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Motivations

Our main goal in this talk is to develop classical and quantum
simulations to probe AdS/CFT correspondence.

Hyperbolic Ising chain is a great candidate for this since it can be
easily simulated using DMRG and TEBD algorihtms

Ising Hamiltonian matches very closely to Rydberg Hamiltonian which
opens posibilities to use Rydberg Arrays for quantum simulating this
model.

Information spread in hyperbolic spaces has many applications both in
physics and general information sciences.
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Hyperbolic Space & AdS/CFT

The AdS/CFT correspondence is a very powerful tool that provides a
duality between strongly coupled d-dimensional critical systems and
weakly coupled d + 1 dimensional gravitational theories on a
negatively curved background

The the d-dimensional non-gravitational conformal theory resides on
the boundary of AdSd+1 which makes this duality holographic in it’s
nature.
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AdS Space

Euclidean AdSd+1 with curvature radius ` is a space of constant
negative curvature defined as follows

−X 2
0 + ~X · ~X = −X0X0 +

d+1∑
i=1

XiXi = −`2 (1)

This is embedded in R1,d+1 and has the same isometries as the Euclidean
conformal group of SO(1, d + 1).

The geodesic between any two points is given by

`2 cosh(σ(X ,X ‘)) = X0X0‘− ~X · ~X ≥ 0 (2)

Which gives a positive spacelike distance when projected on to a
hyperbolic surface
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AdS Space

There are 3 conventional choice of coordinates for hyperbolic surfaces,

1 Upper-Half Plane → Euclidean Rd

2 The Poincare ball → Sd

3 AdS cylinder → R× Sd−1

For Each choice of coordinates the hyperbolic manifold remains the
same but the corresponding boundary CFT maps to different
manifolds.
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AdS Space

Euclidean AdSd+1 has the following metric which has the topology of a
cylinder R×Hd . 1

ds2 = g00dt
2 + ds2Hd (3)

1Image taken from arxiv:2202.03464
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AdS Space

Under a particular choice of coordinates this metric can be expressed as

ds2 = ±`2 cosh2 ρdt2 + `(dρ2 + sinh2 ρdΩ2
d−1) (4)

Where ρ is the geodesic from the origin of Hd and
g00(ρ) = `2 cosh(ρ) at fixed time

dΩ2
d−1 is the line element of the sphere Sd−1
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AdS2 Ising Hamiltonian

For AdS2 where d = 1 this cylindirical form reduces to a strip with
1D conformal quantum mechanics at the each end and leads to the
following Ising Hamiltonian

HAdS = −J
∑
<ij>

cosh(ρi )σ
z
i σ

z
j − h

∑
i

cosh(ρi )σ
x
i −m

∑
i

cosh(ρi )σ
z
i
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AdS2 Ising Hamiltonian

All the geodesics that are
perpendicular to the time axis
can be regarded as equal time
curves.

Consider a small time evolution
for a quantum state |Ψ(t)〉

|Ψ(t + δt)〉 = Û(δt) |Ψ(t)〉 (5)
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AdS2 Ising Hamiltonian

Even though |Ψ(t)〉 and
|Ψ(t + δt)〉 are translationally
invariant. Û(t) is not.

The distance between two
points (x , t) and (x , t + δt) is
an increasing function of x and
can be written as cosh(ρx)δt

Which means that the
Hamiltonian responsible for
generating this time evolution
can be written as

Ĥ =

∫
cosh(ρx)ĥ(x)dx (6)
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DMRG simulation of the AdS2 Hamiltonian

For simulations of this model using DMRG, we need to find a way to
control the hyperbolic deformation cosh(ρi ) for any given chain size N

1 Replace cosh(ρi ) with cosh(li ) where li ranges from −l to l from the
first site to the last one.

2 We start at the first site with cosh(−l) Then we increase li in
increments of δl = 2l/(N − 1) until we reach cosh(lmax) at the last
site.
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Ground State Properties

Using the DMRG algorithm we can investigate the ground state properties
of the Hyperbolic Ising Model,

First we calculate the half-chain Von-Neumann entropy for
N = 36, l = 3.0, h = 3.0,m = 0.25
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Magnetic Susceptibility

Next, we calculate the Magnetic Susceptibility for the same parameters,

We see that both the entropy and susceptibility peaks around J = −6
signaling a phase transition in the model
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Time-Evolution of the Model

To obtain the time evolution we use the TEBD algorithm.

Below we plot the time evolution of 〈Sz〉 for N = 36, l = 3.0, h = 2.0,
and J = −2.0

Goksu Can Toga (Syracuse University) April 4, 2023 14 / 45



Time-Evolution of the Model

This interesting warping effect in the bulk can be related to the
time-dilation of the coefficient g00(ρ)
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Time Evolution of the Model

We can also look at time dependence of the Von Neumann entropy of the
system, which has the same warping effects.
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Quantum Simulation of Hyperbolic Ising Model

This formulation can be easily generalized to obtain the
Suzuki-Trotter evolution on a Universal Quantum Computer

For 4 qubits we get the following circuit for the time-evolution

Notice that gates at different sites have different phases this results in the
hyperbolic deformation we want.
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Quantum Simulation of Hyperbolic Ising Model

Now we can compare the results of this circuit with results we obtained
from the TEBD algorithm. We choose our initial state to be |0010〉 and
fix l = 2.
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Quantum Simulation of Hyperbolic Ising Model

We can look at the 〈Sz〉 again,
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Rydberg Simulation of the Model

As can be seen from the previous plot quantum computers based on
superconducting qubits are highly restricted in the number of
avaliable qubits for simulations.

Quantum computers that use trapped ions or Rydberg arrays offer
some help with quantum simulations that require a large number of
qubits.

Especially quantum computers based on Rydberg arrays are very
usfeul for us since the Rydberg Hamiltonian can be easily mapped to
the Ising Hamiltonian
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Rydberg Hamiltonian

We have the following Hamiltonian for the Rydberg atoms,

ĤR(t) =
∑
j

Ωj(t)

2
(e iφj (t) |gj〉 〈rj |+ e−iφj (t) |rj〉 〈gj |)

−
∑
j

∆j(t)n̂j +
∑
j<k

Vjk n̂j n̂k

Where Vjk = C6/|rj − rk |6 and C6 = 2π × 862690MHzµm6
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Rydberg Hamiltonian

The Rydberg Hamiltonian can be matched to the Ising Hamiltonian in the
following way.

ĤR(t) =
∑
j

Ωj(t)

2
(e iφj (t) |gj〉 〈rj |+ e−iφj (t) |rj〉 〈gj |)︸ ︷︷ ︸

σx

−
∑
j

∆j(t) n̂j︸︷︷︸
σz

+
∑
j<k

Vjk n̂j n̂k︸︷︷︸
σzσz
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Rydberg Hamiltonian

To get a hyperbolic Ising like model with this Hamiltonian we need to
adjust the separation between the atoms such that Vjk matches the
form of the hyperbolic deformation we had.

This can be done iteratively once we calculate the hyperbolic
coefficients for a given number of sites N and hyperbolic coupling l .

With the hyperbolic couplings at hand we can start building our chain
with placing the first atom at (0, 0) and solve the following equation
to get the distance between consecutive atoms

δi+1 = (A/ηi )
1/6 + ri (7)

Where η denotes the hyperbolic couplings and A is used as constant to
determine the separation between atoms and is set to A = 2π × 512.
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Rydberg Hamiltonian

Doing this procedure for l = 3 results with N = 13 results in distances
that range in between 12.13µm to 17.72µm, and the furthest atom being
located at 180.77µm.

The placement of the Rydberg atoms determine the form of the potential
Vjk

Goksu Can Toga (Syracuse University) April 4, 2023 24 / 45



Rydberg Hamiltonian

Now that we have a hyperbolic form for the Vjk . Next step is to find the
necessary ∆j(t) and Ωj(t) at every site. To do this we calculate the
following at every site

∆j ,Ωj =
C6 ∗ 10

(rj+1 − rj)6
(8)
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Simulation of the Rydberg Hamiltonian

With all the ingredients of the Hamiltonian set we can calculate the
corresponding Rydberg density 〈ni 〉 for the system.

For Rydberg Simulations we used the Bloqade Software package
developed by QuEra.

Goksu Can Toga (Syracuse University) April 4, 2023 26 / 45



Out of Time Ordered Correlators & Information Spread

Now we focus on the question of how information spreads in the
Hyperbolic Ising chain, for that we calculate Out of Time Ordered
Correlators (OTOCs)

Which are one of the main observables used to measure
scrambling,information spread and quantum chaos.

In general OTOCs have the following form

Fr (t) = Tr(W (t)†V †r W (t)Vr ) (9)

For the Ising case W and V can be taken as local Pauli operators.
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OTOCs & Scrambling

The connection between OTOC and operator growth can be made explicit
by introducing the squared commutator.

C (r , t) =
1

TrI
Tr([W (t),Vr ]†[W (t),Vr ]) =

1

TrI
||W (t),Vr ||2 (10)

C (r , t) = −F (r , t)− F ∗(r , t) (11)

+
1

TrI
(Tr(W †V †r VrW (t)) + Tr(V †r W

†(t)W (t)Vr )) (12)

The last 2 terms are local observables that thermalize to a constant
after a short time

This relation further simplifies when W ,V are Unitary and/or
Hermitian.

For example for Pauli operator this can be simplified to
C (r , t) = 2− 2F (r , t)
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OTOCs & Scrambling

The squared commutator depends on the number of the degrees of
freedom W (t) acts on.

At t = 0 W (t) acts only on one site and commutes with Vr that is
located away from W so C (r , t) = 0

As the system evolves under time, W (t) becomes more and more
non-local and starts to overlap with Vr which results in an increase in
C (r , t)
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OTOCs & Scrambling

So by changing the location of Vr we can probe how C (r , t) changes

If Vr doesn’t overlap with W (t) C (r , t) remains small.

If Vr overlaps with W (t) C (r , t) grows large.

This means that we can use C (r , t) to determine the number of degrees of
freedom W (t) acts on at time t which also means that C (r , t) can be
used to track the lightcone of information dynamics
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OTOCs & Scrambling

In our calculations for the OTOC using TEBD we used this specific
form for the OTOC operator.

O(t) = Tr(ρW (t)V †W (t)V )/Tr(ρW (t)2V †V ) (13)

This definition ensures that O(t) = 1 when W (t) and V commute

Taking ρ ∼ I/D one can easliy take the infinite temperature limit or
calculate the expectation value of this operator on any state to obtain
finite temperature results.

We obtain W (t) by expressing W as an MPO state and applying
Heisenberg time evolution using TEBD.
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OTOCs & Scrambling

How O(t) spreads through the chain distinguishes between different
kinds of scrambling

1 O(t) ∼ log(λd) → fast scramblers like the SYK model and Black
Holes.

2 O(t) ∼ λdn → systems with infinite/long range interactions

3 O(t) ∼ λd → systems that saturate the Lieb-Robinson bound
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OTOCs in Hyperbolic Ising Model

Let’s start our discussion with OTOC calculations at the infinite
temperature limit.
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OTOCs in Hyperbolic Ising Model

For finite temperature results we measure the following,

O(t) =
〈ψ| (W (t)V †W (t)V ) |ψ〉
〈ψ| (W (t)2V †V ) |ψ〉

(14)

Where |ψ〉 = ρ1/2 |0〉 we will take |ψ〉 to consist of all down state for the
rest of this talk.
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OTOCs in Hyperbolic Ising Model

Now turning on the Hyperbolic deformation l for fixed J = −6.0 and other
parameter are tuned to their corresponding critical values.
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OTOCs in Hyperbolic Ising Model

Plotting the d dependence of the light-cone
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OTOCs in Hyperbolic Ising Model

Alternatively, we can fix l = 3.0 and see the dependence on J of OTOCs.
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OTOCs in Hyperbolic Ising Model

Again, plotting the d dependence of the light-cone
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OTOCs in Hyperbolic Ising Mode

We see that for suitable parameters Hyperbolic Ising Model acts like fast
scrambler and propagates information in logarithmic time.

This is important for a few reasons

1 Models like SYK that exhibit fast scrambling are very hard to
simulate.

2 Models with infinite range interactions requires long range
entanglement which is problematic for quantum simulations

3 Our model is easy to simulate both on classical and quantum
computers which makes it a very rare model in the class of fast
scramblers.
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Boundary to Bulk Correlators

Up to now we focused on bulk correlators but what happens if we
start from the boundary.
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Boundary to Bulk Correlators

We see that a correlator that starts out in the boundary spreads through
the chain in a power-law like manner.

This is interesting because it shows us that depending on the location
of deformation W (t) we can have different behaviours for the
scrambling.
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Conclusions

We developed classical and quantum simulations for the Hyperbolic
Ising Model.

Calculated the OTOCs and showed that Hyperbolic Ising model is a
fast scrambler

Which makes the Hyperbolic Ising Model one of the few models that
is a fast scrambler and can be simulated easily.
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Thanks for listening.
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Fitting results for the logarithmic fits for N = 36, l = 3.0

T a + log(bd)

4 0.94 + log(1.10d)

5 0.38 + log(1.03d)

6 0.67 + log(0.50d)
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Fitting results for the power law fits for N = 36, J = −3.0

l a + bdc

0 −0.6 + 0.7 ∗ d1

1 −0.23 + 0.33 ∗ d1.18

2 0.12 + 0.04 ∗ d1.77

3 0.14 + 0.006 ∗ d2.36
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