LQED + cA✓(x) ~E · ~B

Kharzeev, Zhitnitsky (2007), 
Kharzeev, McLerran, Warringa (2008) + + + 

- - -

θ≠0

j = ��B

Charge separation:

Critical assumption: 
existence of chiral domains. 

j = ��B

P-odd,
T-odd

P-even,
T-odd

⇒Breaks Parity!

(not in this talk)



This talk is about how the new current affects 
photon and gluon radiation.
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1. Classical Fermi Model 
2. QED 

3. QCD 
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FERMI’S MODEL OF ENERGY LOSS

4

Without loss of generality we assume that �� > 0 which implies that k22 > k21. The plasma

permittivity is well described by

✏ = 1�
!2
p

!2 + i!�
, (9)

where !p is the plasma frequency and the damping constant � is related to the electrical conduc-

tivity.

III. COLLISIONAL ENERGY LOSS

The energy loss rate can be computed as the flux of the Poynting vector out of a cylinder of

radius a coaxial with the particle path. For a particle moving with velocity v along the z-axis the

total loss per unit length reads

�d"

dz
= 2⇡a

Z 1

�1
(E�Bz � EzB�)dt = 2aRe

Z 1

0
(E�!B

⇤
z! � Ez!B

⇤
�!

)d! . (10)

To calculate the integral over ! we first isolate the contribution of the pole in 1/✏ at ! = !p using

the rule

1

✏
=

!2

!2 � !2
p + i0

= �i⇡!2
p�(!

2 � !2
p) + P !2

!2 � !2
p

, (11)

where it is assumed that � ⌧ !p. Substituting the field components from (6) into (10) and

replacing 1/✏ by its imaginary part one derives

�d"pole

dz
=

q2!2
p

4⇡v2
K0 (a!p/v) Re

n
a
q
!2
p/v

2 � �2
�K1

⇣
a
q
!2
p/v

2 � �2
�

⌘o
. (12)

Away from the pole, the permittivity is real. In this case the contribution to the integral over !

comes from those domains of ! where at least one of k⌫ ’s is imaginary. There are two such domains

(A) and (B). Domain (A) k21 < k22 < 0. Inspection of (7) reveals that k22 < 0 if either !2 > !2
+ or

!2 < !2
� where

!2
± =

�2(1/v2 � 1)!2
p + �2

�/v
2 ±

q
[2(1/v2 � 1)!2

p � �2
�/v

2]2 � 4(1/v2 � 1)2!4
p

2(1/v2 � 1)2
. (13)

Additionally, if !p < ��/
p
2 the inequality

0 < ! <

s
�2
�/2� !2

p

1/v2 � 1
(14)

Maxwell equations
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A. Ultrarelativistic limit

In the limit ak⌫ ⌧ 1, the contribution of the pole (12) is proportional to large logarithm ln a,

the term (18) is independent of a, whereas the remaining terms are suppressed by the positive

powers of ak⌫ . The corresponding energy loss reads

�d"

dz
=

q2

4⇡

!2
p

v2
ln

1.12v

a!p

� q2

4⇡

Z

k
2
1<0<k

2
2

!

v2✏

(s2 � k21)(v
2✏� 1) + �2

�

k21 � k22
d! . (19)

The integration domain (B) simplifies in the ultrarelativistic limit v ! 1: !2
p/�� < ! < �2��,

where � = (1� v2)�1/2. Expanding the integrand at large frequencies, assuming ! � ��, yields

� q2

4⇡

1

2��

Z
�
2
��

✓
���!

�2
+ �2

�

◆
d! , (20)

where the precise value of the lower limit is irrelevant as long as � � 1. Integrating one obtains

�d"

dz
=

q2

4⇡v2

✓
!2
p ln

v

a!p

+
1

4
�2�2

�

◆
. (21)

We observe that the energy loss due to the anomaly, represented by the second term in (21),

dominates at high energies. Inclusion of quantum e↵ects produces the logarithmic dependence of

the first term on � but this does not change our conclusion.

B. Non-chiral medium

In the limit �� ! 0 the contributions of (15),(16) and (18) vanish. The finite limit emerges

from (17) which along with (12) yields

�d"

dz
=

q2

4⇡

!2
p

v2
K0(a!p/v)(a!p/v)K1(a!p/v) +

q2

4⇡v2

Z

s2<0
!

✓
v2 � 1

✏

◆
d! . (22)

The second term vanishes in plasma since ✏ < 1 implies that s2 is always positive, see (8) and (9).

However, if medium contains bound states, then the second term contributes when the velocity

of the particle is larger than the phase velocity of light in the medium. A single bound state of

frequency !0 contributes to the permittivity as

✏(!) = 1�
!2
p

!2 � !2
0 + i!�

(23)

In this case (22) is generalized as

�d"

dz
=
q2

4⇡

!2
p

v2
K0

⇣
a
q
!2
p + !2

0/v
⌘⇣

a
q
!2
p + !2

0/v
⌘
K1

⇣
a
q
!2
p + !2

0/v
⌘

+
q2

4⇡v2

Z

s2<0
!

✓
v2 � 1

✏

◆
d! (24)

<latexit sha1_base64="XzHDpTv9Uoe/6kGo9CRxjMlP2Fw="></latexit>
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about the abundance of the Ni isotopes which
are not very well known. The assumption of a
larger radius ro would produce smaller values of
$„and would give rise to a definite tendency to
increase with higher energies. This would be in
disagreement with our knowledge about sticking
probabilities, insofar as we are allowed to apply
evidence taken from neutron experiments to
proton reactions and to the extent that we may
trust the theoretical reasons for choosing a stick-
ing probability near unity for the energies in
question.
These assumptions can be tested by determin-

ing the nuclear radius with the aid of other inde-
pendent methods. The most direct method is the
measurement of the cross section for an inelastic
neutron-collision ((n,n)-reaction), which should
be equal to m.R' for neutron energies of several
Mev or more. The existing measurements of this
cross section by Graham and Seaborg" are not
very conclusive. Their observed values give
ro——1.60 for C, 1.65 for Al, 1.7 for Zn, 1.5 for Sn
and Sb and 1.35 for Pb in 10 "cm. The values
for C and Al' are in definite disagreement with
the very accurate values obtained by Wigner'

D. Graham and G. Seaborg, Phys. Rev. 53, 795 (1938).
~' The experiments on Al have been done by G. Kuerti

and S. N. VanVoorhis, Phys. Rev. 56, 614 (1939))and sug-
gest a value of not more than ra=1.35&10 "cm.

from the maximum energy of the P-decay leading
to these elements.
Pollard, Schultz and Brubaker" have tried to

determine the magnitude ro for Cl, Al and A by
fitting observed excitation curves for n-induced
reactions to the theoretical curves. They find
values of 1.94)(10 " cm and higher. However,
the expression used for the penetration prob-
ability is the part for /=0 only. The contribution
of higher l s is by no means negligible and is even
higher than the l=0 contribution for energies
comparable to the barrier. Taking all /'s into
account their observed curves can be fitted with
a value of ro——1.5)&10 "cm. It should be added
furthermore that the expressions derived by the
W-K-B method are very poor approximations for
light elements.
Further measurements of the cross section for

inelastic neutron scattering together with more
and better measurements of the excitation func-
tions for" (p,n) and (a,n) reactions would greatly
clarify the proper assumptions for a valid theory.
We are much indebted to Dr. L. A. DuBridge

and Dr. N. VanVoorhis for their continuous
interest and for their invaluable help in our work
and to Mr. A. B. White for several numerical
computations.
"E.Pollard, N. Schultz and G. Brubaker, Phys. Rev.

53, 351 (1938).
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The Ionization Loss of Energy in Gases and in Condensed Materials*
ENRICO FERMI

PNpin Physics Laboratories, Columbia University, ¹mFork, Rem York
(Received January 22, 1940)

It is shown that the loss of energy of a fast charged
particle due to the ionization of the material through which
it is passing is considerably affected by the density of the
material. The eKect is due to the alteration of the electric
field of the passing particle by the electric polarization of
the medium. A theory based on classical electrodynamics
shows that by equal mass of material traversed, the loss is

larger in a rarefied substance than in a condensed one. The
application of these results to cosmic radiation problems is
discussed especially in view of the possible explanation on
this basis of part of the difference in the absorption of
mesotrons in air and in condensed materials that is usually
interpreted as evidence for a spontaneous decay of the
mesotron.

'HE determination of the energy lost by a
fast charged particle by ionization and

* Publication assisted by the Ernest Kempton Adams
Fund for Physical Research of Columbia University.

excitation of the atoms through or near which
it is passing has been the object of several
theoretical investigations. The essential features
of the phenomenon are explained as well known

The energy loss rate = flux of the Poynting vector out of cylinder of radius a 
coaxial with the particle path:

(small) Cherenkov radiation contribution emerges at <latexit sha1_base64="6L+AyA7OY1UqkUDDmFwiuiFi1z8="></latexit>
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Neglecting �, the integration region s2 < 0 is equivalent to (1 � ✏(0)v2)/(1 � v2) < !2/!2
0 < 1 if

v < 1/
p

✏(0) and to ! < !0 if v > 1/
p

✏(0). Integration over ! in the second term yields the

well-known Fermi’s result [9].

C. Cherenkov radiation

Some of the collisional energy loss emerges in the form of the Cherenkov radiation. In the non-

chiral medium it is included in the second term in (22) (provided that ✏(0) is finite, as explained

in the previous subsection) and is small compared to the large first term that describes excitation

of the longitudinal oscillations in the medium (medium polarization).

In the chiral medium the Cherenkov radiation emerges even when ✏ = 1, which is known as

the chiral (or, in a di↵erent context, vacuum) Cherenkov radiation [14–17].† It is generated by the

anomalous electromagnetic current in the presence of the moving charged particle. The Cherenkov

radiation is that part of the total energy flux moving radially away from the particle which is finite

at a ! 1. It can be computed by replacing the Bessel functions appearing in (15)–(18) with their

asymptotic expressions. In particular, the rate of the chiral Cherenkov radiation emitted in a unit

interval of frequencies by an ultrarelativistic particle in empty space (✏ = 1) is given by

dW

d!
= � d"

dz!d!

���
a!1

=
q2

4⇡

(
1

2

✓
1� 1

v2

◆
+

��
2!

+
(1 + v2)�2

�

8v2!2
+ . . .

)
, ! < ���

2 . (25)

which comes about from (18). Expansion in powers of ��/! is justified for the ultrarelativistic

particle. Eq. (25) is derived neglecting the fermion recoil which proportional to ~!. It is a good

approximation as long as !+ = ���2 ⌧ ", in other words when � ⌧ m/��, where m is the particle

mass. The total radiated power P is obtained by integrating (25) over !d!. It is dominated by

the upper limit so that only the first two terms contribute at large � with the result:

P =
q2

4⇡

�2
��

2

4
. (26)

We observe that the spectrum (25) is exactly the same as (20) which indicates that all energy lost

by the ultrarelativistic particle due to the anomalous current is radiated as the chiral Cherenkov

radiation.

The spectrum of the chiral Cherenkov radiation was previously computed by one of the authors

in the leading order of QED with the result [16]

dW quant

d!
=

q2

(4⇡)2!

⇢
��

✓
x2

2
� x+ 1

◆
� m2

"
x

�
, ! < !M , (27)

† It was proposed to be a test of the Lorentz symmetry violation in [13–15, 18–24].

<latexit sha1_base64="uoSkn/uY4h/B3zSD44vPnCbSdV0=">AAACf3icbVBdixMxFE3Hr3X86uqjL8EiKmKZEdH1QVnUBx9XsLsLzVBu0ts2bpIZkjtKGebf+Gt81Rf/jel0wLXrgcDhnHO5N0dWRgfKst+D5NLlK1ev7V1Pb9y8dfvOcP/ucShrr3CiSlP6UwkBjXY4IU0GTyuPYKXBE3n2fuOffEUfdOk+07rCwsLS6YVWQFGaDd9yIS0XDqQBLkhbDFHh72aitLiEN88037Iu96GXn37pyWw4ysZZB36R5D0ZsR5Hs/3BEzEvVW3RkTIQwjTPKioa8KSVwTYVdcAK1BkscRqpg3hR0XQfbfnDqMz5ovTxOeKden6iARvC2sqYtECrsOttxP960u5spsVB0WhX1YRObRcvasOp5JsW+Vx7VGTWkYDyOt7O1Qo8KIpdp8Kjw2+qtBbcvBGyneZF02wKHOVty1Nx3q2dpi4gVkD8b6xNY7n5bpUXyfHzcf5ynH96MTo86GveY/fZA/aY5ewVO2Qf2RGbMMW+sx/sJ/uVDJJHyTjJttFk0M/cY/8gef0H5GTBeg==</latexit>r⇥B! = �i!D! + j! etc.

<latexit sha1_base64="dG/Ucdo/MxqTuxS3IkNn1Z2qpds="></latexit>

�d"

dz
=

q2

4⇡v2
!2
p ln

v

a!p
UR limit:Energy loss: 
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EM FIELDS OF POINT CHARGE IN CHIRAL MEDIUM 1

2

Cherenkov radiation that exist only in the chiral medium. This is in striking contrast with the

collisional energy loss in non-chiral medium which is independent of the particle’s energy in the

ultra-relativistic limit. We also argue that in a wide range of particle energies, quantum corrections

due to the recoil e↵ects are small.

The collisional energy loss spectrum is given by Eqs. (10)–(18). It contains the anomalous

contribution, mostly due to the chiral Cherenkov radiation, which is clearly seen in Fig. 1 for

Quark-Gluon Plasma and in Fig. 2 for a Weyl semimetal. In the later case the photon spectrum is

strongly enhanced in the ultraviolet and X-ray regions which makes it amenable to experimental

investigation.

II. ELECTROMAGNETIC FIELDS IN CHIRAL MEDIUM

Electrodynamics of isotropic chiral medium is characterized by the emergence of the anomalous

current proportional to the magnetic field viz. jA = ��B, where �� is the chiral conductivity

[1, 10]. As a result, the field equations for a point charge q moving in the positive z direction with

constant velocity v read:

r⇥B = @tD + ��B + qvẑ�(z � vt)�(b) , (1a)

r ·D = q�(z � vt)�(b) , (1b)

r⇥E = �@tB , (1c)

r ·B = 0 , (1d)

where b denotes the transverse components of the position vector r. The solution to (1) with

D! = ✏(!)E!, where Ez = 1
2⇡

R1
�1Ez!e�i!td! etc., was derived in [8] as a superposition of the

helicity states � = ±1, which are the eigenstates of the curl operator in the Cartesian coordinates:

B(r, t) =

Z
d2k?d!

(2⇡)3
eik·r�i!t

X

�

✏�k
qẑ · ✏⇤

�k�k

k2? + !2(1/v2 � ✏)� ���k
, (2a)

E(r, t) =

Z
d2k?d!

(2⇡)3
eik·r�i!t

 
X

�

✏�k
iq!ẑ · ✏⇤

�k

k2? + !2(1/v2 � ✏)� ���k
+ k̂

q

ivk"

!
, (2b)

where k = k? + (!/v)ẑ is the wave vector, k =
q
k2? + !2/v2 its length and ✏�k are the circular

polarization vectors satisfying the conditions ✏�k · ✏⇤
µk = ��µ, ✏�k · k = 0 and the identity

ik̂ ⇥ ✏�k = �✏�k . (3)

EM field of a point charge with large enough constant velocity v

impact parameter

Hansen, KT, 2012.06089 

2

Cherenkov radiation that exist only in the chiral medium. This is in striking contrast with the

collisional energy loss in non-chiral medium which is independent of the particle’s energy in the

ultra-relativistic limit. We also argue that in a wide range of particle energies, quantum corrections

due to the recoil e↵ects are small.

The collisional energy loss spectrum is given by Eqs. (10)–(18). It contains the anomalous

contribution, mostly due to the chiral Cherenkov radiation, which is clearly seen in Fig. 1 for

Quark-Gluon Plasma and in Fig. 2 for a Weyl semimetal. In the later case the photon spectrum is

strongly enhanced in the ultraviolet and X-ray regions which makes it amenable to experimental

investigation.

II. ELECTROMAGNETIC FIELDS IN CHIRAL MEDIUM

Electrodynamics of isotropic chiral medium is characterized by the emergence of the anomalous

current proportional to the magnetic field viz. jA = ��B, where �� is the chiral conductivity

[1, 10]. As a result, the field equations for a point charge q moving in the positive z direction with

constant velocity v read:

r⇥B = @tD + ��B + qvẑ�(z � vt)�(b) , (1a)

r ·D = q�(z � vt)�(b) , (1b)

r⇥E = �@tB , (1c)

r ·B = 0 , (1d)

where b denotes the transverse components of the position vector r. The solution to (1) with

D! = ✏(!)E!, where Ez = 1
2⇡

R1
�1Ez!e�i!td! etc., was derived in [8] as a superposition of the

helicity states � = ±1, which are the eigenstates of the curl operator in the Cartesian coordinates:

B(r, t) =

Z
d2k?d!

(2⇡)3
eik·r�i!t

X

�

✏�k
qẑ · ✏⇤

�k�k

k2? + !2(1/v2 � ✏)� ���k
, (2a)

E(r, t) =

Z
d2k?d!

(2⇡)3
eik·r�i!t

 
X

�

✏�k
iq!ẑ · ✏⇤

�k

k2? + !2(1/v2 � ✏)� ���k
+ k̂

q

ivk"

!
, (2b)

where k = k? + (!/v)ẑ is the wave vector, k =
q

k2? + !2/v2 its length and ✏�k are the circular

polarization vectors satisfying the conditions ✏�k · ✏⇤
µk = ��µ, ✏�k · k = 0 and the identity

ik̂ ⇥ ✏�k = �✏�k . (3)

https://arxiv.org/abs/2012.06089
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EM FIELDS OF POINT CHARGE IN CHIRAL MEDIUM 2

ω-Fourier components can be computed analytically  e.g.:

3

Summations over � are performed using the polarization sums given in Appendix of [8]. The space-

time dependence of the electromagnetic field given by the integrals (2a),(2b) was approximately

evaluated in [8, 11, 12] assuming the low frequency limit of a conductor ✏ = 1 + i�/! and used to

compute the e↵ect of the chiral anomaly on the magnetic field produced in relativistic heavy-ion

collisions.

To compute the energy loss we need only the frequency components of the fields, see (10). These

can be computed exactly. For illustration, consider

B!(r) =

Z
d2k?
(2⇡)2

q k ei!z/v+ik?·b

[k2? + !2(1/v2 � ✏)]2 � (��k)2

⇥
(
[k2? + !2(1/v2 � ✏)]

X

�

�✏�k(ẑ · ✏⇤
�k) + ��k

X

�

✏�k(ẑ · ✏⇤
�k)

)
(4)

Its azimuthal component is

B�!(r) =

Z
d2k?
(2⇡)2

q k ei!z/v+ik?·b

[k2? + !2(1/v2 � ✏)]2 � (��k)2

⇥
⇢
[k2? + !2(1/v2 � ✏)]

�ik?
k

cos ✓ + ��k
�kzk?
k2

sin ✓

�
, (5)

where k? · b = k?b cos ✓. Integration over ✓ and then over k? yields (6a) below. Other field

components an be obtained in a similar way with the following result:

B�!(r) =
q

2⇡

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫+1k⌫(k
2
⌫ � s2)K1(bk⌫) , (6a)

Bb!(r) =��
q

2⇡

i!

v

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫k⌫K1(bk⌫) , (6b)

Bz!(r) =��
q

2⇡

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫+1k2⌫K0(bk⌫) , (6c)

Ez!(r) =
q

2⇡

i!

v2✏

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫+1
⇥
(v2✏� 1)(k2⌫ � s2)� �2

�

⇤
K0(bk⌫) , (6d)

Eb!(r) =
q

2⇡

1

v✏

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫+1k⌫
�
k2⌫ � s2 � �2

�

�
K1(bk⌫) , (6e)

E�!(r) =vBb!(r) , (6f)

where

k2⌫ = s2 �
�2
�

2
+ (�1)⌫��

s

!2✏+
�2
�

4
(7)

with ⌫ = 1, 2 and

s2 = !2

✓
1

v2
� ✏(!)

◆
. (8)

3

Summations over � are performed using the polarization sums given in Appendix of [8]. The space-

time dependence of the electromagnetic field given by the integrals (2a),(2b) was approximately

evaluated in [8, 11, 12] assuming the low frequency limit of a conductor ✏ = 1 + i�/! and used to

compute the e↵ect of the chiral anomaly on the magnetic field produced in relativistic heavy-ion

collisions.

To compute the energy loss we need only the frequency components of the fields, see (10). These

can be computed exactly. For illustration, consider

B!(r) =

Z
d2k?
(2⇡)2

q k ei!z/v+ik?·b

[k2? + !2(1/v2 � ✏)]2 � (��k)2

⇥
(
[k2? + !2(1/v2 � ✏)]

X

�

�✏�k(ẑ · ✏⇤
�k) + ��k

X

�

✏�k(ẑ · ✏⇤
�k)

)
(4)

Its azimuthal component is

B�!(r) =

Z
d2k?
(2⇡)2

q k ei!z/v+ik?·b

[k2? + !2(1/v2 � ✏)]2 � (��k)2

⇥
⇢
[k2? + !2(1/v2 � ✏)]

�ik?
k

cos ✓ + ��k
�kzk?
k2

sin ✓

�
, (5)

where k? · b = k?b cos ✓. Integration over ✓ and then over k? yields (6a) below. Other field

components an be obtained in a similar way with the following result:

B�!(r) =
q

2⇡

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫+1k⌫(k
2
⌫ � s2)K1(bk⌫) , (6a)

Bb!(r) =��
q

2⇡

i!

v

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫k⌫K1(bk⌫) , (6b)

Bz!(r) =��
q

2⇡

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫+1k2⌫K0(bk⌫) , (6c)

Ez!(r) =
q

2⇡

i!

v2✏

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫+1
⇥
(v2✏� 1)(k2⌫ � s2)� �2

�

⇤
K0(bk⌫) , (6d)

Eb!(r) =
q

2⇡

1

v✏

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫+1k⌫
�
k2⌫ � s2 � �2

�

�
K1(bk⌫) , (6e)

E�!(r) =vBb!(r) , (6f)

where

k2⌫ = s2 �
�2
�

2
+ (�1)⌫��

s

!2✏+
�2
�

4
(7)

with ⌫ = 1, 2 and

s2 = !2

✓
1

v2
� ✏(!)

◆
. (8)

3

Summations over � are performed using the polarization sums given in Appendix of [8]. The space-

time dependence of the electromagnetic field given by the integrals (2a),(2b) was approximately

evaluated in [8, 11, 12] assuming the low frequency limit of a conductor ✏ = 1 + i�/! and used to

compute the e↵ect of the chiral anomaly on the magnetic field produced in relativistic heavy-ion

collisions.

To compute the energy loss we need only the frequency components of the fields, see (10). These

can be computed exactly. For illustration, consider

B!(r) =

Z
d2k?
(2⇡)2

q k ei!z/v+ik?·b

[k2? + !2(1/v2 � ✏)]2 � (��k)2

⇥
(
[k2? + !2(1/v2 � ✏)]

X

�

�✏�k(ẑ · ✏⇤
�k) + ��k

X

�

✏�k(ẑ · ✏⇤
�k)

)
(4)

Its azimuthal component is

B�!(r) =

Z
d2k?
(2⇡)2

q k ei!z/v+ik?·b

[k2? + !2(1/v2 � ✏)]2 � (��k)2

⇥
⇢
[k2? + !2(1/v2 � ✏)]

�ik?
k

cos ✓ + ��k
�kzk?
k2

sin ✓

�
, (5)

where k? · b = k?b cos ✓. Integration over ✓ and then over k? yields (6a) below. Other field

components an be obtained in a similar way with the following result:

B�!(r) =
q

2⇡

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫+1k⌫(k
2
⌫ � s2)K1(bk⌫) , (6a)

Bb!(r) =��
q

2⇡

i!

v

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫k⌫K1(bk⌫) , (6b)

Bz!(r) =��
q

2⇡

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫+1k2⌫K0(bk⌫) , (6c)

Ez!(r) =
q

2⇡

i!

v2✏

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫+1
⇥
(v2✏� 1)(k2⌫ � s2)� �2

�

⇤
K0(bk⌫) , (6d)

Eb!(r) =
q

2⇡

1

v✏

ei!z/v

k21 � k22

2X

⌫=1

(�1)⌫+1k⌫
�
k2⌫ � s2 � �2

�

�
K1(bk⌫) , (6e)

E�!(r) =vBb!(r) , (6f)

where

k2⌫ = s2 �
�2
�

2
+ (�1)⌫��

s

!2✏+
�2
�

4
(7)

with ⌫ = 1, 2 and

s2 = !2

✓
1

v2
� ✏(!)

◆
. (8)with and

• Cherenkov radiation: σχ=0 and k2=s2<0 — small contribution to the total energy loss

• Chiral Cherenkov radiation: σχ≠0 and k2<0, (even when s2>0)

Radiation if
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4

Without loss of generality we assume that �� > 0 which implies that k22 > k21. The plasma

permittivity is well described by

✏ = 1�
!2
p

!2 + i!�
, (9)

where !p is the plasma frequency and the damping constant � is related to the electrical conduc-

tivity.

III. COLLISIONAL ENERGY LOSS

The energy loss rate can be computed as the flux of the Poynting vector out of a cylinder of

radius a coaxial with the particle path. For a particle moving with velocity v along the z-axis the

total loss per unit length reads

�d"

dz
= 2⇡a

Z 1

�1
(E�Bz � EzB�)dt = 2aRe

Z 1

0
(E�!B

⇤
z! � Ez!B

⇤
�!

)d! . (10)

To calculate the integral over ! we first isolate the contribution of the pole in 1/✏ at ! = !p using

the rule

1

✏
=

!2

!2 � !2
p + i0

= �i⇡!2
p�(!

2 � !2
p) + P !2

!2 � !2
p

, (11)

where it is assumed that � ⌧ !p. Substituting the field components from (6) into (10) and

replacing 1/✏ by its imaginary part one derives

�d"pole

dz
=

q2!2
p

4⇡v2
K0 (a!p/v) Re

n
a
q
!2
p/v

2 � �2
�K1

⇣
a
q
!2
p/v

2 � �2
�

⌘o
. (12)

Away from the pole, the permittivity is real. In this case the contribution to the integral over !

comes from those domains of ! where at least one of k⌫ ’s is imaginary. There are two such domains

(A) and (B). Domain (A) k21 < k22 < 0. Inspection of (7) reveals that k22 < 0 if either !2 > !2
+ or

!2 < !2
� where

!2
± =

�2(1/v2 � 1)!2
p + �2

�/v
2 ±

q
[2(1/v2 � 1)!2

p � �2
�/v

2]2 � 4(1/v2 � 1)2!4
p

2(1/v2 � 1)2
. (13)

Additionally, if !p < ��/
p
2 the inequality

0 < ! <

s
�2
�/2� !2

p

1/v2 � 1
(14)

Hansen, KT, 2012.06089 

UR limit

6

A. Ultrarelativistic limit

In the limit ak⌫ ⌧ 1, the contribution of the pole (12) is proportional to large logarithm ln a,

the term (18) is independent of a, whereas the remaining terms are suppressed by the positive

powers of ak⌫ . The corresponding energy loss reads

�d"

dz
=

q2

4⇡

!2
p

v2
ln

1.12v

a!p

� q2

4⇡

Z

k
2
1<0<k

2
2

!

v2✏

(s2 � k21)(v
2✏� 1) + �2

�

k21 � k22
d! . (19)

The integration domain (B) simplifies in the ultrarelativistic limit v ! 1: !2
p/�� < ! < �2��,

where � = (1� v2)�1/2. Expanding the integrand at large frequencies, assuming ! � ��, yields

� q2

4⇡

1

2��

Z
�
2
��

✓
���!

�2
+ �2

�

◆
d! , (20)

where the precise value of the lower limit is irrelevant as long as � � 1. Integrating one obtains

�d"

dz
=

q2

4⇡v2

✓
!2
p ln

v

a!p

+
1

4
�2�2

�

◆
. (21)

We observe that the energy loss due to the anomaly, represented by the second term in (21),

dominates at high energies. Inclusion of quantum e↵ects produces the logarithmic dependence of

the first term on � but this does not change our conclusion.

B. Non-chiral medium

In the limit �� ! 0 the contributions of (15),(16) and (18) vanish. The finite limit emerges

from (17) which along with (12) yields

�d"

dz
=

q2

4⇡

!2
p

v2
K0(a!p/v)(a!p/v)K1(a!p/v) +

q2

4⇡v2

Z

s2<0
!

✓
v2 � 1

✏

◆
d! . (22)

The second term vanishes in plasma since ✏ < 1 implies that s2 is always positive, see (8) and (9).

However, if medium contains bound states, then the second term contributes when the velocity

of the particle is larger than the phase velocity of light in the medium. A single bound state of

frequency !0 contributes to the permittivity as

✏(!) = 1�
!2
p

!2 � !2
0 + i!�

(23)

In this case (22) is generalized as

�d"

dz
=
q2

4⇡

!2
p

v2
K0

⇣
a
q
!2
p + !2

0/v
⌘⇣

a
q
!2
p + !2

0/v
⌘
K1

⇣
a
q
!2
p + !2

0/v
⌘

+
q2

4⇡v2

Z

s2<0
!

✓
v2 � 1

✏

◆
d! (24)
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7

Neglecting �, the integration region s2 < 0 is equivalent to (1 � ✏(0)v2)/(1 � v2) < !2/!2
0 < 1 if

v < 1/
p
✏(0) and to ! < !0 if v > 1/

p
✏(0). Integration over ! in the second term yields the

well-known Fermi’s result [9].

C. Cherenkov radiation

Some of the collisional energy loss emerges in the form of the Cherenkov radiation. In the non-

chiral medium it is included in the second term in (22) (provided that ✏(0) is finite, as explained

in the previous subsection) and is small compared to the large first term that describes excitation

of the longitudinal oscillations in the medium (medium polarization).

In the chiral medium the Cherenkov radiation emerges even when ✏ = 1, which is known as

the chiral (or, in a di↵erent context, vacuum) Cherenkov radiation [14–17].† It is generated by the

anomalous electromagnetic current in the presence of the moving charged particle. The Cherenkov

radiation is that part of the total energy flux moving radially away from the particle which is finite

at a ! 1. It can be computed by replacing the Bessel functions appearing in (15)–(18) with their

asymptotic expressions. In particular, the rate of the chiral Cherenkov radiation emitted in a unit

interval of frequencies by an ultrarelativistic particle in empty space (✏ = 1) is given by

dW

d!
= � d"

dz!d!

���
a!1

=
q2

4⇡

(
1

2

✓
1� 1

v2

◆
+

��
2!

+
(1 + v2)�2

�

8v2!2
+ . . .

)
, ! < ���

2 . (25)

which comes about from (18). Expansion in powers of ��/! is justified for the ultrarelativistic

particle. Eq. (25) is derived neglecting the fermion recoil which proportional to ~!. It is a good

approximation as long as !+ = ���2 ⌧ ", in other words when � ⌧ m/��, where m is the particle

mass. The total radiated power P is obtained by integrating (25) over !d!. It is dominated by

the upper limit so that only the first two terms contribute at large � with the result:

P =
q2

4⇡

�2
��

2

4
. (26)

We observe that the spectrum (25) is exactly the same as (20) which indicates that all energy lost

by the ultrarelativistic particle due to the anomalous current is radiated as the chiral Cherenkov

radiation.

The spectrum of the chiral Cherenkov radiation was previously computed by one of the authors

in the leading order of QED with the result [16]

dW quant

d!
=

q2

(4⇡)2!

⇢
��

✓
x2

2
� x+ 1

◆
� m2

"
x

�
, ! < !M , (27)

† It was proposed to be a test of the Lorentz symmetry violation in [13–15, 18–24].
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✏(0) and to ! < !0 if v > 1/

p
✏(0). Integration over ! in the second term yields the

well-known Fermi’s result [9].

C. Cherenkov radiation

Some of the collisional energy loss emerges in the form of the Cherenkov radiation. In the non-

chiral medium it is included in the second term in (22) (provided that ✏(0) is finite, as explained

in the previous subsection) and is small compared to the large first term that describes excitation

of the longitudinal oscillations in the medium (medium polarization).

In the chiral medium the Cherenkov radiation emerges even when ✏ = 1, which is known as

the chiral (or, in a di↵erent context, vacuum) Cherenkov radiation [14–17].† It is generated by the

anomalous electromagnetic current in the presence of the moving charged particle. The Cherenkov

radiation is that part of the total energy flux moving radially away from the particle which is finite

at a ! 1. It can be computed by replacing the Bessel functions appearing in (15)–(18) with their

asymptotic expressions. In particular, the rate of the chiral Cherenkov radiation emitted in a unit

interval of frequencies by an ultrarelativistic particle in empty space (✏ = 1) is given by

dW

d!
= � d"

dz!d!

���
a!1

=
q2
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1

2

✓
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v2

◆
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�
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which comes about from (18). Expansion in powers of ��/! is justified for the ultrarelativistic

particle. Eq. (25) is derived neglecting the fermion recoil which proportional to ~!. It is a good

approximation as long as !+ = ���2 ⌧ ", in other words when � ⌧ m/��, where m is the particle

mass. The total radiated power P is obtained by integrating (25) over !d!. It is dominated by

the upper limit so that only the first two terms contribute at large � with the result:

P =
q2

4⇡

�2
��

2

4
. (26)

We observe that the spectrum (25) is exactly the same as (20) which indicates that all energy lost

by the ultrarelativistic particle due to the anomalous current is radiated as the chiral Cherenkov

radiation.

The spectrum of the chiral Cherenkov radiation was previously computed by one of the authors

in the leading order of QED with the result [16]
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✓
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2
� x+ 1

◆
� m2
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x

�
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† It was proposed to be a test of the Lorentz symmetry violation in [13–15, 18–24].

In the UR limit, energy loss is due to the chiral Cherenkov radiation.
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The dispersion relation

Radiative instability of quantum electrodynamics in chiral matter

Kirill Tuchin1

1Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA

(Dated: June 29, 2018)

Modification of the photon dispersion relation in chiral matter enables 1 ! 2 scattering.

As a result, the single fermion and photon states are unstable to photon radiation and

pair production respectively. The corresponding spectra are derived in the ultra-relativistic

approximation. It is shown that the polarization of the produced and decayed photons is

determined by the sign of the chiral conductivity. Impact of a flat thin domain wall on the

spectra is computed.

I. INTRODUCTION

One of the macroscopic manifestations of the chiral anomaly of QCD is the emergence of the

topological CP -odd domains in hot nuclear matter [1]. QED is coupled to these domains via its

own chiral anomaly. This is represented by the triangular diagrams that involve two photon fields

and the axial current generated by the topological fluctuations of the gluon field. The axial current

rapidly increases with temperature which triggers a variety of non-trivial electromagnetic e↵ects

in quark-gluon plasma [2].

At a more fundamental level, the chiral anomaly makes photon topologically massive [3]. Con-

sequently, single photon and fermion states become unstable. Recall that photon radiation by a

charged fermion in vacuum f(p) ! f(p0) + �(k) and the cross-channel process of pair production

in vacuum �(k) ! f(p0) + f̄(p) are prohibited by momentum conservation.⇤ Indeed in the rest

frame of one of the fermions k2 = (p± p0)2 = 2m(m± "). The right-hand-side never vanishes since

" > m, whereas in the left-hand-side k2 = 0 [4]. In chiral matter, i.e. in a matter supporting the

CP -odd domains, the chiral anomaly modifies the photon dispersion relation as [5–8]†

k2 = ����|k| , (1)

where � and k are photon helicity and momentum and �� is the chiral conductivity [9–11]. This

opens the 1 ! 2 scattering channels, viz. the pair-production if k2 > 0 and the photon radiation

if k2 < 0. Thus, single-particle states in chiral matter are unstable with respect to spontaneous

⇤ p, p0 and k are four-momenta with the components p = (",p), p0 = ("0,p0) and k = (!,k).
† In covariant form k2 = ��

p
(n · k)2 � n2k2, where nµ = ���

µ
0 in the matter rest frame.

→ photon becomes space- or timelike
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charged fermion in vacuum f(p) ! f(p0) + �(k) and the cross-channel process of pair production

in vacuum �(k) ! f(p0) + f̄(p) are prohibited by momentum conservation.⇤ Indeed in the rest

frame of one of the fermions k2 = (p± p0)2 = 2m(m± "). The right-hand-side never vanishes since

" > m, whereas in the left-hand-side k2 = 0 [4]. In chiral matter, i.e. in a matter supporting the

CP -odd domains, the chiral anomaly modifies the photon dispersion relation as [5–8]†

k2 = ����|k| , (1)

where � and k are photon helicity and momentum and �� is the chiral conductivity [9–11]. This

opens the 1 ! 2 scattering channels, viz. the pair-production if k2 > 0 and the photon radiation
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Pair production: ) ��� < 0

Photon radiation: k2 < 0 ) ��� > 0

In radiation gauge: r2A = @2
tA� ��r⇥A
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CHIRAL CHERENKOV RADIATION IN QED

• Photon 
radiation rate:

Kappa is negative if

6

The amplitude M0 can most e�ciently be computed in the helicity basis using the matrix elements

derived in [34]. Keeping in mind that at high energies k+ = xp+, one obtains

M0 = �eQū�0(p0)� · ✏⇤�(k)u�(p) (30)

= � eQp
2(1� x)


xm(� + �)��0,�� � 1

x
(2� x+ x��)(qx � i�qy)��0,�

�
, (31)

where � = ±1 and �0 ± 1 are the fermion helicities before and after photon radiation.

The transition probability can be computed as

dw = |S|2V d3p0

(2⇡)3
V d3k

(2⇡)3
= |S|2V d2p?dp0z

(2⇡)3
V d2q?dkz

(2⇡)3
(32)

The cross section is the rate per unit flux V �1, while the number of produced photons N is the

cross section per unit area. Using the usual rules for dealing with the squares of the delta-functions

and integrating over the phase space yields

dN =
1

(2⇡)3
1

8x(1� x)"2
1

2

X

�,�,�0

|M|2d2q?dx , (33)

where the sum runs over the photon and fermion helicities. Eqs. (33),(31),(27) give the spectrum

of radiated photons. In the following subsections the explicit expressions for the photon spectrum

are derived for a single domain and for two domains separated by a domain wall at z = 0.

A. One infinite domain

Consider first an infinite chiral matter with constant chiral conductivity. Performing the integral

over z in (27) yields

M = 4⇡"x(1� x)M0�(q
2
? + �) . (34)

The square of the delta-function in (34) gives A�(q2?+�)/(4⇡), where A is the cross sectional area

of the domain. The relevant intensive observable quantity is the number of photons produced per

unit area dW = dN/A. It is given by

dW =
1

16⇡2
x(1� x)dx

1

2

X

�,�,�0

|M|2 ✓(��) , (35)

where ✓ is the step-function. It follows from (29) that � is negative if ��� > 0 and

x < x0 =
1

1 +m2/(���")
. (36)
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= � eQp
2(1� x)


xm(� + �)��0,�� � 1

x
(2� x+ x��)(qx � i�qy)��0,�

�
, (31)

where � = ±1 and �0 ± 1 are the fermion helicities before and after photon radiation.
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where the sum runs over the photon and fermion helicities. Eqs. (33),(31),(27) give the spectrum

of radiated photons. In the following subsections the explicit expressions for the photon spectrum

are derived for a single domain and for two domains separated by a domain wall at z = 0.

A. One infinite domain

Consider first an infinite chiral matter with constant chiral conductivity. Performing the integral

over z in (27) yields

M = 4⇡"x(1� x)M0�(q
2
? + �) . (34)

The square of the delta-function in (34) gives A�(q2?+�)/(4⇡), where A is the cross sectional area

of the domain. The relevant intensive observable quantity is the number of photons produced per

unit area dW = dN/A. It is given by
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1

16⇡2
x(1� x)dx

1

2
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where ✓ is the step-function. It follows from (29) that � is negative if ��� > 0 and

x < x0 =
1

1 +m2/(���")
. (36)and
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Assume for definitiveness that �� > 0. Then only the right-polarized photons with � > 0 are

radiated. Using (34), (31) in (35) and performing the summations and the integration yields the

density of spontaneously radiated photons

dW+

dx
=

↵Q2

2⇡x

⇢
�
✓
x2

2
� x+ 1

◆
+ +

x4m2

2

�
✓(x0 � x)

=
↵Q2

2⇡
(1� x)

⇢
��"

✓
x2

2
� x+ 1

◆
�m2x

�
✓(x0 � x) , (37)

dW�
dx

= 0 . (38)

Photon spectrum radiated in a matter with �� < 0 can be obtained by replacing W± ! W⌥ and

�� ! ���. Note that since the anomaly coe�cient cA ⇠ ↵, the spectrum (37) is of the order ↵2.

The total energy radiated by a fermion per unit area is

�" =

Z 1

0

dW+

dx
x"dx =

↵Q2

2⇡

13

120
��"

2 , (39)

where the terms of order m2/|��|" have been neglected for simplicity. It increases as "2 indicating

the necessity to resum the high order corrections at very high energies " ⇠ 10/|��|↵.

B. Two semi-infinite domains separated by a domain wall at z = 0

Suppose now that the chiral matter consist of two semi-infinite domaines separated by a thin

domain wall at z = 0. Performing the integral over z in (27) yields

M = M0

(Z 0

�1
dz e

iz
q2?+0��i�

2"x(1�x) +

Z 1

0
dz e

iz
q2?+�+i�

2"x(1�x)

)
(40)

= 2"x(1� x)M0

⇢
�i

q2? + 0� � i�
� �i

q2? + � + i�

�
, (41)

where the values of � at z < 0 and z > 0 are denoted by 0� and � respectively and � > 0 is

inserted to regularize the integrals. Plugging (41), (31) into (33) and performing summation over

spins yields the radiation spectrum

dN

d2q?dx
=

↵Q2

2⇡2x

⇢✓
x2

2
� x+ 1

◆
q2? +

x4m2

2

�X

�

����
1

q2? + 0� � i�
� 1

q2? + � + i�

����
2

. (42)

The spectrum peaks at q2? = �� and/or q2? = �0� provided that � < 0 and/or 0� < 0

respectively. In the limit � ! 0� the results of the previous subsection are reproduced if one

identifies � = 4/A ‡.

‡ In electrically conducting matter � receives a contribution proportional to electrical conductivity �. In hot nuclear

matter this contribution has negligible e↵ect on the photon spectrum since � ⌧ 1/
p
A.
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B. Two semi-infinite domains separated by a domain wall at z = 0
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0
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iz
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(40)
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�i
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� �i

q2? + � + i�

�
, (41)

where the values of � at z < 0 and z > 0 are denoted by 0� and � respectively and � > 0 is

inserted to regularize the integrals. Plugging (41), (31) into (33) and performing summation over

spins yields the radiation spectrum

dN

d2q?dx
=

↵Q2

2⇡2x

⇢✓
x2

2
� x+ 1

◆
q2? +

x4m2

2

�X

�

����
1

q2? + 0� � i�
� 1

q2? + � + i�

����
2

. (42)

The spectrum peaks at q2? = �� and/or q2? = �0� provided that � < 0 and/or 0� < 0

respectively. In the limit � ! 0� the results of the previous subsection are reproduced if one

identifies � = 4/A ‡.

‡ In electrically conducting matter � receives a contribution proportional to electrical conductivity �. In hot nuclear

matter this contribution has negligible e↵ect on the photon spectrum since � ⌧ 1/
p
A.
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where u(p) is a spinor describing a free fermion with momentum p and � is a scalar function of

coordinates. Substituting  into (@2 +m2) = 0 and neglecting @z� compared to "� one obtains

2i"@z�+r2
?� = m2� (20)

with a solution

� = exp

⇢
ip? · x? � iz

p2
? +m2

2"

�
. (21)

Thus, the fermion wave function is

 =
1p
2"V

u(p)ei"z�i"t exp

⇢
ip? · x? � iz

p2
? +m2

2"

�
. (22)

IV. PHOTON RADIATION

Modification of the photon dispersion relation in chiral matter makes possible spontaneous

photon radiation f(p) ! f(p0) + �(k). The corresponding scattering matrix element reads

S =� ieQ

Z
 ̄�µ Aµd

4x (23)

=� ieQ(2⇡)�(! + "0 � ")
ū(p0)�µu(p)✏⇤µp

8""0!

Z 1

�1
dz

Z
d2x? �

⇤
p0(z,x?)'

⇤
k(z,x?)�p(z,x?) (24)

=i(2⇡)3�(! + "0 � ")�(p? � k? � p0
?)

Mp
8""0!V 3

, (25)

where Q is the fermion electric charge. The wave functions 'k and �p are given by (14) and (22)

respectively with the subscripts indicating the corresponding momenta. The amplitude M is given

by

M =� eQū(p0)�µu(p)✏⇤µ

Z 1

�1
dz exp

(
i

Z z

0
dz0

"
p02? +m2

2"0
�

p2? +m2

2"
+

k2? � ��!�

2!

#)
(26)

=M0

Z 1

�1
dz exp

⇢
i

Z z

0

q2? + �(z0)

2"x(1� x)
dz0

�
, (27)

where we introduced notations M0 = �eQū(p0)�µu(p)✏⇤µ, x = !/",

q? = xp0 � (1� x)k? , (28)

and

�(z) = x2m2 � (1� x)x���" . (29)

• Total rate of energy loss:

Vanishes as ℏ→0 
Quantum anomaly!
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Assume for definitiveness that �� > 0. Then only the right-polarized photons with � > 0 are

radiated. Using (34), (31) in (36) and performing the summations and the integration yields the

density of spontaneously radiated photons

dW+

dx
=

↵Q2

2"x2(1� x)

⇢
�
✓
x2

2
� x+ 1

◆
+ +

x4m2

2

�
✓(x0 � x)

=
↵Q2

2"x

⇢
��"

✓
x2

2
� x+ 1

◆
�m2x

�
✓(x0 � x) , (38)

dW�
dx

= 0 . (39)

Photon spectrum radiated in a matter with �� < 0 can be obtained by replacing W± ! W⌥ and

�� ! ���. Note that since the anomaly coe�cient cA ⇠ ↵, the spectrum (38) is of the order ↵2.

The total energy radiated by a fermion per unit time is

�"

T
=

Z 1

0

dW+

dx
x"dx =

1

3
↵Q2��" , (40)

where the terms of order m2/|��|" have been neglected for simplicity. Thus, energy loss increases

exponentially with time. It can be neglected only for time intervals much smaller than ⇠ 1/|��|↵.

B. Two semi-infinite domains separated by a domain wall at z = 0

Suppose now that the chiral matter consist of two semi-infinite domaines separated by a thin

domain wall at z = 0. Performing the integral over z in (27) yields

M = M0

(Z 0

�1
dz e

iz
q2?+0��i�

2"x(1�x) +

Z 1

0
dz e

iz
q2?+�+i�

2"x(1�x)

)
(41)

= 2"x(1� x)M0

⇢
�i

q2? + 0� � i�
� �i

q2? + � + i�

�
, (42)

where the values of � at z < 0 and z > 0 are denoted by 0� and � respectively and � > 0 is

inserted to regularize the integrals. Plugging (42), (31) into (33) and performing summation over

spins yields the radiation spectrum

dN

d2q?dx
=

↵Q2

2⇡2x

⇢✓
x2

2
� x+ 1

◆
q2? +

x4m2

2

�X

�

����
1

q2? + 0� � i�
� 1

q2? + � + i�

����
2

. (43)

The spectrum peaks at q2? = �� and/or q2? = �0� provided that � < 0 and/or 0� < 0

respectively. In the limit � ! 0� the results of the previous subsection, provided that the square

of the delta functions is treated as explained after (34). Let us also note that when q2? + � = 0

in (41), the second integral equals T/2, which implies that we have to identify � = 4"x(1 � x)/T

(the same result is of course obtained using the first integral).
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����
1

q2? + 0� � i�
� 1

q2? + � + i�

����
2

. (43)

The spectrum peaks at q2? = �� and/or q2? = �0� provided that � < 0 and/or 0� < 0

respectively. In the limit � ! 0� the results of the previous subsection, provided that the square

of the delta functions is treated as explained after (34). Let us also note that when q2? + � = 0

in (41), the second integral equals T/2, which implies that we have to identify � = 4"x(1 � x)/T

(the same result is of course obtained using the first integral).

Chiral Cherenkov effect: photon radiation at

4

the resonant behavior, while the other one is suppressed. Whether the photon spectrum is right-

or left-hand polarized depends on the sign of ��.

Since µ2 ⇡ ����!, the angular distribution of the photons peaks at the angle #2 = q2?/!
2 =

��/x2"2 with respect to the fermion momentum. If the fermion mass is negligible and bearing in

mind that most photons are soft (x ⌧ 1) we can estimate #2 ⇡ ���/!.

III. APPLICATIONS

1. As the first application, consider jet emission from the quark-gluon plasma (QGP) with

a homogenous chiral conductivity. QGP is isotropic at the scales of interest here, hence the

corresponding case is (i). Jets in heavy-ion collisions are produced by the highly energetic color

particles. If a jet is originated by a quark (as opposed to a gluon) we expect radiation of circularly

polarized photons in a cone with the opening angle # ⇠
p
|��|/! with respect to the jet momentum.

The chiral conductivity is an unknown parameter. If we estimate it as �� ⇠ 10 MeV, then

! = 1 GeV photons are emitted at the angle # ⇠ 0.1, provided that the jet energy " is much larger

than !. Thus the observation of circularly polarized photons at angle # to the jet direction would

be an indication of the chiral transition radiation.

2. We have seen that the main feature of the transition radiation from chiral matter is the

emergence of the resonance factor in (11). It arises entirely due to the energy and momentum

conservation in a 1 ! 2 process involving a photon with complex “mass” µ. Thus we expect to see

the same resonant factor as in (11) arising in the case (ii) which deals with an anisotropic matter.

The calculation of the pre-factor requires a more careful analysis that will be presented elsewhere.

In the high energy limit Eq. (4) reduces to µ2 ⇡ ��!b cos�, where � is the angle between b and

the photon momentum. The soft photon emission angle in the massless limit is #2 ⇡ �b cos�/!.

Similarly to the previous case (i), the photon spectrum is circularly polarized. One can verify

that now � is negative only if � cos� > 0 and x < [1 +m2/(�"b cos�)]�1. Thus the polarization

direction depends on whether b points towards or away from the boundary. Furthermore, since µ2

is proportional to cos�, the radiation is maximal when � = 0 or ⇡ and vanishes in the perpendicular

direction. To estimate the characteristic radiation angle discussed above, consider a Weyl semimetal

with b = (↵/⇡)80 eV [18, 19]. An electron with energy about GeV moving parallel to b (� = 0)

would radiate, say, ! = 10 MeV photons at # = 1.3 · 10�4. This can be tested by injecting a beam

of energetic electrons normal to a Weyl semimetal film and measuring the polarization and angular

distribution of the photons emitted in a cone with the opening angle # around the beam direction.

can become negative!

<latexit sha1_base64="p4cGPX1KeGq4qt94J1ncVTwaDh4="></latexit>

M = �eQū(p0)�µu(p)✏⇤µ ⇥ 4⇡"x(1� x)�(q2? + �)

Thus the recoil reduces the energy loss 
<latexit sha1_base64="BnVEOSzKGNpA6vmpLQ9Y57P9Clg="></latexit>

�2 ! �
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Classical limit: x→0 (no recoil)

https://arxiv.org/abs/1702.07329


11

CHIRAL CHERENKOV RADIATION IN A WEYL SEMIMETAL

2

interval d! [3]:

dW

d⌦d!
=

↵

16⇡

X

�

�(! + E0 � E)
k3

EE0!2"ije⇤i ej

4e⇤i ej
⇥
pip

0
j + pjp

0
i + �ij(EE0 � p · p0 �m2)

⇤
,
(5)

where p0 = p�k. The energy conservation expressed by
the delta-function is satisfied only for the gapless branch
µ2 < 0. Similarly to the conventional Cherenkov radia-
tion, the Chiral Cherenkov one is radiated even by a par-
ticle moving with constant velocity, which corresponds to
the limit ! ⌧ E when electron’s recoil is small. In this
case, the radiating electron moves in phase with the wave.
As the result both types of Cherenkov radiation have in-
finite coherence length in contrast to the bremsstrahlung.

Thus far we discussed the Chiral Cherenkov radiation
by a single electron. A typical electric current pulse
consists of N = 1011 electrons (equivalent to the elec-
tron bunch charge 16 nC). The corresponding power
dI = NdP .

The explicit form of the rate is rather bulky. We there-
fore consider two special cases.

High energy approximation.— Assume that E � m
and ! � |µ|. The latter condition is equivalent to ! �
b,!p. The Chiral Cherenkov radiation rate (5) can then
be written in a compact form [1–3]:

dW

d!d⌦
=

↵!

2⇡E
�(!2#2 + )

⇥
⇢
fE

✓
!2

2E2
� !

E
+ 1

◆
�m2

!

E

�
✓(�) , (6)

where f = �b cos�, and � is now the angle between the
incident electron direction and the vector b since in this
approximation the angle # between k and p is small, see
Fig. 2.

f, p

�, k

b

�
#

FIG. 2: The geometry of the photon radiation. The three
vectors are generally not in the same plane, however the az-
imuthal angle is not shown. At high energy # ⌧ �, i.e. � is
approximately the angle between p and b (angle of incidence).

In the right-hand-side ✓ is the step function and we
defined

 = �
⇣
1� !

E

⌘
!f +

m2!2

E2
. (7)
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10-4
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FIG. 3: Intensity spectrum of Chiral Cherenkov radiation by
a pulse of N = 1011 electrons of energy E = 3 MeV, � = 0
in a Weyl semimetal with b = 3.8 eV (green), b = 0.19 eV
(orange), and b = 0.01 eV (blue). Solid line: Eq. (6), dashed
line: Eq. (14) with !p = 0.6 meV, dotted line: bremsstrahlung
spectrum in Co3Sn2S2 computed according to [9]. 1/cm ⇡
0.03 THz.

The kinematic condition  < 0 can be satisfied only if
f > 0. Since µ2 ⇡ �f! it is equivalent to µ2 < 0.
Additionally, it imposes the upper limit on the photon
spectrum:

! < E(1 +m2/fE)�1 . (8)

The lower limit is proportional to !p, but in the high-
energy approximation it is neglected. The di↵erential
spectrum of the radiation power is given by

dP

d!d⌦
= !

dW

d!d⌦
(9)

solid lines in Figs. 3,4,5 display the high-energy approxi-
mation of the radiated photon spectrum, its angular dis-
tribution and dependence on angle of incidence (viz. an-
gle between the electron momentum p and the vector b).

The photon emission rate Eq. (6) can be further sim-
plified by noting that in semimetals m2 � fE:

dW

d!d⌦
⇡ ↵f

2⇡!
�

✓
#2 � f

!
+

m2

E2

◆
✓

✓
E2f

m2
� !

◆
, (10)

where the step-function follows from (8). Multiplying by
! and integrating over d⌦ = ⇡d#2 we obtain the power
spectrum

dP

d!
=

↵f

2
✓

✓
E2f

m2
� !

◆
, (11)

and the the total power

P =
↵f2E2

2m2
=

↵b2 cos2 �E2

2m2
. (12)

Infrared Visible UltravioletTHz

conventional 
sources
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p p′

k

p p′

k

Non-Abelian θ-term:

<latexit sha1_base64="UkChrMatSEtQ3alDX2EWCb8/ZUE="></latexit>

b0 ⌘ ��
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The delta-function in g ! gg rate reads:

�(E0 + ! � E) = 2x(1� x)E�
⇥
k2? + xµ2(E0) + (1� x)µ2(!)� x(1� x)µ2(E)

⇤

= 2x(1� x)E�
⇥
k2? + !2

p(1� x+ x2)� b0E(�+ �0
� �0)x(1� x)

⇤
. (22)

In this case the gluon emission is possible only if �+ �0 > �0. Apparently only the following four

channels are allowed: gL ! gRgL, gL ! gLgR, gR ! gRgR, gL ! gRgR. In the first three of these

channels �+ �0
� �0 = 1, whereas in the last one �+ �0

� �0 = 3. Additionally,

xg!gg
� < x < xg!gg

+ , (23)

where

xg!gg
± =

!2
p + (�+ �0

� �0)b0E ±

q
(!2

p � (�+ �0 � �0)b0E)2 � 4!4
p

2(!2
p + (�+ �0 � �0)b0E)

. (24)

The requirement that (24) have real values sets the infrared threshold for the energy of the incident

gluon:

E > E2 =
3!2

p

b0
. (25)

The amplitude Mq!qg was computed in [1]:

X

ss0

|Mq!qgR |
2 = 4


EE0

�m2
�

(k · p)(k · p0)

k2

�
, (26)

X

ss0

|Mq!qgL |
2 = 0 . (27)

For the gluon splitting amplitudes we find

iMA
gR!gRgR =

k?
x(1� x)

, (28a)

iMA
gL!gRgL =

(1� x)k?
x

, (28b)

iMA
gL!gLgR =

xk?
(1� x)

, (28c)

iMA
gL!gRgR = O(k2?/E, b0/E) , (28d)

iMB
g!gg =

�b0k?(�(1� x) + �0x+ �0)

x(1� x)E
. (28e)

provided that k?, b0 ⌧ E,E0,!. In the high energy limit M
B
g!gg appears only as a sub-leading

correction to M
A
g!gg and is therefore can be neglected in our calculation. We note incidentally,
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8

FIG. 2. The Color Chiral Cherenkov radiation rates versus x = !/E. The channels q ! qg, gR ! gg, and

gL ! gg are represented by blue, orange, and green lines respectively. Left panel: E = 20 GeV, right panel:

E = 100 GeV. Both panels: g = 2, T = 300 MeV, b0 = 50 MeV.

Substituting (30) into (31) yields for each channel

�
dEq!qg

dz
=
2↵sg2

3

⇢
(xq!qg

+ � xq!qg
� )

⇥
(xq!qg

+ + xq!qg
� � 8)b0E � 8m2

� 2!2
p

⇤

+ (b0E + !2
p) ln

xq!qg
+

xq!qg
�

�
⇥ (E � E1) , (32a)

�
dEgR!gg

dz
=
3↵sg2

4

⇢�
b0E � !2

p

�
ln

xg!gg
+

xg!gg
�

� 2
�
b0E + !2

p

�
(xg!gg

+ � xg!gg
� )

�
⇥ (E � E2) , (32b)

�
dEgL!gg

dz
=
↵sg2

4

⇢
3
⇥
(b0E + 2!2

p)
2
� !4

p

⇤

b0E + !2
p

ln
xg!gg
+

xg!gg
�

� (17b0E + 21!2
p)(x

g!gg
+ � xg!gg

� )

�
⇥ (E � E2) . (32c)

In the high energy limit b0E � m2,!2
p equations (32) simplify as follows:

�
dEq!qg

dz
=

4↵sg2b0E

9
, (33a)

�
dEgR!gg

dz
=

3↵sg2b0E

4

✓
ln

b0E

!2
p

� 1

◆
, (33b)

�
dEgL!gg

dz
=

3↵sg2b0E

4

✓
ln

b0E

!2
p

�
17

6

◆
. (33c)

Fig. 3 exhibits the contribution of the Color Chiral Cherenkov radiation to the parton energy loss.

We observe in that at high energy the right-hand gluon loses more energy than the left-handed one

and the quark, while at lower energy the quark channel is the main mechanism of energy loss.

The energy loss of a jet consisting of many q,q̄,g states is determined by solving the system

of coupled evolution equations for the parton distribution functions. Suppose that fa(x) are the

<latexit sha1_base64="UkChrMatSEtQ3alDX2EWCb8/ZUE="></latexit>
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Photon propagator (static limit):

3

radiation by a plasma at finite axial chemical potential, which also induces the chiral magnetic

current, was investigated in [21–23].

The goal of this paper is to investigate the contribution of the chiral anomaly to photon pro-

duction cross section in charged fermion scattering o↵ a heavy nucleus. This process is responsible

for the radiative energy loss which is the dominant energy loss mechanism at high energy [24]. The

chiral anomaly a↵ects the virtual photon propagator and the radiated photon wave function. The

photon propagator reads in the Feynman gauge [19, 25]⇤:

Dµ⌫(q) = �i
q2gµ⌫ + i✏µ⌫⇢�b⇢q� + bµb⌫

q4 + b2q2 � (b · q)2 . (2)

In homogeneous chiral matter with b = 0, b0 6= 0, the components of the propagator (2) read in

the static limit Dµ⌫(q) = limq0!0Dµ⌫(q) [26]

D00(q) =
i

q2
, (3a)

D0i(q) = D0i(q) = 0 , (3b)

Dij(q) = � i�ij
q2 � b20

�
✏ijkqk

b0(q2 � b20)
+

✏ijkqk

b0q2
. (3c)

The pole at q2 = b20 is related to the chiral magnetic instability of electromagnetic field as discussed

in Sec. II C. In the scattering amplitude it corresponds to the t-channel resonance which enhances

the scattering cross sections in the chiral medium [27]. To simplify the calculation we restrict

ourselves to the photon spectrum at ! � b0. In this region, photon is approximately timelike up

to the corrections of order b20/!
2. In other words, we neglect the anomaly in the photon wave

function and thereby isolate the contribution of the resonance in the propagator.

In summary, we consider the following setup. A charged fermion of high energy ✏ radiates a

photon of energy ! as it scatters on a heavy (static) ion immersed into a chiral medium. The

potential that the ion creates is modified in the infrared by the anomaly scale b0 which is assumed

to be much smaller than !, but much larger than the Debye mass eT in the medium. In this

regime the bremsstrahlung cross section is enhanced by the t-channel resonance at the momentum

transfer q2 = b20. The softest scale in this scattering problem (apart from the Debye mass) is the

resonance cuto↵ � which is inversely proportional to the duration of the inverse cascade that drives

the chiral magnetic instability. In the next section we perform a detailed analytical calculation of

the photon production cross section. Our main result is Eq. (27) which presents this cross section

in the ultra-relativistic limit. We discuss the obtained result in Sec III.

⇤ The gauge dependence of the propagator is discussed in Appendix A1.

resonance!

• Dij couples only to the magnetic moment of the target

3

vector b. In Sec. IV the e↵ect of the new terms in the transport cross section is illustrated by

computing the electrical conductivity using the classical transport theory. In homogeneous matter

the result is displayed in Fig. 3 which shows suppression of the conductivity at T � b0. In

stationary matter the applied external electric field induces electric current along its direction and

in the direction of b with the corresponding conductivities � and �0. Their temperature dependence

is shown in Fig. 4. The discussion and conclusions are presented in Sec. V.

II. HOMOGENOUS MATTER

A. Potential

In homogeneous chiral matter with b = 0, b0 6= 0, the components of the propagator (2) read

in the static limit [16]

D00(q) =
i

q2
, (4a)

D0i(q) = D0i(q) = 0 , (4b)

Dij(q) = � i�ij
q2 � b20

�
✏ijkqk

b0(q2 � b20)
+
✏ijkqk

b0q2
. (4c)

The current density of the static point source (the “ion”) of charge e0 is J⌫(x) = e0�⌫0�(x). It

induces the Coulomb potential

A0(q) = e0/q2 , A(q) = 0 (5)

implying that the scattering cross section o↵ the point charge is given by the Rutherford formula

and is not a↵ected by the anomaly (in the static limit).

A non-trivial contribution comes about if the “ion” is in a state  with a finite expectation value

of the magnetic moment µ. Indeed, the spin current associated with such a state is r⇥ ⇤µ . In

the point particle limit the spin current can be written as J(x) = r⇥ (µ�(x)). It represents the

first non-vanishing multipole moment of the vector potential. Altogether the electrical current of

ion is

J0(x) = e0�(x) , J(x) = r⇥ (µ�(x)) , (6)

which in momentum space reads

J0(q) = e0 , J(q) = iq ⇥ µ . (7)
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3

FIG. 1. The two diagrams corresponding to the matrix element for the scattering cross-section. Double

lines indicate photons in chiral medium.

to be in one of the two circularly polarized states. This eliminates the residual gauge invariance

that is reflected in the Ward identity [15]. The photon dispersion relation is

!2 = k2 + k2 = k2
� �b0|k| , (3)

where � = ±1 is right or left photon polarization.

The electromagnetic potential induced by the the electric current Jµ, associated with the nu-

cleus, in a chiral medium is Aµ = �iDµ⌫J⌫ . The photon propagator in chiral medium in the

Lorentz/Landau gauge take form [15]:

Dµ⌫(q) = �i
q2gµ⌫ + i✏µ⌫⇢�b⇢q� + bµb⌫

q4 + b2q2 � (b · q)2
+ i

⇥
q2 � (b · q)2/q2

⇤
qµq⌫ + b · q(bµq⌫ + b⌫qµ)

q2 [q4 + b2q2 � (b · q)2]
, (4)

where bµ = (b0,0). In the static limit q0 = 0 the components of the photon propagator read [20]

D00(q) =
i

q2
, (5a)

D0i(q) = D0i(q) = 0 , (5b)

Dij(q) = �
i�ij

q2 � b2
0

�
✏ijkqk

b0(q2 � b2
0
)
+

✏ijkqk

b0q2
+

iqiqj
q2(q2 � b2

0
)
. (5c)

The gauge-dependent terms proportional to qµ and q⌫ vanish when substituted into the scattering

amplitude. The spatial components (5c) couple to the nucleus magnetic moment and have a

resonance at q2 = b2
0
. We analysed this magnetic channel in our previous paper [15]. In this paper

we are interested in the monopole component of the external field which is determined by the

nuclear electric charge. Convolution of the current J⌫(x) = eZ�⌫
0
�(x) with the D00 component of

the photon propagator gives rise to the Coulomb potential:

A0(q) = eZ/q2 , A(q) = 0 . (6)

Plugging (6) into (2) and averaging over the fermion spin directions, we can obtain a fairly compact

3
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7

and treat k2/!2
⇡ ��b0/! as a small parameter. In this limit Eq. (11) may be rewritten as

|e� · p|2 ⇡

✓
1� �

b0
!

◆
2

E+

✓
�b0
2!

�
b2
0

2!2

◆
E2

�
m2 + (1� � b0

! )22

2
, (18a)

|e� · p0
|
2
⇡

✓
1� �

b0
!

◆
2

E00 +

✓
�b0
2!

�
b2
0

2!2

◆
E02

�
m2 + (1� � b0

! )202

2
, (18b)

Re[(e� · p)(e⇤� · p0)] =
(1� � b0

! )2(0E0 + E � 0)�m2

2
+

✓
�b0
2!

�
b2
0

2!2

◆
EE0 +

�b0! � q2

4
.

(18c)

Employing Eqs. (18) to get rid of the photon polarization vectors in favor of the momenta in (16)

we derive

1

2

X

s,s0

|M|
2
⇡

2Z2e6

!2(q2 + µ2)2
Re

(
(q2 + µ2)(E2 + E02 + 4�b0

! EE0) + 4b2
0
EE0

(0 + �b0
2

+ iE
0

⌧! )(�
�b0
2

� i E
⌧! )

� 2!2

 
0 + �b0

2
+ iE

0

⌧!

�
�b0
2

� i E
⌧!

+
�

�b0
2

� i E
⌧!

0 + �b0
2

+ iE
0

⌧!

!

� 4


m2

�
�b0
!

(EE0
�m2 + !2)

� 
E0

�
�b0
2

� i E
⌧!

�
E

0 + �b0
2

+ iE
0

⌧!

!
2

+
�4b0
!

 
(E + E0)E0

�
�b0
2

+ i E
⌧!

�
(E + E0)E

0 + �b0
2

+ iE
0

⌧!

!)
. (19)

The largest contributions come from the resonances at 2! � k2 = 0 and 2!0 + k2 = 0. In

the high energy approximation these equations have a solution only for m! � b0EE0
 0. This

inequality can be equivalently expressed as the requirements !  !⇤ and b0� > 0 which is consistent

with (14) and (15). Evidently, only one of the two photon polarizations (the one with b0� > 0)

is resonant. As such, the di↵ering polarization cases must be treated separately. Consider, for

example the pole at

k2 = 2! = 2p · k ⇡ !E

✓
m2

E2
+

k2

!2
+ ✓2

◆
, (20)

where ✓ is the angle between k and p. The denominator of the corresponding fermion propagator

is

1

2p · k � k2 + iE/⌧
=

1

!E
⇣

m2

E!
!�!⇤
E�!⇤ + ✓2 + i

!⌧

⌘ , (21)

where we used (15) to eliminate �b0 in favor of !⇤:

k2 ⇡ ��b0! = �
!!⇤m2

E(E � !⇤)
, (�b0 > 0) . (22)

• The resonance emerges when ω<ω* due to the anomaly in the photon dispersion relation.

• Fermion propagator:
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!⇤ =
�b0E2

�b0E +m2with

• The photon propagator has similar behavior:  
<latexit sha1_base64="axgEuRasY3VZ055NqFLaYH4Ipf4="></latexit>

q2
min =

8

Note that (22) makes sense only when �b0 > 0, for otherwise !⇤ is negative, indicating that there

is no instability when �b0 < 0. Eq. (21) implies that above the threshold, viz. when ! > !⇤,

photon is radiated mostly at angles ✓ . ✓0 =
q

m2

E!
!�!⇤
E�!⇤ . However, at and below the threshold,

the angular distribution diverges at ✓ =
q

m2

E!
!⇤�!
E�!⇤ which is regulated by the cuto↵ introduced in

the previous section.

Let us now examine the photon propagator in the resonant case �b0 > 0. Writing q2 =

[(k ⇥ q)2 + (k · q)2]/k2 and expanding at small photon emission angles we obtain

q2 = �(k + p0 � p)2 ⇡ ✓2E2 + ✓02E02
� 2EE0✓✓0 cos�+

1

4


m2(! � !⇤)

E0(E � !⇤)
� E✓2 + E0✓02

�2
. (23)

In the non-anomalous case !⇤ = 0, and the momentum transfer is bounded from below by m4!2

4E2E02 .

In contrast, in the presence of the anomaly the momentum transfer is allowed to vanish. We can

find the corresponding kinematic region by first observing that the sum of the first three terms and

the last term in the r.h.s. of (23) are non-negative and therefore have to vanish independently. The

sum of the first three terms vanishes only when � = 0 and E✓ = E0✓0 in which case the momentum

transfer reads

q2|�=0,E✓=E0✓0 ⇡
1

4


m2(! � !⇤)

E0(E � !⇤)
+

!E

E0 ✓
2

�2
=

1

4

!2E2

E02


m2(! � !⇤)

!E(E � !⇤)
+ ✓2

�2
. (24)

This imbues the photon propagator with the same resonant behavior as the fermion propagator,

as can be seen by comparing with (21). Apparently, we need to regulate the divergence at q2 = 0

by replacing ✓2 ! ✓2+ i
!⌧ in (24). This is tantamount to the replacement q2 ! q2+ E2

4E02⌧2 . Along

with the Debye mass µ introduced in (12) it provides the regulator of the photon propagator at

small momentum transfers:

q2 ! q2 +
E2

4E02⌧2
+ µ2 . (25)

The physics of bremsstrahlung in chiral medium is most transparent in two limiting cases: (i)

low temperature m � µ and (ii) high temperature µ � m. In the anomaly-free medium b0 = 0,

the first case reduces to the scattering o↵ a single nucleus. In this case the momentum transfer q2

never vanishes. On the contrary, in the presence of anomaly, negative k2 can drive the momentum

transfer towards zero for one of the photon polarizations, as we explained.

A. Low temperature µ ⌧ m

We first consider the low temperature/heavy fermion regime. We also assume, for the sake

of simplicity, that µ2
⌧ 1/⌧2 so that ⌧ regulates both the fermion and the photon propagators.

<latexit sha1_base64="NzI2AL/V3DxG67C9DNbtCnOBihM="></latexit>

b0� > 0
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WEAK SCREENING 
<latexit sha1_base64="IlNGF1OHXyx2HpJsXF5Q0amikWE=">AAACXXicdVDLSgMxFE3H9/jWhQs3wSK4KjNFa7sRwY1LBeuDziCZ9NYGk8yQ3FHKMF/hVj/Mlb9iplZ8oBdCDuecyz2cJJPCYhC81ryp6ZnZufkFf3FpeWV1bX3j0qa54dDlqUzNdcIsSKGhiwIlXGcGmEokXCX3J5V+9QDGilRf4CiDWLE7LQaCM3TUTaRyGklJ1e1aPWgEblotWoGwHYQOdDrtZrNDw7EUBHUymbPb9dpR1E95rkAjl8zaXhhkGBfMoOASSj/KLWSM37M76DmomQIbF+PEJd11TJ8OUuOeRjpmv28UTFk7UolzKoZD+1uryD+1RP26jIN2XAid5Qiafxwe5JJiSqs6aF8Y4ChHDjBuhMtO+ZAZxtGV5kcGNDzyVCmm+0WUlL0wLtyvaD0sS+pH39VcCxwboiFD+mX7EahwMWzVgO8a/6yV/g8um42w1Tg4368ftyfdz5NtskP2SEgOyTE5JWekSzhR5Ik8k5famzfjLXkrH1avNtnZJD/G23oHGa22uw==</latexit>

µ ⌧ m

0.2 0.4 0.6 0.8

ω
ϵ

100.00

106

1010

1014

dσ
dω

m2 ϵ

e6

• Only one photon polarization (b0λ>0) is enhanced!

Bethe-Heitler

Gluckstern-Hull

Hansen, KT

• At higher energy - must take LPM into account.

Enhancement

 μ-Debye mass
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STRONG SCREENING 
<latexit sha1_base64="X2SPEPGQ7VdtkqaIH/f+AxQNBUM="></latexit>

µ � m

10-7 10-5 0.001 0.100

ω
ϵ

1

100

104

106

dσ
dω

m2 ϵ

e6

Bethe-Heitler

Hansen, KT

Gluckstern-Hull

• The effect of anomaly is reduced by screening.
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SUMMARY

•Chiral anomaly induces Chiral Cherenkov radiation which 
enhances energy loss  

•Chiral Cherenkov is local effect (unlike chiral separation)

•It certainly affects jets in QGP, and maybe at EIC. 

•Interdisciplinary applications: Weyl semimetals, dark matter 
(axions).


