

INT Workshop "Probing QCD at high energy and density with jets"

October 19th, 2023

OUTLINE

- Chiral matter, systems with chiral fermions
- Collisional energy loss: from classical Fermi model to QFT
- Radiative energy loss
- Boundary effects

CHIRAL MEDIA

Source of chirality:

Quark-gluon plasma Dirac \& Weyl semimetals Dark matter

\mathcal{P}-odd fluctuations and long range order in heavy ion collisions. Deformed QCD as a toy model

Ariel R. Zhitnitsky

Do dark matter axions form a condensate with long-range correlation:
Alan H. Guth, ${ }^{1, *}$ Mark P. Hertzberg, ${ }^{1,2, \dagger}$ and C. Prescod-Weinstein ${ }^{3,{ }^{, \dagger}}$

Low-dimensional long-range topological charge structure in the QCD vacuum
I. Horváth, ${ }^{1}$ S. J. Dong, ${ }^{1}$ T. Draper, ${ }^{1}$ F. X. Lee, ${ }^{2,3}$ K. F. Liu, ${ }^{1}$ N. Mathur, ${ }^{1}$ H. B. Thacker, ${ }^{4}$ and J. B. Zhang ${ }^{5}$

CHIRAL MAGNETIC EFFECT

Sikivie (84), Wilczek (87), Carroll et al (90)
Maxwell-Chern-Simons theory $\quad \mathcal{L}_{\mathrm{MCS}}=\mathcal{L}_{\mathrm{QED}}+c_{A} \theta(x) \vec{E} \cdot \vec{B}$
$\boldsymbol{\nabla} \cdot \boldsymbol{B}=0$,
$\boldsymbol{\nabla} \cdot \boldsymbol{E}=\rho-c \boldsymbol{\nabla} \theta \cdot \boldsymbol{B}$,
$\boldsymbol{\nabla} \times \boldsymbol{E}=-\partial_{t} \boldsymbol{B}$,
$\boldsymbol{\nabla} \times \boldsymbol{B}=\partial_{t} \boldsymbol{E}+\boldsymbol{j}+c\left(\partial_{t} \theta \boldsymbol{B}+\boldsymbol{\nabla} \theta \times \boldsymbol{E}\right)$,

CHIRAL MAGNETIC EFFECT

Sikivie (84), Wilczek (87), Carroll et al (90)
Maxwell-Chern-Simons theory $\quad \mathcal{L}_{\mathrm{MCS}}=\mathcal{L}_{\mathrm{QED}}+c_{A} \theta(x) \vec{E} \cdot \vec{B}$
$\boldsymbol{\nabla} \cdot \boldsymbol{B}=0$,
$\boldsymbol{\nabla} \cdot \boldsymbol{E}=\rho-c \boldsymbol{\nabla} \theta \cdot \boldsymbol{B}$,
Anomalous Hall Effect
$\boldsymbol{\nabla} \times \boldsymbol{E}=-\partial_{t} \boldsymbol{B}$,
$\boldsymbol{\nabla} \times \boldsymbol{B}=\partial_{t} \boldsymbol{E}+\boldsymbol{j}+c\left(\partial_{t} \theta \boldsymbol{B}+\boldsymbol{\nabla} \theta \times \boldsymbol{E}\right)$,

CHIRAL MAGNETIC EFFECT

Sikivie (84), Wilczek (87), Carroll et al (90)
Maxwell-Chern-Simons theory $\quad \mathcal{L}_{\mathrm{MCS}}=\mathcal{L}_{\mathrm{QED}}+c_{A} \theta(x) \vec{E} \cdot \vec{B}$
$\boldsymbol{\nabla} \cdot \boldsymbol{B}=0$,
$\boldsymbol{\nabla} \cdot \boldsymbol{E}=\rho-c \boldsymbol{\nabla} \theta \cdot \boldsymbol{B}$,
Anomalous Hall Effect
$\boldsymbol{\nabla} \times \boldsymbol{E}=-\partial_{t} \boldsymbol{B}$,
$\boldsymbol{\nabla} \times \boldsymbol{B}=\partial_{t} \boldsymbol{E}+\boldsymbol{j}+c\left(\partial_{t} \theta \boldsymbol{B}+\boldsymbol{\nabla} \theta \times \boldsymbol{E}\right)$, (assume for now $\nabla \theta=0$)

CHIRAL MAGNETIC EFFECT

Sikivie (84), Wilczek (87), Carroll et al (90)
Maxwell-Chern-Simons theory $\quad \mathcal{L}_{\mathrm{MCS}}=\mathcal{L}_{\mathrm{QED}}+c_{A} \theta(x) \vec{E} \cdot \vec{B}$
$\boldsymbol{\nabla} \cdot \boldsymbol{B}=0$,
$\boldsymbol{\nabla} \cdot \boldsymbol{E}=\rho-c \boldsymbol{\nabla} \theta \cdot \boldsymbol{B}$,
Anomalous Hall Effect
$\boldsymbol{\nabla} \times \boldsymbol{E}=-\partial_{t} \boldsymbol{B}$,
$\boldsymbol{\nabla} \times \boldsymbol{B}=\partial_{t} \boldsymbol{E}+\boldsymbol{j}+c\left(\partial_{t} \theta \boldsymbol{B}+\boldsymbol{\nabla} \theta \times \boldsymbol{E}\right)$, (assume for now $\nabla \theta=0$)
Chiral magnetic effect:

CHIRAL MAGNETIC EFFECT

Sikivie (84), Wilczek (87), Carroll et al (90)
Maxwell-Chern-Simons theory $\quad \mathcal{L}_{\mathrm{MCS}}=\mathcal{L}_{\mathrm{QED}}+c_{A} \theta(x) \vec{E} \cdot \vec{B}$

$$
\boldsymbol{\nabla} \cdot \boldsymbol{B}=0,
$$

$$
\boldsymbol{\nabla} \cdot \boldsymbol{E}=\rho-c \boldsymbol{\nabla} \theta \cdot \boldsymbol{B},
$$

Anomalous Hall Effect
$\boldsymbol{\nabla} \times \boldsymbol{E}=-\partial_{t} \boldsymbol{B}$,
$\boldsymbol{\nabla} \times \boldsymbol{B}=\partial_{t} \boldsymbol{E}+\boldsymbol{j}+c\left(\partial_{t} \theta \boldsymbol{B}+\boldsymbol{\nabla} \theta \times \boldsymbol{E}\right)$, (assume for now $\nabla \theta=0$)
Chiral magnetic effect: $\quad \boldsymbol{j}=\sigma_{\chi} \boldsymbol{B} \equiv b_{0} \boldsymbol{B}$
\Rightarrow Breaks Parity!

CHIRAL MAGNETIC EFFECT

Sikivie (84), Wilczek (87), Carroll et al (90)

Maxwell-Chern-Simons theory

$$
\mathcal{L}_{\mathrm{MCS}}=\mathcal{L}_{\mathrm{QED}}+c_{A} \theta(x) \vec{E} \cdot \vec{B}
$$

$$
\boldsymbol{\nabla} \cdot \boldsymbol{B}=0,
$$

$$
\boldsymbol{\nabla} \cdot \boldsymbol{E}=\rho-c \boldsymbol{\nabla} \theta \cdot \boldsymbol{B},
$$

Anomalous Hall Effect

$$
\boldsymbol{\nabla} \times \boldsymbol{E}=-\partial_{t} \boldsymbol{B},
$$

$$
\boldsymbol{\nabla} \times \boldsymbol{B}=\partial_{t} \boldsymbol{E}+\boldsymbol{j}+c\left(\partial_{t} \theta \boldsymbol{B}+\boldsymbol{\nabla} \theta \times \boldsymbol{E}\right), \quad \text { (assume for now } \nabla \theta=0 \text {) }
$$

Kharzeev, Zhitnitsky (2007),
Kharzeev, McLerran, Warringa (2008)
Chiral magnetic effect:

Critical assumption: existence of chiral domains.

$$
\begin{aligned}
& \quad \boldsymbol{j}=\sigma_{\chi} \boldsymbol{B}_{\mathbf{B}} \equiv b_{0} \boldsymbol{B} \\
& \text { P-bdd, } \quad \text { P-even, } \\
& \text { T-odd } \quad \text { T-odd } \\
& \Rightarrow \text { Breaks Parity! }
\end{aligned}
$$

PROBING MATTER: ENERGY LOSS

PROBING MATTER: CHERENKOV AND TRANSITION RADIATION

Classical Cherenkov radiation is emitted by a charged particle that moves faster than the phase velocity of light: $v n>1$

$$
\cos \theta=\frac{1}{\beta \sqrt{\epsilon}}=\frac{1}{\beta n}
$$

Classical transition radiation is emitted by a charged particle that moves through inhomogeneous matter.

FERMI'S MODEL OF COLLISIONAL ENERGY LOSS

The Ionization Loss of Energy in Gases and in Condensed Materials*
Enrico Fermi
Pupin Physics Laboratories, Columbia University, New York, New York
(Received January 22, 1940)
The energy loss rate = flux of the Poynting vector out of cylinder of radius a coaxial with the particle path:

$$
-\frac{d \varepsilon}{d z}=2 \pi a \int_{-\infty}^{\infty}\left(E_{\phi} B_{z}-E_{z} B_{\phi}\right) d t=2 a \operatorname{Re} \int_{0}^{\infty}\left(E_{\phi \omega} B_{z \omega}^{*}-E_{z \omega} B_{\phi \omega}^{*}\right) d \omega
$$

Maxwell equations $\boldsymbol{\nabla} \times \boldsymbol{B}_{\omega}=-i \omega \boldsymbol{D}_{\omega}+j_{\omega}$ etc.

$$
\epsilon(\omega)=1-\frac{\omega_{p}^{2}}{\omega^{2}-\omega_{0}^{2}+i \omega \Gamma}
$$

Energy loss: $a \rightarrow 0$

$$
\text { UR limit: } \quad-\frac{d \varepsilon}{d z}=\frac{q^{2}}{4 \pi v^{2}} \omega_{p}^{2} \ln \frac{v}{a \omega_{p}}
$$

(small) Cherenkov radiation contribution emerges at $a \rightarrow \infty$ if $v>1 / \sqrt{\epsilon(0)}$

EM FIELDS OF POINT CHARGE IN CHIRAL MEDIUM 1

EM field of a point charge with large enough constant velocity v

$$
\begin{aligned}
& \boldsymbol{\nabla} \times \boldsymbol{B}=\partial_{t} \boldsymbol{D}+\sigma_{\chi} \boldsymbol{B}+q v \hat{\boldsymbol{z}} \delta(z-v t) \delta(\boldsymbol{b}), \\
& \boldsymbol{\nabla} \cdot \boldsymbol{D}=q \delta(z-v t) \delta(\boldsymbol{b}), \\
& \boldsymbol{\nabla} \times \boldsymbol{E}=-\partial_{t} \boldsymbol{B}, \\
& \boldsymbol{\nabla} \cdot \boldsymbol{B}=0,
\end{aligned}
$$

$\boldsymbol{B}(\boldsymbol{r}, t)=\int \frac{d^{2} k_{\perp} d \omega}{(2 \pi)^{3}} e^{i \boldsymbol{k} \cdot \boldsymbol{r}-i \omega t} \sum_{\lambda} \boldsymbol{\epsilon}_{\lambda \boldsymbol{k}} \frac{q \hat{\boldsymbol{z}} \cdot \boldsymbol{\epsilon}_{\lambda k}^{*} \lambda k}{k_{\perp}^{2}+\omega^{2}\left(1 / v^{2}-\epsilon\right)-\lambda \sigma_{\chi} k}$,
$\boldsymbol{E}(\boldsymbol{r}, t)=\int \frac{d^{2} k_{\perp} d \omega}{(2 \pi)^{3}} e^{i \boldsymbol{k} \cdot \boldsymbol{r}-i \omega t}\left(\sum_{\lambda} \epsilon_{\lambda \boldsymbol{k}} \frac{i q \omega \hat{\boldsymbol{z}} \cdot \boldsymbol{\epsilon}_{\lambda \boldsymbol{k}}^{*}}{k_{\perp}^{2}+\omega^{2}\left(1 / v^{2}-\epsilon\right)-\lambda \sigma_{\chi} k}+\hat{\boldsymbol{k}} \frac{q}{i v k \varepsilon}\right)$,

High energy approximation:

$$
B_{\phi}=\frac{e b}{8 \pi x_{-}^{2}} e^{-\frac{b^{2} \sigma}{4 x_{-}}}\left[\sigma \cos \left(\frac{b^{2} \sigma_{\chi}}{4 x_{-}}\right)+\sigma_{\chi} \sin \left(\frac{b^{2} \sigma_{\chi}}{4 x_{-}}\right)\right] \quad \text { Finite } \sigma_{\chi} \Rightarrow \text { field oscillations }
$$

EM FIELDS OF POINT CHARGE IN CHIRAL MEDIUM 2

Need ω-Fourier components:

$$
\begin{aligned}
\boldsymbol{B}_{\omega}(\boldsymbol{r})= & \int \frac{d^{2} k_{\perp}}{(2 \pi)^{2}} \frac{q k e^{i \omega z / v+i \boldsymbol{k}_{\perp} \cdot \boldsymbol{b}}}{\left[k_{\perp}^{2}+\omega^{2}\left(1 / v^{2}-\epsilon\right)\right]^{2}-\left(\sigma_{\chi} k\right)^{2}} \\
& \times\left\{\left[k_{\perp}^{2}+\omega^{2}\left(1 / v^{2}-\epsilon\right)\right] \sum_{\lambda} \lambda \boldsymbol{\epsilon}_{\lambda \boldsymbol{k}}\left(\hat{\boldsymbol{z}} \cdot \boldsymbol{\epsilon}_{\lambda \boldsymbol{k}}^{*}\right)+\sigma_{\chi} k \sum_{\lambda} \boldsymbol{\epsilon}_{\lambda \boldsymbol{k}}\left(\hat{\boldsymbol{z}} \cdot \boldsymbol{\epsilon}_{\lambda \boldsymbol{k}}^{*}\right)\right\}
\end{aligned}
$$

can be computed analytically for constant chiral conductivity, e.g.:

$$
\begin{aligned}
& \qquad \begin{array}{l}
B_{\phi \omega}(\boldsymbol{r})=\frac{q}{2 \pi} \frac{e^{i \omega z / v}}{k_{1}^{2}-k_{2}^{2}} \sum_{\nu=1}^{2}(-1)^{\nu+1} k_{\nu}\left(k_{\nu}^{2}-s^{2}\right) K_{1}\left(b k_{\nu}\right) \\
B_{b \omega}(\boldsymbol{r})=\sigma_{\chi} \frac{q}{2 \pi} \frac{i \omega}{v} \frac{e^{i \omega z / v}}{k_{1}^{2}-k_{2}^{2}} \sum_{\nu=1}^{2}(-1)^{\nu} k_{\nu} K_{1}\left(b k_{\nu}\right)
\end{array} \\
& \text { with } k_{\nu}^{2}=s^{2}-\frac{\sigma_{\chi}^{2}}{2}+(-1)^{\nu} \sigma_{\chi} \sqrt{\omega^{2} \epsilon+\frac{\sigma_{\chi}^{2}}{4}} \quad \text { and } \quad s^{2}=\omega^{2}\left(\frac{1}{v^{2}}-\epsilon(\omega)\right)
\end{aligned}
$$

- Cherenkov radiation: $s^{2}<0, \sigma_{x}=0-$ small contribution to the total energy loss

FERMI'S MODEL WITH CHIRAL MAGNETIC CURRENT

$$
-\frac{d \varepsilon}{d z}=2 \pi a \int_{-\infty}^{\infty}\left(E_{\phi} B_{z}-E_{z} B_{\phi}\right) d t=2 a \operatorname{Re} \int_{0}^{\infty}\left(E_{\phi \omega} B_{z \omega}^{*}-E_{z \omega} B_{\phi \omega}^{*}\right) d \omega
$$

For simplicity consider $\omega_{0}=0$
UR limit $\gamma \gg 1$ at $a \rightarrow 0$ gives energy loss

$$
-\frac{d \varepsilon}{d z}=\frac{q^{2}}{4 \pi v^{2}}\left(\omega_{p}^{2} \ln \frac{v}{a \omega_{p}}+\frac{1}{4} \gamma^{2} \sigma_{\chi}^{2}\right)
$$

increases as (energy) ${ }^{2}$ due to the anomaly

Chiral Cherenkov radiation emerges at $a \rightarrow \infty$ even if $\epsilon=1$

$$
\frac{d W}{d \omega}=-\left.\frac{d \varepsilon}{d z \omega d \omega}\right|_{a \rightarrow \infty}=\frac{q^{2}}{4 \pi}\left\{\frac{1}{2}\left(1-\frac{1}{v^{2}}\right)+\frac{\sigma_{\chi}}{2 \omega}+\frac{\left(1+v^{2}\right) \sigma_{\chi}^{2}}{8 v^{2} \omega^{2}}+\ldots\right\}, \quad \omega<\sigma_{\chi} \gamma^{2}
$$

Power of chiral Cherenkov radiation $P=\frac{q^{2}}{4 \pi} \frac{\sigma_{\chi}^{2} \gamma^{2}}{4}$

In the UR limit, energy loss is due to the chiral Cherenkov radiation.

EG: ENERGY LOSS IN A SEMIMETAL (CLASSICAL)

FIG. 2. Collisional energy loss spectrum of electron with $\gamma=100$ in a semimetal with parameters $\omega_{p}=$ $0.5 \mathrm{eV}, \Gamma=0.025 \mathrm{eV}$ (so that its conductivity is 10 eV at room tempearture) [41] and $m=0.5 \mathrm{MeV}$. Solid line: $\sigma_{\chi}=0.19 \mathrm{eV}[42,43]$, dashed line: $\sigma_{\chi}=0 . \omega_{ \pm}$are defined in (13). The seeming discontinuity at $\omega=\omega_{+}$is a visual artifact.

EG: ENERGY LOSS IN QGP (CLASSICAL)

FIG. 1. Electromagnetic part of the collisional energy loss spectrum of a d-quark with $\gamma=20$ in Quark-Gluon Plasma. Plasma parameters: $\omega_{p}=0.16 T, \Gamma=1.11 T$ [36], $m=T=250 \mathrm{MeV}$. Solid line: $\sigma_{\chi}=10 \mathrm{MeV}$, dashed line: $\sigma_{\chi}=7 \mathrm{MeV}$, dotted line: $\sigma_{\chi}=0 . \omega_{ \pm}$are defined in (13).

The same qualitative picture in QCD (after $\mathrm{e} \rightarrow \mathrm{g}$, including color factors etc.)

$$
-\left.\frac{d \varepsilon}{d z}\right|_{\mathrm{anom}}=\frac{g^{2} C_{F}}{4 \pi} \frac{\tilde{\sigma}_{\chi} \varepsilon}{3}
$$

$$
\text { In radiation gauge: } \quad \nabla^{2} \boldsymbol{A}=\partial_{t}^{2} \boldsymbol{A}-\sigma_{\chi} \boldsymbol{\nabla} \times \boldsymbol{A}
$$

The dispersion relation $k^{2}=-\lambda \sigma_{\chi}|\boldsymbol{k}| \rightarrow$ photon becomes space- or timelike $\lambda=$ helicity

$k^{2}=\left(p \pm p^{\prime}\right)^{2}=2 m(m \pm \varepsilon) \quad$ forbidden in vacuum, but allowed in chiral medium
Pair production: $k^{2}>0 \Rightarrow \lambda \sigma_{\chi}<0$
Photon radiation: $k^{2}<0 \Rightarrow \lambda \sigma_{\chi}>0$

UR approx.: $\boldsymbol{A}=\frac{1}{\sqrt{2 \omega V}} \boldsymbol{\epsilon}_{\lambda} e^{i \omega z+i \boldsymbol{k}_{\perp} \cdot \boldsymbol{x}_{\perp}-i \omega t} \exp \{-i \frac{1}{2 \omega} \int_{0}^{z}[k_{\perp}^{2}-\underbrace{\sigma_{\chi}\left(z^{\prime}\right) \omega \lambda}_{" \sim_{\gamma}^{2} "}] d z^{\prime}\}$

CHIRAL CHERENKOV RADIATION IN QED

KT, 1702.07329

$$
\begin{array}{ll}
& \mathcal{M}=-e Q \bar{u}\left(p^{\prime}\right) \gamma^{\mu} u(p) \epsilon_{\mu}^{*} \times 4 \pi \varepsilon x(1-x) \delta\left(q_{\perp}^{2}+\kappa_{\lambda}\right) \\
x=\frac{\omega}{\varepsilon} & \kappa_{\lambda}(z)=x^{2} m^{2}-(1-x) x \lambda \sigma_{\chi} \varepsilon \text { can become negative! }
\end{array}
$$

Chiral Cherenkov effect: photon radiation at $\vartheta \sim \sqrt{\left|\sigma_{\chi}\right| / \omega}$
Kappa is negative if $\lambda \sigma_{\chi}>0$ and $x<x_{0}=\frac{1}{1+m^{2} /\left(\lambda \sigma_{\chi} \varepsilon\right)} \quad \Rightarrow \quad \omega<\omega^{*}=\frac{\lambda b_{0} \varepsilon^{2}}{\lambda b_{0} \varepsilon+m^{2}}$

- Photon
radiation rate: $\frac{d W_{+}}{d x}=\frac{\alpha Q^{2}}{2 \varepsilon x}\left\{\sigma_{\chi} \varepsilon\left(\frac{x^{2}}{2}-x+1\right)-m^{2} x\right\} \theta\left(x_{0}-x\right)$ Vanishes as $\hbar \rightarrow 0$ Quantum anomaly!

$$
\frac{d W_{-}}{d x}=0 .
$$

Classical limit: $x \rightarrow 0$ (no recoil)

- Total rate of energy loss: $\quad-\frac{d \varepsilon}{d z}=\int_{0}^{1} \frac{d W_{+}}{d x} x \varepsilon d x=\frac{1}{3} \alpha Q^{2} \sigma_{\chi} \varepsilon$

Thus the recoil reduces the energy loss $\gamma^{2} \rightarrow \gamma$

CHIRAL CHERENKOV RADIATION AT MODERATE ENERGIES

At not very high energies, need to take ω_{p} into account:

$$
\begin{array}{r}
\omega^{2}-\boldsymbol{k}^{2} \approx-\lambda \sigma_{\chi} \omega+\omega_{p}^{2} \quad \Rightarrow \quad \kappa_{\lambda}=x^{2} m^{2}-(1-x) x \lambda \sigma_{\chi} \varepsilon+(1-x) \omega_{p}^{2} \\
\Rightarrow \quad \omega_{-}<\omega<\omega_{+}
\end{array}
$$

--- - - Bremsstrahlung
——Chiral Cherenkov; $\mu_{5}=10 \mathrm{eV}, \omega_{p}=40 \mathrm{meV}$
Chiral Cherenkov; $\mu_{5}=100 \mathrm{eV}, \omega_{p}=40 \mathrm{meV}$

Photon propagator: $\left[g^{\mu \nu} \partial^{2}-(1-1 / \xi) \partial^{\mu} \partial^{\nu}-\epsilon^{\mu \nu \alpha \beta} b_{\alpha} \partial_{\beta}\right] D_{\nu \lambda}(x)=i \delta_{\lambda}^{\mu} \delta^{4}(x)$

$$
\begin{aligned}
D^{\nu \lambda}(k)= & -\frac{i}{k^{4}+b^{2} k^{2}-(k \cdot b)^{2}}\left\{k^{2} g^{\nu \lambda}+b^{\nu} b^{\lambda}+i \epsilon_{\nu \lambda \alpha \beta} b^{\alpha} k^{\beta}\right. \\
& \left.-\frac{(b \cdot k)}{k^{2}}\left(k^{\nu} b^{\lambda}+k^{\lambda} b^{\nu}\right)+\left[b^{2} \xi-(1-\xi)\left(k^{2}-\frac{(b \cdot k)^{2}}{k^{2}}\right)\right] \frac{k^{\lambda} k^{\nu}}{k^{2}}\right\}
\end{aligned}
$$

Lenhert, Potting Qiu, Cao, Huang

Static limit: $\quad D_{00}(\boldsymbol{q})=\frac{i}{\boldsymbol{q}^{2}}$,

$$
\begin{aligned}
& D_{0 i}(\boldsymbol{q})=D_{0 i}(\boldsymbol{q})=0 \\
& D_{i j}(\boldsymbol{q})=-\frac{i \delta_{i j}}{\boldsymbol{q}^{2}-b_{0}^{2}}-\frac{\epsilon_{i j k} q^{k}}{b_{0}\left(\boldsymbol{q}^{2}-b_{0}^{2}\right)}+\frac{\epsilon_{i j k} q^{k}}{b_{0} \boldsymbol{q}^{2}}
\end{aligned}
$$

CHIRAL MAGNETIC INSTABILITY

Poles: $\left(q^{0}\right)^{2}-\boldsymbol{q}^{2}=-\lambda b_{0}|\boldsymbol{q}| \quad$ Modes $|\boldsymbol{q}| \leq b_{0}$ are unstable

At $q^{0} \rightarrow 0$ there's only one unstable mode $|\boldsymbol{q}|=b_{0}$

Chirality slowly flows from the chiral medium to the magnetic field until the evolution stops.

MAGNETIC MOMENT CONTRIBUTION

$$
D_{i j}(\boldsymbol{q})=-\frac{i \delta_{i j}}{\boldsymbol{q}^{2}-b_{0}^{2}}-\frac{\epsilon_{i j k} q^{k}}{b_{0}\left(\boldsymbol{q}^{2}-b_{0}^{2}\right)}+\frac{\epsilon_{i j k} q^{k}}{b_{0} \boldsymbol{q}^{2}}
$$

- $D_{i j}$ couples only to the magnetic moment of the target

Current of an ion with charge e 'and magnetic moment μ :

$$
J^{0}(\boldsymbol{x})=e^{\prime} \delta(\boldsymbol{x}), \quad \boldsymbol{J}(\boldsymbol{x})=\boldsymbol{\nabla} \times(\boldsymbol{\mu} \delta(\boldsymbol{x}))
$$

Produces the potentials $\quad A^{0}(\boldsymbol{q})=e^{\prime} / \boldsymbol{q}^{2} \quad A^{\ell}(\boldsymbol{q})=-\frac{1}{\boldsymbol{q}^{2}-b_{0}^{2}}\left[i(\boldsymbol{\mu} \times \boldsymbol{q})^{\ell}+\frac{b_{0}}{\boldsymbol{q}^{2}}\left(\boldsymbol{\mu} \cdot \boldsymbol{q} q^{\ell}-\boldsymbol{q}^{2} \mu^{\ell}\right)\right]$

- Averaging over the directions of $\boldsymbol{\mu}$ decouples the electric and magnetic terms:

$$
\left\langle\mu_{i}\right\rangle=0,\left\langle\mu_{i} \mu_{j}\right\rangle=\frac{\mu^{2}}{3} \delta_{i j}
$$

- Photon x-section:

$$
\frac{d \sigma_{\mu}}{d \omega} \approx \frac{2 e^{4} \mu^{2}}{3(2 \pi)^{3} \omega}\left[\frac{3 b_{0}^{2}}{m^{2}} \ln \left(\frac{4 \epsilon^{4}}{m^{2} \omega^{2}}\right)+\ln ^{2} \frac{4 \epsilon^{2}}{m^{2}}+\frac{2 b_{0}^{4} \pi}{m^{2} \Gamma^{2}} \Theta\left(\omega_{0}-\omega\right)\right] . \quad \omega_{0}=\frac{2 \epsilon^{2} b_{0}}{2 \epsilon b_{0}+m^{2}}
$$

MAGNETIC MOMENT CONTRIBUTION TO PHOTON BREMSSTRAHLUNG

ELECTRIC MONOPOLE CONTRIBUTION TO PHOTON BREMSSTRAHLUNG

- Fermion propagator: $\quad \frac{1}{2 p \cdot k-k^{2}+i E / \tau}=\frac{1}{\omega E\left(\frac{m^{2}}{E \omega} \frac{\omega-\omega^{*}}{E-\omega^{*}}+\theta^{2}+\frac{i}{\omega \tau}\right)} \quad$ with $\quad \omega^{*}=\frac{\lambda b_{0} E^{2}}{\lambda b_{0} E+m^{2}}$
$\quad b_{0} \lambda>0$
- The resonance emerges when $\omega<\omega^{*}$ due to the anomaly in the photon dispersion relation.
- The photon propagator has similar behavior: $\quad \boldsymbol{q}_{\min }^{2}=\frac{1}{4} \frac{\omega^{2} E^{2}}{E^{\prime 2}}\left[\frac{m^{2}\left(\omega-\omega^{*}\right)}{\omega E\left(E-\omega^{*}\right)}+\theta^{2}\right]^{2}$
- The divergence is cutoff either by the inelastic rate $1 / \tau$ or the Debye mass μ :

$$
\boldsymbol{q}^{2} \rightarrow \boldsymbol{q}^{2}+\frac{E^{2}}{4 E^{\prime 2} \tau^{2}}+\mu^{2}
$$

LOW TEMPERATURES $\mu \ll m$

- Only one photon polarization $\left(b_{0} \lambda>0\right)$ is enhanced!

Gluckstern-Hull

- Energy loss to radiation: $-\frac{d E\left(b_{0} \lambda>0\right)}{d z} \approx \frac{\pi \tau E}{\ln \frac{2 E}{m}}\left(-\frac{d E}{d z}\right)_{\mathrm{BH}}$
- At higher energy - must take LPM into account.

HIGH TEMPERATURES $\mu \gg m$

$-\frac{d E\left(b_{0} \lambda>0\right)}{d z} \approx \frac{e^{2} E}{16 \pi^{2} \ell}\left\{\ln \frac{2 E}{m}-\frac{1}{3}+\frac{2 b_{0} E}{9 m^{2}}\left(\pi+2 \ln \frac{E}{b_{0}}\right)+2 \tau\left(E-\omega^{*}\right) \arctan \frac{2 m^{2} \omega^{*} \tau}{E\left(E-\omega^{*}\right)}\right\}$.

- At high temperature the effect of anomaly is much weaker.
- Coherence effects/LPM - same as without anomaly?

SCREENING ISSUES IN SEMIMETALS

- Screening is due to the electron cloud around nucleus. The distances larger than the atomic radius are screened.

- If the chiral resonance is screened, then there is no anomalous bremsstrahlung.
- It happens when $q_{\text {min }}<1 /($ atomic radius).
- Thomas-Fermi model: $q_{\text {min }} \sim \frac{1}{\tau} \ll \alpha m Z^{1 / 3}$
\Rightarrow no anomalous bremsstrahlung in semimetals.

RADIATIVE ENERGY LOSS IN QCD

- θ couples to the color gauge fields \Rightarrow color version of CME
- The collisional and radiative energy loss of a fast quark in QGP gets anomalous contributions.

- dN/dy gets y-dependent corrections to the plateau
- Work in progress with Jeremy Hansen

ANISOTROPIC MATTER

$$
\nabla \theta=\boldsymbol{b} / c_{A} \approx \text { const. } \quad(\dot{\theta}=0)
$$

Qui, Cao, Huang (2017)
$\boldsymbol{\nabla} \cdot \boldsymbol{B}=0$,
$\boldsymbol{\nabla} \cdot \boldsymbol{E}=-\boldsymbol{b} \cdot \boldsymbol{B}$,$\Rightarrow \begin{cases}\boldsymbol{\nabla} \cdot \boldsymbol{B}=0, & \boldsymbol{\nabla} \cdot \boldsymbol{D}=0 \\ \boldsymbol{\nabla} \times \boldsymbol{E}=i \omega \boldsymbol{B}, & \boldsymbol{\nabla} \times \boldsymbol{B}=-i \omega \boldsymbol{D}\end{cases}$
$\boldsymbol{\nabla} \times \boldsymbol{E}=-\partial_{t} \boldsymbol{B}$,
$\boldsymbol{\nabla} \times \boldsymbol{B}=\partial_{t} \boldsymbol{E}+\boldsymbol{b} \times \boldsymbol{E} . \quad$ where $\boldsymbol{D}=\boldsymbol{E}+\frac{i}{\omega} \boldsymbol{b} \times \boldsymbol{E}=0 . \quad D_{i}=\varepsilon_{i j} E_{j}$

In momentum space: $\boldsymbol{k} \times(\boldsymbol{k} \times \boldsymbol{E})=\omega \boldsymbol{k} \times \boldsymbol{B}=-\omega^{2} \boldsymbol{D}$

$$
\left[k_{i} k_{j}-k^{2} \delta_{i j}+\omega_{\boldsymbol{k} \lambda}^{2} \varepsilon_{i j}\left(\omega_{\boldsymbol{k} \lambda}\right)\right] e_{\boldsymbol{k} \lambda j}=0
$$

Dielectric tensor

$$
\varepsilon=\left(\begin{array}{ccc}
1 & -i b / \omega_{\boldsymbol{k} \lambda} & 0 \\
i b / \omega_{\boldsymbol{k} \lambda} & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Non-trivial solutions iff $\quad\left|k_{i} k_{j}-k^{2} \delta_{i j}+\omega_{\boldsymbol{k} \lambda}^{2} \varepsilon_{i j}\left(\omega_{\boldsymbol{k} \lambda}\right)\right|=0$

The photon dispersion relation $\omega^{2}=\boldsymbol{k}^{2}+\mu^{2}(\boldsymbol{k}, \lambda) \quad \mu^{2}(\boldsymbol{k}, \lambda)=\frac{1}{2} b^{2}-\lambda \operatorname{sgn}(\boldsymbol{k} \cdot \boldsymbol{b}) \sqrt{(\boldsymbol{k} \cdot \boldsymbol{b})^{2}+\frac{1}{4} b^{4}}$

QUANTIZATION OF EM FIELD

$$
\boldsymbol{A}(\boldsymbol{x}, t) \underbrace{\sum_{\boldsymbol{k} \lambda}\left(a_{\boldsymbol{k} \lambda} \boldsymbol{A}_{\boldsymbol{k} \lambda}+a_{\boldsymbol{k} \lambda}^{\dagger} \boldsymbol{A}_{\boldsymbol{k} \lambda}^{*}\right)}+\underbrace{\sum_{\boldsymbol{k} \nu}\left(a_{\boldsymbol{k} \nu} \boldsymbol{A}_{\boldsymbol{k} \lambda}+a_{\boldsymbol{k} \nu}^{\dagger} \boldsymbol{A}_{\boldsymbol{k} \lambda}^{*}\right)}
$$

Transverse EM waves Longitudinal EM waves (exist only if there is spatial dispersion)
$\boldsymbol{A}_{\boldsymbol{k} \lambda}=\boldsymbol{e}_{\boldsymbol{k} \lambda}\left(\frac{k v_{\boldsymbol{k} \lambda}}{2 \omega_{\boldsymbol{k} \lambda}^{2} \varepsilon_{i j} e_{\boldsymbol{k} \lambda i}^{*} e_{\boldsymbol{k} \lambda j} V}\right)^{1 / 2} e^{i \boldsymbol{k} \cdot \boldsymbol{x}-i \omega_{\boldsymbol{k} \lambda} t} \quad \boldsymbol{A}_{\boldsymbol{k} \nu}=\hat{\boldsymbol{k}}\left(\frac{k^{2}}{\omega_{\boldsymbol{k} \nu}^{2} k_{i} k_{j} \partial \varepsilon_{i j} / \partial \omega_{\boldsymbol{k} \nu} V}\right)^{1 / 2} e^{i \boldsymbol{k} \cdot \boldsymbol{x}-i \omega_{\boldsymbol{k} \nu} t}$

Chiral Cherenkov radiation: $\frac{d W}{d \Omega d \omega}=\frac{\alpha Q^{2}}{16 \pi} \sum_{\lambda} \delta\left(\omega+\varepsilon^{\prime}-\varepsilon\right) \frac{k^{3}}{\varepsilon \varepsilon^{\prime} \omega^{2} \varepsilon_{i j} e_{\boldsymbol{k} \lambda i}^{*} e_{\boldsymbol{k} \lambda j}} \sum_{s s^{\prime}}\left|\mathcal{M}_{0}\right|^{2}$

$$
\text { At high energies: } \quad e_{\boldsymbol{k} \pm i}^{*} e_{\boldsymbol{k} \pm j} \rightarrow \frac{1}{2}\left(\delta^{i j}-\frac{k_{i} k_{j}}{k^{2}}\right)
$$

$$
D_{00}=\frac{i \boldsymbol{q}^{2}}{\boldsymbol{q}^{4}+(\boldsymbol{b} \times \boldsymbol{q})^{2}},
$$

Photon propagator:

$$
\begin{aligned}
& D_{0 i}=\frac{(\boldsymbol{b} \times \boldsymbol{q})_{i}}{\boldsymbol{q}^{4}+(\boldsymbol{b} \times \boldsymbol{q})^{2}}, \\
& D_{i j}=-\frac{i}{\boldsymbol{q}^{4}+(\boldsymbol{b} \times \boldsymbol{q})^{2}}\left\{\boldsymbol{q}^{2} \delta_{i j}+b_{i} b_{j}-\frac{\left[\boldsymbol{q}^{4}-(\boldsymbol{b} \cdot \boldsymbol{q})^{2}\right] q_{i} q_{j}}{\boldsymbol{q}^{4}}-\frac{\boldsymbol{b} \cdot \boldsymbol{q}}{\boldsymbol{q}^{2}}\left(b_{i} q_{j}+b_{j} q_{i}\right)\right\}
\end{aligned}
$$

CHIRAL CHERENKOV RADIATION AT HIGH ENERGY

$$
\delta\left(\omega+\varepsilon^{\prime}-\varepsilon\right) \approx 2 x(1-x) \varepsilon \delta(k_{\perp}^{2}+\underbrace{\mu^{2}(1-x)+m^{2} x^{2}}_{\mu}) \quad \mu^{2} \approx-\lambda \omega b \cos \beta \equiv m_{\gamma}^{2}
$$

Now the photon "mass" depends now on the photon direction angle β w.r.t. b.

Photon spectrum $\quad \frac{d W}{d \Omega d \omega}=\frac{\alpha Q^{2} x}{2 \pi} \delta\left(x^{2} \varepsilon^{2} \vartheta^{2}+\kappa_{\lambda}\right)\left[\lambda \varepsilon b \cos \beta\left(1-x+\frac{x^{2}}{2}\right)-m^{2} x\right] \theta\left(-\kappa_{\lambda}\right)$

$$
\kappa_{\lambda}=\mu^{2}(1-x)+m^{2} x^{2}=-x(1-x) \lambda \varepsilon b \cos \beta+m^{2} x^{2}
$$

Kappa is negative if $\quad \lambda \cos \beta>0$ and $x<x_{\max } \quad x_{\max }=\left(1+\frac{m^{2}}{\lambda \varepsilon b \cos \beta}\right)^{-1}$

CHERENKOV SPECTRUM IN A SEMIMETAL

CHIRAL TRANSITION RADIATION

$$
\frac{d N}{d^{2} q_{\perp} d x}=\frac{\alpha Q^{2}}{2 \pi^{2} x}\left\{\left(\frac{x^{2}}{2}-x+1\right) q_{\perp}^{2}+\frac{x^{4} m^{2}}{2}\right\} \sum_{\lambda}\left|\frac{1}{q_{\perp}^{2}+\kappa_{\lambda}^{(1)}-i \delta}-\frac{1}{q_{\perp}^{2}+\kappa_{\lambda}^{(2)}+i \delta}\right|^{2}
$$

(Transition radiation in ordinary materials corresponds to $\kappa_{\text {tr }}=m^{2} x^{2}+m_{\gamma}^{2}(1-x)$ finite at $\hbar \rightarrow 0$)

Contribution of the pole at $q_{\perp}^{2}+\kappa_{\lambda}=0$ is the chiral Cherenkov radiation.

The rest is the "chiral transition radiation"

SUMMARY

- Chiral anomaly opens new channels of energy loss.
-Relevant in many areas of physics: nuclear, condensed matter, search for dark matter.

CHIRAL OPTICS: FRESNEL EQUATIONS

$$
\begin{aligned}
& \boldsymbol{\nabla} \cdot \boldsymbol{B}=0, \\
& \boldsymbol{\nabla} \cdot(\boldsymbol{D}+\tilde{\theta} \boldsymbol{B})=0, \\
& \boldsymbol{\nabla} \times \boldsymbol{E}=-\partial_{t} \boldsymbol{B}, \\
& \boldsymbol{\nabla} \times(\boldsymbol{B}-\tilde{\theta} \boldsymbol{E})=\partial_{t}(\boldsymbol{E}+\tilde{\theta} \boldsymbol{B}), \\
& \quad \tilde{\theta}=c_{A} \theta
\end{aligned}
$$

$$
\Delta \boldsymbol{E}_{\|}=0, \quad \text { Chiral Fresnel equations }
$$

$$
\Delta\left(E_{\perp}+\tilde{\theta} B_{\perp}\right)=0, \quad \Delta\left(\boldsymbol{B}_{\|}-\tilde{\theta} \boldsymbol{E}_{\|}\right)=0 . \quad \begin{aligned}
& \quad \text { for Incident, Reflected } \\
& \quad \text { and Transmitted waves }
\end{aligned}
$$

Equations in the bulk depend only on $\partial \theta$ itself!

Example: $\quad A_{t}^{+}=\frac{2}{2-i \tilde{\theta}} A_{i}^{+}, \quad A_{r}^{-}=-\frac{i \tilde{\theta}}{2-i \tilde{\theta}} A_{i}^{+}, \quad A_{t}^{-}=A_{r}^{+}=0 \quad$ if $n=1$.

1. Amplitudes do not depend on the angle of incidence
2. Effective index of refraction $n_{\text {eff }}=1-i \tilde{\theta}$
3. The circular polarization is preserved, rather than linear

BREWSTER'S ANGLE

At a certain incidence angle a_{B} there is no reflection of the incident wave component linearly polarized in xz-plane (plane of incidence)

FIG. 2. Brewster's angle as a function of the wave frequency for a typical value of the plasma frequency $\omega_{\mathrm{pl}}=10 \mathrm{eV}$ at different values of $\tilde{\theta}=10^{-1}, 10^{-2}, 10^{-3}$ (left to right). The dotted line corresponds to $\theta=0$.

