

Opportunities with the isobar run at RHIC

Prithwish Tribedy (Brookhaven National Laboratory)

Intersection of nuclear structure and high-energy nuclear collisions, week 3, Feb 6-10, 2023, INT, Seattle

Opportunities with the isobar run at RHIC

- Brief intro to our field & Isobar collisions at RHIC
 - Precision tool for measurements in heavy ion
- Nuclear shape and structure
 - Nuclear deformation, neutron skin
- Strong field effects
 - Photon-induced processes, Chiral Magnetic Effect, Polarization
- Study of the structure of a baryon
 - What exactly carries baryon quantum number and how is it stopped?

Relativistic collisions are different

Rutherford, 1908

Lee, 1974

Study the building blocks of strong interaction & underlying QFT (typical time scales ~1-10 fm)

Creation of strong color fields

Gribov, Levin, Ryskin, 1981 McLerran, Venugopalan hep-ph/9309289

Expected to produce the strongest color field in the nature: $\rho \sim 1/\alpha_s$

Nucleus at rest

Nucleus at relativistic energies

A state-of-the art modeling of heavy-ion collisions based on strong color fields is highly successful

Creation of strong electro-magnetic fields

Strongest EM field in the nature: $B \sim 10^{18}$ Gauss (~ pion-mass²)

Kharzeev et al 0711.0950, Skokov et al 0907.1396 McLerran, Skokov, 1305.0774

Neutron Star ~ 10⁹ Gauss

The STAR detector at the Relativistic Heavy Ion Collider

STAR: known for precision measurement capability of hadrons over wide acceptance

A gold-gold collision @ STAR detector https://www.star.bnl.gov/~dmitry/edisplay/ Au+Au 200 GeV Event# 1007 Run# 17172038 6/20/16 16:07:55 EDT Au (100 GeV/A) Au (100 GeV/A) Forward rapidity Central Detector (mid-rapidity) **Event Plane Detector** Time Projection Chamber (Triggering events, (Momentum, charge state, plane of collisions) particle identification) **Direction B-field** Motion of the charge

Elliptic anisotropy in particle production

Elliptic anisotropy is measured by correlation between two particles

$$v_2{EP} = \langle \cos(2\phi_1 - 2\Psi_2) \rangle$$

$$v_2\{2\}^2 = \langle \cos(2\phi_1 - 2\phi_2) \rangle$$

Distribution of particles look elliptic in every event: major axis is elliptic anisotropy plane Ψ_2

Elliptic anisotropy in particle production

Elliptic anisotropy is measured by correlation between two particles

 $egin{aligned} & v_2\{\overline{\mathsf{EP}}\} = \langle \cos(2\phi_1 - \overline{2\Psi_2})
angle \ & e^{\mathrm{S}} \ v_2\{2\}^2 = \langle \cos(2\phi_1 - 2\phi_2)
angle \end{aligned}$

Distributions of particles look elliptic in every event: major axis is elliptic anisotropy plane Ψ_2

Higher order anisotropy

Quantify anisotropy using Fourier expansion:

Particle distribution reveal various anisotropy coefficients & plane Ψ_n

Different harmonic anisotropies along Ψ_n (generated due to initial state geometry + fluctuations)

Centrality of collisions

b~0

b<2R

Central collisions Strong process dominate

Nuclear Deformation studies

Chiral effects, Polarization Neutron skin

Ultra-peripheral collisions EM process dominate

EM-field driven effects, tomography with polarized photon

Isobar in the chart of nuclides

Elements with similar sizes but different protons so that B-field could be different

0 Cs141 Cs142 Cs143

96 Zr 40+

10-15% larger B-field square expected in Ru+Ru than Zr+Zr

Provides a unique way to improve precision to reduce systematics in any observable ratio

Isobar program at RHIC: journey from 2018 to 2021

2018

2019

Relativistic Heavy Ion Collider Begins 18th Year of Experiments

March 21, 2018

First smashups with 'isobar' ions and low-energy gold-gold collisions will test earlier hints of exciting discoveries as accelerator physicists tune up technologies to enable future science

Results from Search for 'Chiral Magnetic Effect' at RHIC

Collisions of 'isobars' test effect of magnetic field, searching for signs of a broken symmetry

August 31, 2021

Nuclear Experiment

STAR

2020

2021

Search for the Chiral Magnetic Effect with Isobar Collisions at $\sqrt{s_{NN}}$ = 200 GeV by the STAR Collaboration at RHIC

STAR Collaboration: M. S. Abdallah, B. E. Aboona, J. Adam, L. Adamczyk, J. R. Adams, J. K. Adkins, G. Agakishiev, I. Aggarval, M. M. Aggarval, X. Ahammed, I. Alekseev, D. M. An Ashraf, F. G. Atetalla, A. Attri, G. S. Averichev, V. Bairathi, W. Baker, J. G. Ball Cap, K. Barish, A. Behera, R. Bellwied, P. Bhagat, A. Bhasin, J. Bielcik, J. Bielcikova, I. G. Bordyuzhin, J. X. Z. Cai, H. Caines, M. Calderón de la Barca Sánchez, D. Cebra, I. Chakaberia, P. Chaloupeka, B. K. Chan, F.-H. Chang, Y. Changova-Bunzarova, A. Chatterjee, S. Chattop Chen, Z. Chen, J. Cheng, M. Chevalier, S. Choudhury, W. Christie, X. Chu, H. J. Crawford, M. Csanád, M. Daugherity, T. G. Dedovich, I. M. Deppner, A. A. Darevschikov, A. Dhamija J. L. Drachenberg, E. Duckworth, J. C. Dunlop, N. Elsey, J. Engelage, G. Eppley, S. Esumi, O. Evdokimov, A. Ewigleben, O. Eyser, R. Fatemi, F. M. Fawzi, S. Fazio, P. Federic, J. Fedori Fiyak, A. Francisco, I

Search for the chiral magnetic effect with isobar collisions at $\sqrt{s_{NN}} = 200$ GeV by the STAR Collaboration at the BNL Relativistic Heavy Ion Collider

M. S. Abdallah *et al.* (STAR Collaboration) Phys. Rev. C **105**, 014901 – Published 3 January 2022

RHIC The published results were outcome of blind analysis from four independent groups

The versatility of RHIC and the unique capabilities of the STAR detector were crucial to the success of the isobar program

Insights on nuclear shape & structure

Multiplicity difference between the isobars

Multiplicity density is larger in Ru than in Zr in a matching centrality

Indicates smaller size of the Ru nucleus than Zr

Multiplicity difference between the isobars

MC-Glauber with two-component model used to describe uncorrected multiplicity distribution. WS parameters with thinker neutron skin in Zr provides the best description of the multiplicity distributions

Nuclear structure difference between isobars

Multiplicity distribution $P(N_{ch})$ and net-charge multiplicity (ΔQ) indicate neutron skin difference

Pioneering new ways to constrain neutron skin with heavy ion collisions

Measurements of elliptic anisotropy

 $v_2\{EP\} = \langle \cos(2\phi_1 - 2\Psi_2) \rangle \quad v_2\{2\}^2 = \langle \cos(2\phi_1 - 2\phi_2) \rangle$

v₂ ratio is greater than unity indicating shape difference between two isobars (larger quadruple deformation in Ru)

Measurements of triangular anisotropy

 $v_3\{2\}^2 = \overline{\langle \cos(3\phi_1 - 3\phi_2) \rangle}$ ϕ_1 η -gap ϕ_2

 v_3 ratio is smaller than unity indicating shape difference between two isobars (larger octuple deformation in Zr)

Measurements of mean transverse momentum

Transverse pT

Nuclear structure difference between isobars

Talk by Giuliano Giacalone, Chunjian Zhang (week 3), Jiangyong Jia (week 2)

Ratios of flow harmonics (v₂, v₃), <p_T> fluctuations indicate nuclear shape difference between isobars

Pioneering new ways to constrain neutron skin & nuclear deformation with heavy ion collisions

Summary of nuclear structure

Precision ratios of flow harmonics (v₂, v₃), asymmetric cumulants (ac{3}), <p_T>, moments of <p_T> fluctuation, multiplicity distribution P(N_{ch}) and net-charge multiplicity (ΔQ) measured in isobars

Pioneering new ways to constrain neutron skin & nuclear deformation with heavy ion collisions

Strong field effects

Isobar in the chart of nuclides

Elements with similar sizes but different protons so that B-field could be different

0 Cs141 Cs142 Cs143

96 Zr 40+

 $\begin{array}{c} 10 \\ \sqrt{s_{NN}} = 200 \text{ GeV} \\ 10 \\ \sqrt{s_{NN}} = 200 \text{$

10-15% larger B-field square expected in Ru+Ru than Zr+Zr

Independent test of B-field difference in isobars

Talk by Zhangbu Xu

Data suggest low p_T photon induced processes follow "Z" scaling of EM-fields for isobars

Chiral Properties of the medium

How to measure charge separation due to CME ?

Measure charge separation across Ψ_2 using the correlator:

Voloshin, hep-ph/0406311

CME causes difference in opposite-sign & same-sign correlation, background leads to indistinguishable effect

Chiral magnetic effect search in isobar collisions

Talk by Fugiang Wang

M. Abdallah et al. (STAR Collaboration), Phys. Rev. C 105 (2022) 1, 014901

No pre-defined signature of CME is observed in isobar collisions, possible residual signal due to change of baseline & non-flow effects are under study ϕ_2

Remaining signal estimates

1. STAR isobar blind analysis (most precision measurement):

M. Abdallah et al. (STAR Collaboration), Phys. Rev. C 105 (2022) 1, 014901

 $R = \frac{(\Delta \gamma / v_2)_{\rm Ru+Ru}}{(\Delta \gamma / v_2)_{\rm Zr+Zr}} = 0.9683 \pm 0.0034 \pm 0.0013$

 $\frac{(1/N_{\rm ch})_{\rm Ru+Ru}}{(1/N_{\rm ch})_{\rm Zr+Zr}} = 0.957337 \pm 0.000017$

2. STAR background estimate including non-flow:

Yicheng Feng, STAR collaboration, QM 2022

 $\frac{\left(N_{\rm ch}\,\Delta\gamma/v_2\right)_{\rm Ru+Ru}^{\rm bkg}}{\left(N_{\rm ch}\,\Delta\gamma/v_2\right)_{\rm Zr+Zr}^{\rm bkg}} = 1.013 \pm 0.003 \pm 0.005$

 $R^{\rm bkg} = \frac{(\Delta \gamma / v_2)_{\rm Ru+Ru}}{(\Delta \gamma / v_2)_{\rm Zr+Zr}} = 0.9698 \pm 0.003 \pm 0.005$

3. Estimates of Possible CME signal:

Kharzeev, Liao, Shi, 2205.00120 [nucl-th]

$$f_s = \frac{1/R^{\rm bkg} - 1/R}{\lambda_s + 1/R^{\rm bkg} - 1}$$

P. Tribedy, INT workshop on nuclear structure, Feb 6-10, 2023

More work using the isobar data from the STAR collaboration is underway

Study of the structure of a baryon: what carries the baryon QN?

What carries the baryon quantum number ?

https://en.wikipedia.org/wiki/Proton https://en.wikipedia.org/wiki/Baryon

The quark content of a proton. The color assignment of individual quarks is arbitrary, but all three colors must be present. Forces between quarks are mediated by gluons.

Classification	Baryon
Composition	2 up quarks (u), 1 down quark (d)
Statistics	Fermionic
Family	Hadron
Interactions	Gravity, electromagnetic, weak,
	strong

Baryons, along with mesons, are hadrons, particles composed of quarks. Quarks have baryon numbers of $B = \frac{1}{3}$ and antiquarks have baryon numbers of $B = -\frac{1}{3}$. The term "baryon" usually refers to *triquarks*—baryons made of three quarks ($B = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$).

Baryon number is a strictly conserved quantum number & assumed to be carried by the quarks but never proven

G.C. Rossi and G. Veneziano, Nucl. Phys.B123(1977) 507; Phys. Rep.63(1980) 149 Kharzeev, Phys. Lett. B, 378 (1996) 238-246

How is it stopped ? How (excess) baryons appear near the central rapidity ?

What traces the flow of baryon quantum number ?

In the conventional picture valence traces the flow of baryon number it but this has been never prove

What trances the flow of baryon number?

Valence quarks (large-x, difficult to stop) (trace electric charge Q & baryon number B)

Stopping one valence quark creates a meson, stopping a baryon require stopping all three valence quarks at a fixed rapidity

Stronger y dependence for B stopping than Q stopping (less B than Q at y=0)

P. Tribedy, INT workshop on nuclear structure, Feb 6-10, 2023

G.C. Rossi and G. Veneziano, Nucl. Phys.B123(1977) 507; Phys. Rep.63(1980) 149 Kharzeev, Phys. Lett. B, 378 (1996) 238-246

String-junction of gluons (small-x, easy to stop) (trace baryon number, quarks trace electric charge)

Stopping a junction will stop the baryon number at that rapidity, valence quarks may continue in their trajectories

Weaker y dependence for B stopping than Q stopping (equal or more B than Q at y=0)

How a junction can be stopped?

A string-junction from a projectile can be stopped by the soft parton field of the target and vice versa

Stopped baryon will have low p_T & possibly different flavor & meson production at forward y Regge theory predicts exponential rapidity dependence for junction stopping $\sigma \sim e^{0.58(y-Y_{\text{beam}})}$

Charge vs. baryon stopping in A+A collisions

Brandenburg, Lewis, Tribedy, Xu, arXiv:2205.05685

Scenario 1: Valence quarks carry electric charge & baryon number

A=Mass number = Baryon number Z=Atomic number = Electric charge

Charge stopping $\geq \frac{Z}{A} \times Baryon$ stopping

Scenario 2: Valence quarks carry electric charge & junctions cary baryon number

Test if valence quarks (carry charge) & baryons are shifted to y~0 from Y_{beam} in the same way

Precision measurements in isobar collisions

Charge stopping $\iff \frac{Z}{A} \times Baryon$ stopping

Absolute charge stopping difference:

$$\Delta Q = Q^{\mathrm{Ru} + \mathrm{Ru}} - Q^{\mathrm{Zr} + \mathrm{Zr}}$$

Baryon stopping is same between isobars

$$B = B^{\mathrm{Ru} + \mathrm{Ru}} = B^{\mathrm{Zr} + \mathrm{Zr}}$$

Equivalent charge stopping difference due to baryon stopping:

$$\frac{Z^{\mathrm{Ru}+\mathrm{Ru}} - Z^{\mathrm{Zr}+\mathrm{Zr}}}{A} \times B$$

The main advantage of isobar collisions is the best possible control on systematics

How exactly isobar collision helps?

Net-baryon measurement is easy, net-charge is difficult Isobar collision provides a way to measure the double ratios with high precision (sub-percent level):

$$R2_{\pi} = \frac{(N_{\pi^{+}}/N_{\pi^{-}})^{\mathrm{Ru}}}{(N_{\pi^{+}}/N_{\pi^{-}})^{\mathrm{Zr}}}$$
$$R2_{K} = \frac{(N_{K^{+}}/N_{K^{-}})^{\mathrm{Ru}}}{(N_{K^{+}}/N_{K^{-}})^{\mathrm{Zr}}}$$
$$R2_{p} = \frac{(N_{p}/N_{\bar{p}})^{\mathrm{Ru}}}{(N_{p}/N_{\bar{p}})^{\mathrm{Zr}}}$$

Net-charge stopping difference:

$$\Delta Q = N_{\pi} \left[(R2_{\pi} - 1) + \frac{N_K}{N_{\pi}} (R2_K - 1) + \frac{N_p}{N_{\pi}} (R2_p - 1) \right]$$

Precision net-charge measurement is extremely difficult, double ratio in isobar solves the problem

Estimates using STAR preliminary data on isobar collisions

$$\begin{split} \Delta Q &= N_{\pi} \left[(R2_{\pi} - 1) + \frac{N_{K}}{N_{\pi}} (R2_{K} - 1) + \frac{N_{p}}{N_{\pi}} (R2_{p} - 1) \right] \\ \text{Yang Li (STAR collaboration), QM 2022} \\ (R2_{\pi} - 1) &\approx (R2_{p} - 1) \sim 10^{-3} \quad , \ (R2_{K} - 1) \approx 0 \end{split}$$

Absolute charge stopping difference:

 $\Delta Q \approx N_{\pi} \times 1.2 \times 10^{-3}$

$$B \times \frac{\Delta Z}{A} = \left[(N_p - N_{\bar{p}}) + (N_n - N_{\bar{n}}) \right] \times \frac{\Delta Z}{A}$$

 $rac{N_n-N_{ar{n}}}{N}=1.2 imesrac{N_p-N_{ar{p}}}{N}$ E864 collaboration, arXiv:nucl-ex/9909001

 $rac{N_p-N_{ar{p}}}{N_-}=0.02\pm0.002$ STAR collaboration, arXiv: 0808.2041

 ${N_K \over N_\pi} pprox {N_p \over N_\pi} \sim 0.1$ STAR collaboration, arXiv: 0808.2041

Equivalent charge stopping difference due to baryon stopping:

$$B \times \frac{\Delta Z}{A} \approx N_{\pi} \times 2 \times 10^{-3}$$
$$B \times \frac{\Delta Z}{A} = 1.6 \times \Delta Q$$

Smaller charge stopping than what is expected for same carrier of charge and baryon number

Summary

Isobar collisions opened up path for precision measurements Low momentum di-lepton results already hint for B-field difference New opportunities to constrain nuclear shape & structure CME search has been narrowed down, upper limit extraction underway Unique opportunity to test what carries the baryon quantum number

RHIC 2018 isobar was a success, the subsequent analysis of STAR data has pioneered novel measurements, the impact will go beyond heavy ion community

Thank You

"For now, what is important is not finding the answer, but looking for it." — Douglas R. Hofstadter