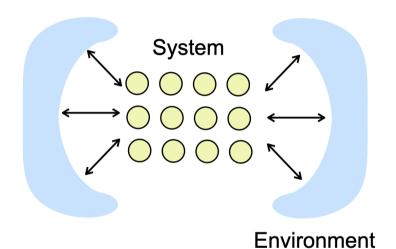
A quantum-information theoretic viewpoint of Many-body open quantum systems

Rahul Trivedi Max Planck Institute of Quantum Optics

Open systems



Accurate description of experimental systems

Quantum optics e.g. quantum emitters coupled to photonic fields.

Quantum information processing platforms.

Many-body physics

Thermalization, deep-thermalization ...

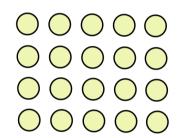
Generalization of classical probabilistic models

Probability distributions → Density matrices.

Classical Langevin equations → Quantum Open system models.

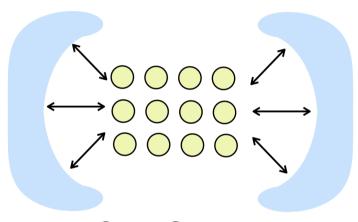
The many-body regime

Large number of interacting subsystems \Longrightarrow exponentially large Hilbert spaces.



Closed Systems

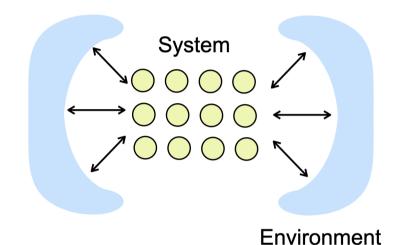
- Well developed numerical tools.
- Well-understood analytical methods.
- Rigorous theory of many-body phases.
- Information-theoretic/Complexity-theoretic understanding.



Open Systems

Model

$$H_{SE}(t) = \underbrace{H_S} + \underbrace{\sum_{\alpha} X_{\alpha} B_{\alpha}(t)}_{\text{System}}$$
System Special Environment Operators
Operators



System dynamics:

$$\rho_{S}(t) = \mathrm{Tr}_{E}[U_{SE}(t,0)(\rho_{S}(0) \otimes \rho_{E}(0))U_{SE}(0,t)]$$

Environment can be specified via n-point correlation functions:

$$K_{\alpha_1,\alpha_2...\alpha_n}(t_1,t_2...t_n) = \text{Tr}_E[B_{\alpha_1}(t_1)B_{\alpha_2}(t_2)...B_{\alpha_n}(t_n)\rho_E(0)]$$

Models: Stationary and Gaussian environments

Stationarity:
$$K_{\alpha_1,\alpha_2...\alpha_n}(t_1,t_2...t_n) = K_{\alpha_1,\alpha_2...\alpha_n}(t_1+\tau,t_2+\tau...t_n+\tau)$$

Gaussianity: $K_{\alpha_1,\alpha_2...\alpha_n}(t_1,t_2...t_n)$ satisfies Wick's/Isserlis's theorem:

$$K_{\alpha_1,\alpha_2...\alpha_n}(t_1,t_2...t_n) = K_{\alpha_1,\alpha_2}(t_1,t_2)K_{\alpha_3,\alpha_4}(t_3,t_4)... + \text{all other pairings}$$

Open systems with stationary Gaussian environments specified by:

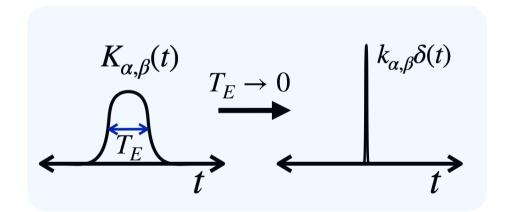
System Hamiltonian H_S , Jump operators X_{α} and memory kernels $K_{\alpha,\beta}(t)$.

Markovian models

• $K_{\alpha,\beta}(t_1-t_2)\sim k_{\alpha,\beta}\delta(t_1-t_2)$, system dynamics described by Lindblad master equation

$$\frac{d}{dt}\rho(t) = -i[H_S, \rho(t)] + \sum_{\alpha,\beta} k_{\alpha,\beta} \left(X_{\alpha}\rho(t)X_{\beta} - \frac{1}{2} \{X_{\beta}X_{\alpha}, \rho(t)\} \right)$$

In general, Markov limit and thermodynamic limits do not commute.



$$\lim_{N\to\infty}\lim_{T_E\to 0}O_N(T_E)\neq\lim_{T_E\to 0}\lim_{N\to\infty}O_N(T_E)$$

Explicit examples even with Gaussian fermion models

B. Windt, X. Yu, RT (2025)

How "complex" are many-body systems?

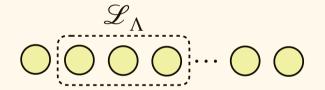
Specific models

E.g. Fixed point of a master equation with $\sigma_x^{\otimes 2}$ Hamiltonian and σ_- dissipation.

- Correlation functions.
- Entanglement entropies/mutual information.
- Stabilizer entropies/Magic.

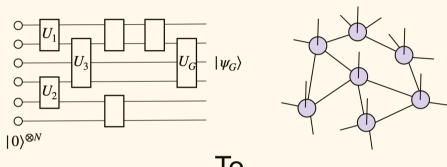
Model families

E.g. Geometrically local, Translationally invariant Lindbladians.



- Which quantum states can be prepared using these model families?
- How easy is it to simulate these model families classically or quantumly?

State Preparation



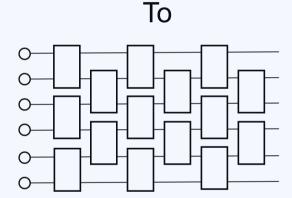
To

Geometrically local open system

Measure of the operational capability of a family of open-system models.

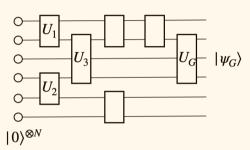
Circuit Complexity

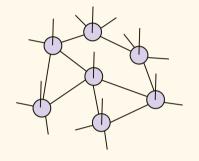
Geometrically local open system dynamics



Measure of quantum resources needed to simulate open-system models.

State Preparation





To

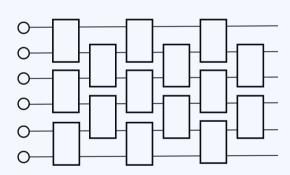
Geometrically local open system

Measure of the operational capability of a family of open-system models.

Circuit Complexity

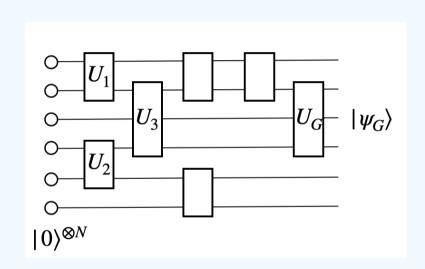
Geometrically local open system dynamics

To



Measure of quantum resources needed to simulate open-system models.

State-preparation with dissipation



Target quantum state:

$$|\psi_G\rangle = \underbrace{U_G U_{G-1} \dots U_1}_{U} |0\rangle^{\otimes N}$$

Lindbladian that prepares $|\psi_T\rangle$ as its unique fixed point?

Yes but with non-local jump operators

$$L_i = U | 0 \rangle_i \langle 1 | U^{\dagger}$$

No with only k-local jump operators

$$|GHZ\rangle = |0\rangle^{\otimes N} + |1\rangle^{\otimes N}$$

cannot be unique fixed point of a local Lindbladian.

State-preparation with dissipation

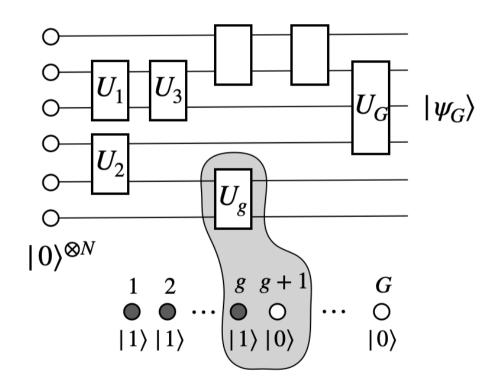
5-local lindbladians **can** prepare encodings of the state $|\psi_G\rangle$

$$\rho = \frac{1}{G+1} \left(|\psi_0\rangle \langle \psi_0| \otimes |00...0\rangle \langle 00...0| + |\psi_1\rangle \langle \psi_1| \otimes |10...0\rangle \langle 10...0| + ... |\psi_G\rangle \langle \psi_G| \otimes |11...1\rangle \langle 11...1| \right).$$

- Post-select the ancillary/clock qubits to get $|\psi_G\rangle$

F. Verstraete, M. Wolf, J. I. Cirac (2009)

Mixing time + post-selection time $\sim O(G^3 \log N)$ D. Baruah, G. Dunnweber, G. Styliaris, **RT** (2025)



State-preparation with dissipation

Restricting the Lindbladians to be geometrically local.

In 2D lattices:

Mixing time + post-selection $\sim O(N^4G^3 \log N^2G)$

In 1D lattices:

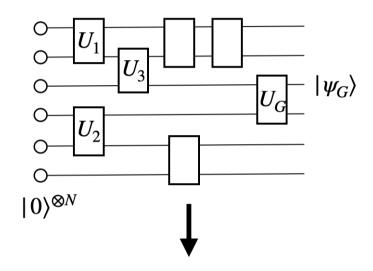
Mixing time + post-selection $\sim O(N^{12}G^3 \log N^4G)$

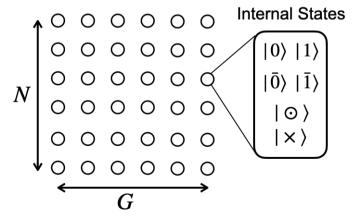
D. Baruah, G. Dunnweber, G. Styliaris, RT (2025)

Translationally invariant (TI) models:

As powerful as TI circuits on TI product states.

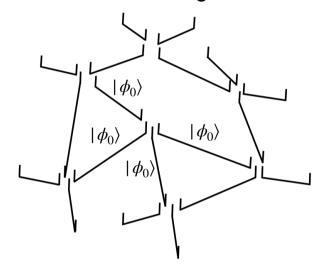
G. Dunnweber, J.I. Cirac, G. Styliaris, RT (2025)



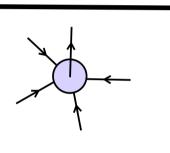


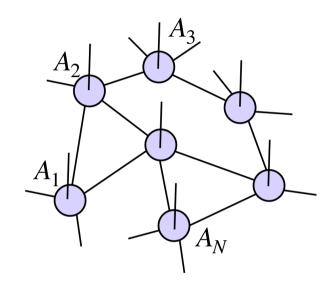
Tensor network states

Maximally entangled states on each edge



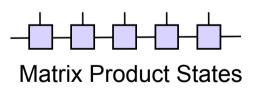
Apply 1-to-1 map on each vertex

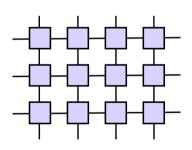




States specified as injective tensor networks.

- Approximate ground states of gapped Hamiltonians.
- Satisfy an area-law for entanglement entropy.





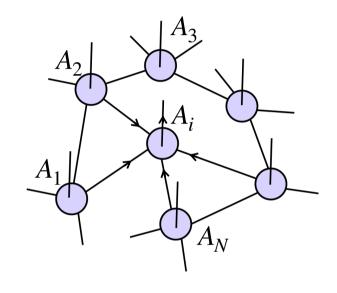
2D projected entangled-pair states

Dissipative preparation of tensor network states

Def. δ -isometric tensor network state

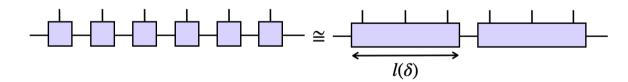
A tensor network state $|\psi\rangle$ specified on a graph $\mathcal G$ is δ -isometric if for each tensor A_i

$$||A_i^{\dagger}A_i - I|| \le \delta$$



In 1D

 δ —unitarity can be provably satisfied by blocking



In 2D

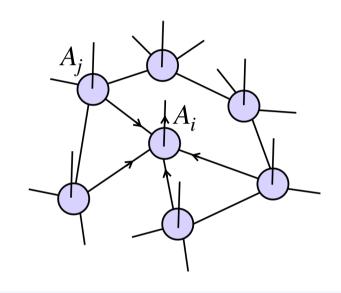
Conjecture: δ —unitarity can be satisfied by blocking (mod low-depth circuit).

Dissipative preparation of tensor network states

Parent Lindbladian:

$$\mathcal{L}(\rho) = \sum_{i,j,\alpha} L_{i,j;\alpha} \rho L_{i,j;\alpha}^{\dagger} - \frac{1}{2} \{ L_{i,j;\alpha}^{\dagger} L_{i,j;\alpha}, \rho \}$$

$$L_{i,j;\alpha} = A_i A_j |\phi_0\rangle \langle \phi_\alpha | A_i^{-1} A_j^{-1}$$



Result: Parent Lindbladian for δ -isometric TNS

If $\delta < c(\mathcal{G})$ where $c(\mathcal{G})$ is a constant that depends only on the degree of the graph \mathcal{G} , then there is a local Lindbladian which prepares $|\psi\rangle$ as a unique fixed point in time $\sim O(\log(N))$.

Dissipative vs unitary state preparation

- Every 1D injective tensor network state can be dissipatively prepared in $O(\log N)$. Previous best dissipative preparation: Time $\sim O(N^{\log(N)})$ Unitary state preparation: Time $\sim O(\log(N))$
 - D. Malz, G. Styliaris, Z. Wei et al (2024)
- In 2 and higher dimensions, sufficiently small δ Unitary state preparation: Time $\sim O(\log^{d+1}(N))$ Y. Ge et al (2015) \Longrightarrow Polynomial speed-up over known unitary methods.
- On non-geometrically local graphs, sufficiently small δ Unitary state preparation: Time $\sim O(N^3)$ Y. Ge et al (2015) \Longrightarrow Exponential speed-up over known unitary methods.

Robustness guarantees

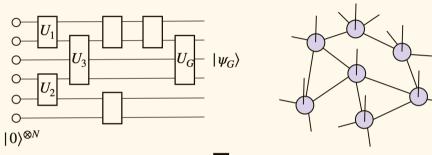
- Preparation of TNS with parent Lindbladian provides natural robustness to initialization errors.
- Experimental noise:

$$\text{Target: } \mathscr{L} = \sum_{i} \mathscr{L}_{i}, \quad \text{Experiment: } \mathscr{L} = \sum_{i} \mathscr{L}_{i} + \delta \sum_{i} \mathscr{N}_{i}$$

- \times Full state is almost orthogonal: $\langle \psi | \rho_{\delta} | \psi \rangle \sim \exp(-\delta N)$
- ✓ Dissipatively prepared geometrically-local TNS, reduced states are robust:

For
$$|A| \leq O(1)$$
, $\|\operatorname{Tr}_{A^c}(|\psi\rangle\langle\psi|) - \operatorname{Tr}_{A^c}(\rho_{\delta})\| \leq O(\delta)$

State Preparation



To

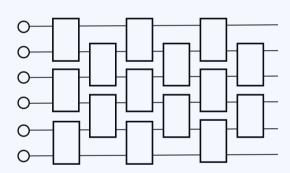
Geometrically local open system

Measure of the operational capability of a family of open-system models.

Circuit Complexity

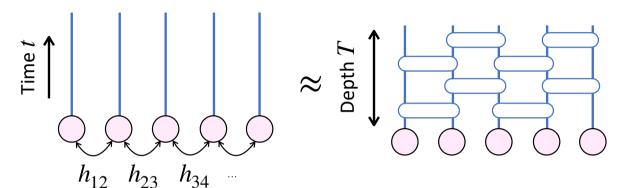
Geometrically local open system dynamics

To



Measure of quantum resources needed to simulate open-system models.

Quantum simulation of lattice models



Closed system $H_S = \sum_{i} h_{i,i+1}$

Open system $\mathscr{E}_{S}(t)$

Target: $||U - e^{-iH_S t}|| \le \varepsilon$

Target: $\|\mathscr{E} - \mathscr{E}_{S}(t)\|_{\diamond} \leq \varepsilon$

Circuit depth $T \sim O(t)$

Higher order Trotter Product formulae

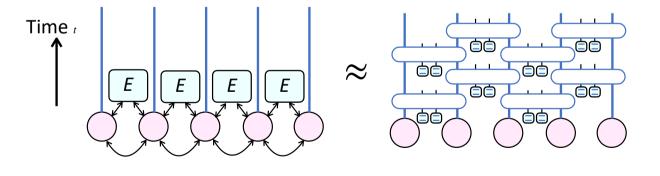
Su, Childs (2019).

Lieb-Robinson bounds + Quantum Signal Processing.

Implement \mathscr{E} in O(t) depth and with

 $O(t \times poly(n))$ gate count attained using Quantum

Hastings, Haah et al (2018).



Signal Processing.

O(nt) ancillas?

X. Li, C. Wang (2022).

Challenge with open-system simulation

Optimal simulation requires forward and backward evolution

Example, trotterization: $H_S = A + B$, $A = h_{12} + h_{34} + ..., B = h_{23} + h_{45} + ...$

Second order:

$$e^{-i\varepsilon H_S} \approx \mathcal{S}_2(\varepsilon) = e^{-i\varepsilon A/2} e^{-i\varepsilon B} e^{-i\varepsilon A/2}$$

Fourth order:

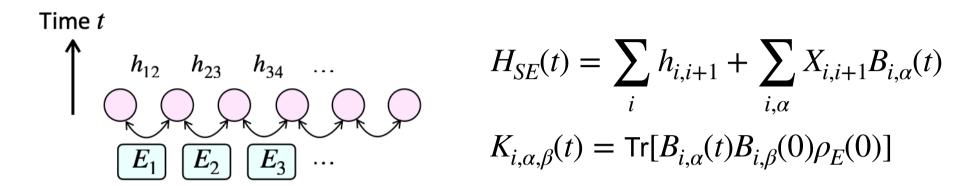
$$e^{-i\varepsilon H_S} \approx \mathcal{S}_4(\varepsilon) = \mathcal{S}_2^2(0.4145\varepsilon)e^{-0.3289\varepsilon A} \left[e^{0.6579\varepsilon B}\right]e^{-0.3289\varepsilon A} \mathcal{S}_2^2(0.4145e^{-0.3289\varepsilon A}\varepsilon)$$
Backward-time evolution

Open systems: Harder to do backward-time evolution.

System evolution $\mathscr{E}_S(t)$: A channel but $\mathscr{E}_S^{-1}(t)$ is not necessarily a channel.

System-environment evolution $U_{SE}(t)$: Inverse is a unitary but $H_{SE}(t)$ is an unbounded and time-dependent Hamiltonian.

Quantum simulation of lattice models

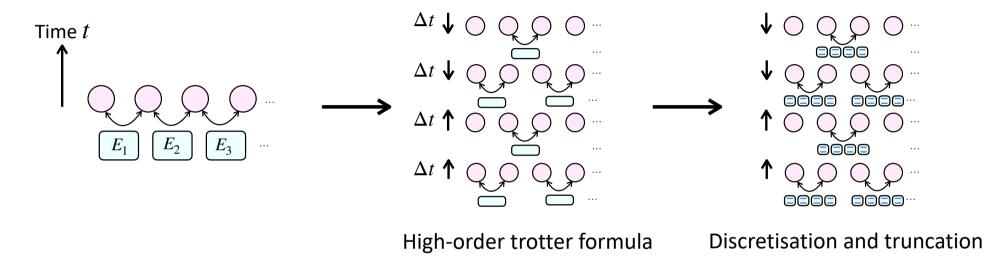


Assumptions: $K_{i,\alpha,\beta}(t)$ decays superpolynomially to 0 as $|t| \to \infty$ and has smooth derivatives.

Result:

- The channel describing system dynamics $\mathscr{E}_S(t)$ can be simulated to an error ε with depth $T = O(t(nt/\varepsilon)^{o(1)})$.
- With circuit of depth $T=O(t(t^{d+1}/\varepsilon)^{o(1)})$ and local observable can be simulated to error ε

Circuit complexity for open system dynamics



- Develop a high-order trotter formula for $H_{SE}(t)$ with trotter error $O(nt(\Delta t)^p)$.

 Not a direct application of time-dependent trotter formulae.
- Provide a near-optimal discretisation and truncation of the trotterized unitary .

Summary

- Open system with Gaussian environments have a succinct description with system Hamiltonian, jump operators and memory kernels which include both non-Markov and Markov models.
- Geometrically local open systems can be used to prepare quantum states described by both quantum circuits and tensor networks.
- Geometrically local open systems, under smoothness assumption on the systemenvironment interactions, can be simulated near-optimally with quantum circuits.